
Comp151

Pointers

Pointer Review +

• Introduction
• *and &
• Use of typedef
• Dynamic Allocation: new, delete
• Dangling pointers
• Memory leakage
• Array = Pointer
• Pointer Arithmetic
• Review: Pointers on Records
• Dynamic Allocation of Arrays

Pointers

• A pointer or pointer variable is a variable that can reference a
memory cell. It does this by storing the location or address of the
memory cell.

• Technical questions: If p is a pointer variable,
– How can we get p to point to a particular memory cell?
– How can we use the location stored in p to get to the contents of cell to

which p points?

….. 56 911 82 …..

Location# 99 100 101

p: points to
location 100

Pointer Operations in C++

• Keywords/symbols used are *, &, new, delete.
int x, y; // x and y are integers
int* p; // p is an integer pointer variable

• The second statement allocates a pointer variable p whose value is
undefined but is not NULL. This pointer variable may only point to a
memory cell that contains an integer.

p = &x; // Places the address of x into p
// p points to x

*p = x; // Set the value of the memory location
// pointed to by p to the value stored in x

Example
y = 5; // variable y stores value 5
p = &x; // p points to memory location of x
*p = y; // same as writing x=y;

At the end of this example
x = 5, y = 5,

and p points to x.

// Program to demonstrate pointers.
// Modified from Savitch Display 11.2
#include <iostream>
using namespace std;

int main()
{ int x=10; int y=20;

int *p1, *p2;

p1 = &x;
p2 = &y;
cout << ''x == '' << x << endl;
cout << ''y == '' << y << endl;
cout << ''*p1 == '' << *p1 << endl;
cout << ''*p2 == '' << *p2 << endl <<endl;

*p1 = 50;
*p2 = 90;
cout << ''x == '' << x << endl;
cout << ''y == '' << y << endl;
cout << ''*p1 == '' << *p1 << endl;
cout << ''*p2 == '' << *p2 << endl <<endl;

p1= p2;
cout << ''x == '' << x << endl;
cout << ''y == '' << y << endl;
cout << ''*p1 == '' << *p1 << endl;
cout << ''*p2 == '' << *p2 << endl <<endl;

}

x == 10
y == 20
*p1 == 10
*p2 == 20

x == 50
y == 90
*p1 == 50
*p2 == 90

x == 50
y == 90
*p1 == 90
*p2 == 90

Notes

• Read *p as The variable pointed to by p
Read &x as The address of z

• & is the address of operator
* is the dereferencing operator

• Suppose p1 = &x and p2 = &y.
Then p1 points to x and p2 points to y.

p1 = p2
does not have the same effect as

*p1 = *p2

p1 = p2 means that p1 now points to y.
It does not change x.

*p1 = *p2 is the same as x = y.

Notes
• The previous example included this:

int *p1, *p2;

• Not this, which might seem more natural:
int* p1, p2;

Why not?

• Consider the difference :
(int*) p1, p2;
int(* p1), p2;

• The first is more logical since it groups the type information, but the second is how C++ interprets
the code.

• Strongly recommended: use this cleaner convention:
int* p1; int* p2;

• Strongly recommended: define only one variable per line:
int* p1;
int* p2;

• Or, alternatively, use typedef…

• There is a classic error to watch out for when using
pointers. It is the difference between the following two
lines

int* p, q; // p is a pointer and q an int
int *p, *q; // p and q are both pointers

• One way to avoid this error is to use the typedef
command which permits you to define new type names,
e.g.

typedef double distance; // distance is a new name for double distance miles;

is the same as writing
double miles;

This means that instead of writing
int *p, *q;

• we can write
typedef int* IntPtr; // new name for pointers to ints
IntPtr p, q; // p and q are both pointers to ints

Static and Dynamic Allocation Of Memory

• The fragment
int x, y; // x and y are integers
int* p; // p is an integer pointer variable

allocates memory for x, y and p at compilation time.
This is called static allocation.

