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Abstract—We study the problem of dynamic searchable en-
cryption (DSE) with forward-and-backward privacy. Many DSE
schemes have been proposed recently but the most efficient
ones have one limitation: they require maintaining an operation
counter for each unique keyword, either stored locally at the client
or accessed obliviously (e.g., with an oblivious map) at the server,
during every operation. We propose three new schemes that
overcome the above limitation and achieve constant permanent
client storage with improved performance, both asymptotically
and experimentally, compared to prior state-of-the-art works.
In particular, our first two schemes adopt a “static-to-dynamic”
transformation which eliminates the need for oblivious accesses
during searches. Due to this, they are the first practical schemes
with minimal client storage and non-interactive search. Our third
scheme is the first quasi-optimal forward-and-backward DSE
scheme with only a logarithmic overhead for retrieving the query
result (independently of previous deletions). While it does require
an oblivious access during search in order to keep permanent
client storage minimal, its practical performance is up to four
orders of magnitude better than the best existing scheme with
quasi-optimal search.

I. INTRODUCTION

With the advent of data outsourcing and the increasing
awareness for user data privacy, the ability to compute on
encrypted data stored on a remote untrusted server has emerged
as a necessary tool. A fundamental task in this area is searching
in encrypted datasets. E.g., assuming a collection of encrypted
documents, a query may be to return all the identifiers of the
documents containing the keyword w, without first decrypting
the documents. In the literature, this is known as searchable
encryption (SE) and it has found applications such as building
encrypted email [41] and encrypted image storage in the
cloud [2] with search capabilities. Since its first introduction
by Song et al. [50], almost twenty years ago, SE has been a
topic of significant study, e.g., in order to improve its efficiency
aspects, or to accommodate more advanced functionalities,
such as boolean queries [13], [33], sub-string, wild-card and
phrase queries [27], and a variety of database queries, such as
point [24], [25], range [23], [22], [27] and more general SQL
queries [34] (e.g., join and group-by queries).

In order to achieve good practical performance, it has
become commonplace in the literature to allow SE schemes
to reveal some information about the dataset to the server,
referred to as leakage. This leakage can occur at an initializa-
tion phase (e.g., the dataset size) or during the execution of
a query (e.g., access and search pattern, the identifiers of the
documents containing w and when this search was performed
previously, respectively).

Dynamic SE. Recent research has focused on dynamic search-
able encryption (DSE) schemes that can efficiently support
modifications in the encrypted dataset, without the need to re-
initialize the protocol. From a security perspective, developing
secure DSE schemes is challenging, due to the additional
information that may be revealed to the server because of
updates. Two relevant security notions have been proposed
for dynamic SE schemes—forward and backward privacy.
Forward privacy [16], [51] ensures that a new update cannot
be related to previous operations (until the related keyword
is searched). Besides the obvious benefit of allowing the
encrypted dataset to be built “on-the-fly” (crucial for certain
applications, e.g., encrypted e-mail storage starting from a
new mailbox), forward privacy is essential for mitigating
certain leakage-abuse attacks that depend on adversarial file
injection [55].

On the other hand, backward privacy ensures that if a
document containing keyword w is deleted before a search for
w, the result of this search does not reveal anything about this
document. Backward privacy is much less studied than forward
privacy. It was first proposed in NDSS 2014 by Stefanov et
al. [51] and formally defined recently in CCS 2017 by Bost et
al. [10] who proposed three types of backward-privacy. During
a search, BP-I reveals only the identifiers of files currently
containing w and when they were stored, BP-II additionally
reveals the timestamps and types (insertion/deletion) of all
prior updates for w, and BP-III additionally reveals for each
prior deletion which insertion it canceled.

Challenge 1: DSE with small client storage. The majority of
practical DSE constructions from the literature (e.g., [9], [10],
[29], [26]) require the client to locally store a table that holds
for every keyword in the dataset a counter aw that counts the
number of updates for w (some schemes store an additional
counter for searches). This allows for very efficient schemes
in practice, e.g., insertion of the entry (w, id, add) after aw
updates can be done by encrypting (w, id) and placing the
ciphertext in a hash map (stored at the server) at position
F (k, (w, aw+1)), where F is a pseudorandom function. Later,
to search for w the client simply looks up the value of aw and
queries the map at locations F (k, (w, 1)), . . . , F (k, (w, aw).