• Memory may also be allocated at execution time. This is
known as Dynamic Allocation. For example

p = new int;

allocates a new memory cell that can contain an integer
and points p to it.

// Program to demonstrate pointers and dynamic variables.
// Modified from Savitch Display 11.2
#include <iostream>
using namespace std;

int main()
{

int* p1; int* p2;

p1 = new int;
*p1 = 10;
p2 = p1;
cout << ''*p1 == '' << *p1 << endl;
cout << ''*p2 == '' << *p2 << endl <<endl;

*p2 = 30;
cout << ''*p1 == '' << *p1 << endl;
cout << ''*p2 == '' << *p2 << endl <<endl;

p1 = new int;
*p1 = 40;
cout << ''*p1 == '' << *p1 << endl;
cout << ''*p2 == '' << *p2 << endl <<endl;

}

*p1 == 10
*p2 == 10

*p1 == 30
*p2 == 30

*p1 == 40
*p2 == 30

• A special area of memory, the heap is reserved for dynamic variables. To
create a new dynamic variable the system allocates space from the heap. If
all the memory is used up and new is unable to allocate memory then it
returns the value NULL.

• In a real programming situation you should always check for this error.

int* p;
p = new int;

if (p == NULL)
{

cout << ''Memory Allocation'‘ << endl;
exit(1);

}

• NULL is actually the value 0 but we think of it as something special because
we will have use for a special “empty” pointer later.

• The value of NULL is defined in stddef.h which should be included in any
program using NULL.

• The system has a limited amount of space on the heap.
So as not to use it up it is a good idea to return unused
dynamic memory to the heap. If p is a pointer this can be
done using the complimentary command

delete(p);

which deletes the memory cell to which p points. It does
not modify p. After executing delete(p) the value of *p
is undefined.

// Program to demonstrate delete
// Pointer3.cpp
#include <iostream>
using namespace std;

typedef int* IntPtr;
int main()
{ int x= 20;

IntPtr p;
p = new int;
*p = 30;
cout << ''*p == '' << *p;
cout << '' <---> x == '' << x << endl;
delete p; // delete what p points to, but not p itself!
p = &x;
cout << ''*p == '' << *p;
cout << '' <---> x == '' << x << endl;

}

Output:
*p == 30 <---> x == 20
*p == 20 <---> x == 20

The Dangling Pointer

• Be careful that when you use delete p you are not
erasing a location that some other pointer q is pointing to.

int* p; // p is an integer pointer variable
int* q; // q is an integer pointer variable
p = new int;
q = p;

creates

but then executing
delete p;
p = NULL;

leaves q dangling

Pp

q

p

q

?

Memory Leakage

• An associated problem is losing all pointers to an allocated memory
location. When this happens the memory can never be deallocated
and is lost, i.e., never returned to the heap.

int* p; // p is an integer pointer variable
int* q; // q is an integer pointer variable
p = new int;
q = new int;

creates
but then executing

q = p;

leaves the location previously pointed to by q lost.

p

q

p

q

Arrays and Pointers

• An array name is actually a pointer to the beginning of the array !
int a[6] = {0, 2, 4, 8, 10, 12}; //defines an array of integers
int* p;
p = a; // p points to a[0]

yields
a[0] a[1] a[2] a[3] a[4] a[5]

• Since array names and pointers are equivalent we can also use p as
the array name. For example

p[3] = 7;

is equivalent to
a[3] = 7;

0 2 4 8 10 12a
p

Starting with the above and executing p = &(a[2]) yields

but now p[0] refers to a[2], p[1] to a[3], , eg.

0 2 4 8 10 12a
p

0 2 4 8 10 12a
p

0 2 4 8 10 12a
p

a[0] a[1] a[2] a[3] a[4] a[5]

p[0] p[1] p[2] p[3]

a[0] a[1] a[2] a[3] a[4] a[5]

a[0] a[1] a[2] a[3] a[4] a[5]

Pointer Arithmetic

• Arithmetic on pointers has a different meaning than
arithmetic on “numbers”. Adding an integer i to p says
that p should be advanced i data items:

SomeType *p; // Set p to be a pointer to some type
p + i; // increment p by i*sizeof(SomeType) bytes

Examples:

0 2 4 7 10 12a

p

p=a 0 2 4 7 10 12a

p

++p

0 2 4 7 10 12a

p

p=p+2

a[0] a[1] a[2] a[3] a[4] a[5] a[0] a[1] a[2] a[3] a[4] a[5]

a[0] a[1] a[2] a[3] a[4] a[5]

More examples

0 2 4 7 10 12a

p

p=a+2

0 2 9 7 10 12a

p

p=(p+1)+2

0 10 9 7 10 12a

p

(p-1)=(p+2)

a[0] a[1] a[2] a[3] a[4] a[5]

a[0] a[1] a[2] a[3] a[4] a[5]

a[0] a[1] a[2] a[3] a[4] a[5]

Pointers to Objects: Dynamic Memory Allocation
#ifndef IQ1_HPP
#define IQ1_HPP
#include <iostream>
using namespace std;

class IQ {
private:

char name[20];
int score;

public:
IQ(const char* s, int k)
{

strcpy(name, s);
score = k;

}
void smarter(int k)
{

score += k;
}
void print() const
{

cout << ''('' << name << '' , '' << score << '')'' << endl;
}

};
#endif // IQ1_HPP

#include <iostream>
#include ''iq1.hpp''
using namespace std;

int main()
{

IQ* x = new IQ(''Newton'', 200);
IQ* y = new IQ(''Einstein'', 250);
x->print();
y->print();
return 0;

}

“Newton”
200

“Einstein”
250

x

y

Pointers to Objects: Indirect Addressing

#include <iostream>
#include ''iq1.hpp''
using namespace std;

int main()
{

int choice;
IQ x(''Newton'', 200);
IQ y(''Einstein'', 250);
cin >> choice;
if (choice == 1) {
x.smarter(50);
x.print();
x.smarter(50);

} else {
y.smarter(50);
y.print();
y.smarter(50);

}
return 0;

}

#include <iostream>
#include ''iq1.hpp''
using namespace std;

int main()
{

int choice;
IQ* iq_ptr;
IQ x(''Newton'', 200);
IQ y(''Einstein'', 250);
cin >> choice;
if (choice == 1)

iq_ptr = &x;
else

iq_ptr = &y;
iq_ptr->smarter(50);
iq_ptr->print();
iq_ptr->smarter(50);
return 0;

}

Pointers to Objects: Indirect Addressing

#include <iostream>
#include ''iq1.hpp''
using namespace std;

int main()
{

int choice;
IQ x(''Newton'', 200);
IQ y(''Einstein'', 250);
cin >> choice;
if (choice == 1) {
x.smarter(50);
x.print();
x.smarter(50);

} else {
y.smarter(50);
y.print();
y.smarter(50);

}
return 0;

}

#include <iostream>
#include ''iq1.hpp''
using namespace std;

int main()
{

int choice;
IQ* iq_ptr;
IQ x(''Newton'', 200);
IQ y(''Einstein'', 250);
cin >> choice;
iq_ptr = (choice == 1) ? &x : &y;
iq_ptr->smarter(50);
iq_ptr->print();
iq_ptr->smarter(50);
return 0;

}

Pointers to Objects: Indirect Addressing

#include <iostream>
#include ''iq1.hpp''
using namespace std;

int main()
{

int choice;
IQ x(''Newton'', 200);
IQ y(''Einstein'', 250);
cin >> choice;
if (choice == 1) {
x.smarter(50);
x.print();
x.smarter(50);

} else {
y.smarter(50);
y.print();
y.smarter(50);

}
return 0;

}

#include <iostream>
#include ''iq1.hpp''
using namespace std;

int main()
{

int choice;
IQ* iq_ptr;
IQ x(''Newton'', 200);
IQ y(''Einstein'', 250);
cin >> choice;
iq_ptr = (choice == 1) ? &x : &y;
(*iq_ptr).smarter(50);
(*iq_ptr).print();
(*iq_ptr).smarter(50);
return 0;