With small variations, this is the basic blueprint of many
existing schemes. This local word counter gives very efficient
schemes but it has an obvious drawback: increased client
storage. Compared to storing an inverted index for DB locally,
the client needs to store a table W of unique keywords which,
depending on the dataset, may be rather large. E.g., for the



TABLE I: Comparison of existing forward-and-backward-private DSE with small client storage. N is an upper bound for total
insertions, |W | = #distinct keywords. For keyword w: aw = #updates, iw = #insertions, dw = #deletions, nw = #files
containing w. RT is #roundtrips for retrieving DB(w). BP stands for backward privacy type (the smaller, the better) and am.
for amortized efficiency. The Õ notation hides polylogarithmic factors. WO stands for storing search/insertion counters for each
w at an oblivious map. To minimize client storage, oblivious map stashes are stored at the server and downloaded every time.

Scheme Computation Communication Client Storage BPSearch Update Search Update Search RT

MONETA [10] Õ(aw logN + log3N) Õ(log2N) Õ(aw logN + log3N) Õ(log3N) 2 O(1) I
WO+MITRA [29] O(aw + log2 |W |) O(log2 |W |) O(aw + log2 |W |) O(log2 |W |) O(log |W |) O(1) II

SDa O(aw + logN) O(logN)(am.) O(aw + logN) O(logN)(am.) 1 O(1) II
SDd O(aw + logN) O(log3N) O(aw + logN) O(log3N) 1 O(1) II

ORION [29] O(nw log2N) O(log2N) O(nw log2N) O(log2N) O(logN) O(1) I
HORUS [29] O(nw log dw logN + log2 |W |) O(log2N) O(nw log dw logN + log2 |W |) O(log2N) O(logN) O(1) III

QOS O(nw log iw + log2 |W |) O(log3N) O(nw log iw + log2 |W |) O(log3N) O(log |W |) O(1) III

Enron e-mail dataset, |DB| ≈ 2.6M and |W | ≈ 77K, i.e., the
client has to go through the trouble of deploying a DSE (and
leaking information) just to reduce its local storage by 33×.
When using SE to store relational database records (e.g., [34],
[25], [24]) the savings can be significantly smaller, i.e., in the
case of a real dataset with crime incidents in Chicago [1]
(used in [25], [24]) with |DB| ≈ 6M tuples, 22 attributes,
and |W | ≈ 17M, the reduction in local storage for supporting
point queries for these attributes will be 5× at best (similar
results are observed in TPC-H benchmark [3]). In general,
for relational database search many attributes may contain
unique values, (e.g., every record may contain a different
value) and in these cases the improvement in local storage will
be negligible. The aforementioned examples clearly illustrate
that in many cases storing locally a counter per word may
not be feasible and also it negates the main purpose of
outsourcing the dataset in the first place, since the client ends
up storing locally information whose size is proportional to
the plaintext database. Moreover, if we would like to support
the capability to access the encrypted database from multiple
devices, this approach would be especially cumbersome as it
entails synchronization and state transfer among them.

Using oblivious primitives. To avoid this, previous works
(e.g., [12], [26], [9], [10]) have proposed to store W at the
server encrypted. This would trivially violate forward privacy,
unless one uses an oblivious map (OMAP) [54] that hides
from the server which word entry is accessed every time.
One downside of this is that the construction of [54] and
subsequent improvements [47] require a logarithmic number of
rounds of interaction. The only existing DSE that avoids this
is the forward-private scheme of [28] (later made backward
private in [10]). However, it uses the recursive Path-ORAM
construction of [52] and it relies on heavy garbled circuit
computation to make it non-interactive. Therefore, its potential
for adoption in practice is quite limited and it serves mostly
as a feasibility result.1 Hence, we ask whether it is possible
to design a practical backward-and-forward-private DSE with
small client storage (e.g., polylog(|DB|) or, ideally, constant)
and non-interactive search.