}

Pointers to Objects: Indirect Addressing

#include <iostream>
#include ''iq1.hpp''
using namespace std;

int main()
{

int choice;
IQ x(''Newton'', 200);
IQ y(''Einstein'', 250);
cin >> choice;
if (choice == 1) {
x.smarter(50);
x.print();
x.smarter(50);

} else {
y.smarter(50);
y.print();
y.smarter(50);

}
return 0;

}

#include <iostream>
#include ''iq1.hpp''
using namespace std;

int main()
{

int choice;
IQ* iq_ptr;
IQ x(''Newton'', 200);
IQ y(''Einstein'', 250);
cin >> choice;
iq_ptr = (choice == 1) ? &x : &y;
iq_ptr[0].smarter(50); // also works, but BAD style
iq_ptr[0].print(); // since iq_ptr isn’t intended
iq_ptr[0].smarter(50); // to be an array here!
return 0;

}

Dynamic Allocation of Arrays

• new T[n] will allocate an array of n objects of type T : It will return a
pointer to the start of the array.

• delete [] p will destroy the array to which p points and return the
memory to the heap. p must point to the front of a dynamically allocated
array. If it does not, the resulting computation will be ambiguous, i.e., it will
depend upon what compiler you are using and what data you are inputting.
You might get a run-time error, a wrong answer … very dangerous!!

// Program to demonstrate dynamic arrays
#include <iostream>
using namespace std;
int main()
{

// dynamically allocate array
int* a = new int[6];

a[0] = 0; a[1] = 1; a[2] = 2;
a[3] = 3; a[4] = 4; a[5] = 5;
cout << '‘a[1] = '' << a[1] << endl;

// delete the array
delete [] a;

}

// Program to demonstrate an illegal delete on dynamic arrays

#include <iostream>
using namespace std;

int main()
{

// dynamically allocate array
int* a = new int[6];

a[0] = 0; a[1] = 1; a[2] = 2;
a[3] = 3; a[4] = 4; a[5] = 5;

int* p = a + 2;

cout << '‘a[1] = '' << a[1] << endl;

// this is ILLEGAL!
delete [] p;

// the result of this will depend upon the particular compiler
cout << '‘a[1] = '' << a[1] << endl;

}

Dynamic Allocation of Arrays
• The dimension of the dynamically allocated array does not have to

be a constant. It can be an expression evaluated at runtime.

// Program to demonstrate dynamic arrays with run-time evaluation of dimension
#include <stdlib.h> // needed for atoi()
#include <iostream>
using namespace std;

int main(int argc, char* argv[])
{ // get dimension of array and allocate it

int dim = atoi(argv[1]);
int* a = new int[dim];

// initialize and print array contents
for (int i=0; i< dim; i++)

a[i]= i;
for (int i=0; i< dim; i++)

cout << '‘a['' << i << ''] = '' << a[i] << endl;

// delete array
delete [] a;

}

> a.out 4
a[0] = 0
a[1] = 1
a[2] = 2
a[3] = 3
> a.out 7
a[0] = 0
a[1] = 1
a[2] = 2
a[3] = 3
a[4] = 4
a[5] = 5
a[6] = 6

	Comp151
	Pointer Review +
	Pointers
	Pointer Operations in C++
	Notes
	Notes
	Static and Dynamic Allocation Of Memory
	The Dangling Pointer
	Memory Leakage
	Arrays and Pointers
	Pointer Arithmetic
	More examples
	Pointers to Objects: Dynamic Memory Allocation
	Pointers to Objects: Indirect Addressing
	Pointers to Objects: Indirect Addressing
	Pointers to Objects: Indirect Addressing
	Pointers to Objects: Indirect Addressing
	Dynamic Allocation of Arrays
	Dynamic Allocation of Arrays