Challenge 2: DSE with (quasi-)optimal search.2 With a
plaintext dataset, the nw document identifiers of files currently

1Alternatively, this can be achieved with the use of trusted hardware [5].
2As per Definition 4, a DSE scheme has optimal search time, if the

asymptotic complexity of search is O(nw) and quasi-optimal if search time
is O(nwpolylog(N)).

containing w can be optimally retrieved with nw operations.
The same performance can be achieved for DSE (e.g., [9],
[26]), albeit for insertion-only schemes (where nw = aw, the
total number of updates for w). With deletion-supporting DSE
nw can be arbitrarily smaller than aw. The only two backward-
private schemes that come close to achieving this optimal
performance are from [29]. At a high-level, they replace the
nw accesses necessary for retrieving the result with oblivious
accesses and achieve a polylogarithmic overhead over the
optimal cost (see Table I for more details). According to
Definition 4, these schemes achieve quasi-optimal search time.
However, their “black-box” use of oblivious primitives results
in schemes with rather poor performance, especially due to
communication cost (e.g., [29] reports ~1MB communication
for returning just nw = 100 identifiers). Therefore, we aim
to develop a DSE with quasi-optimal search and much better
practical performance.

A. Our results

In this work, we present novel schemes that address the
above challenges as follows:

(i) We present a black-box reduction from any result-
hiding static SE to a backward-and forward private
DSE. We instantiate it with [12] and call the resulting
scheme SDa . It has O(aw + logN) search cost, and
O(logN) amortized update cost. Most importantly,
SDa is the first DSE with O(1) permanent client
storage without using oblivious primitives, hence it
greatly outperforms all existing schemes for searches.

(ii) During amortized updates the temporary client stor-
age of SDa may grow arbitrarily large (up to O(N)).
To avoid this, we present a version with de-amortized
updates called SDd that has the same search overhead
as SDa and it outperforms state-of-the-art low-client-
storage DSE schemes in many scenarios (see our
experimental evaluation in Section V).

(iii) Finally for delete-intensive query workloads, we
present QOS, a DSE with quasi-optimal search time
O(nw log iw) and O(1) client storage that vastly
outperforms existing quasi-optimal schemes during
searches. Indeed, for large deletion percentages (ap-
proximately 40−80%, depending on the deployment
setting) it outperforms all other schemes.
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All our constructions are forward-and-backward private (BP-
II for SDa and SDd, BP-III for QOS). Formal theorem
statements and proofs can be found in Appendix A. Our
schemes are secure in the programmable random oracle model
but this assumption can be removed with standard techniques
without decrease in asymptotic efficiency, similar to [12], [26].

A detailed comparison with other DSE can be seen in
Table I where we only focus on schemes with small client
storage. We also consider WO+MITRA (WO stands for stor-
ing search/insertion counters for each w at an oblivious map),
the result of combining the most efficient backward-private
scheme from [29] with the “word counter + oblivious map”
approach described above (this technique can be used with
other schemes, e.g., FIDES, JANUS from [10] and JANUS++
from [53], but MITRA outperforms all of them both in terms
of performance and security). All schemes in Table I use
OMAPs, except for SDa; they can achieve O(1) storage by
storing the stashes at the server and generating keys with
a PRF. One general conclusion from the table is that our
schemes achieve much better search performance at the cost
of increased overhead for updates. We note that this trade-off
can be favorable, e.g., it seems suitable for OLAP databases
and data warehouses [19] in which search is more crucial than
the update performance.

Overview of techniques. SDa and SDd utilize classic tech-
niques for transforming static data structures to dynamic
ones [44], [45]. They store the result of N updates in a
sequence of logN separate indexes with sizes 20, . . . , 2logN .
Each update is first stored in the smallest index and whenever
two indexes of the same size exist they are downloaded and
merged to a single new one by the client. Searches are then
executed at each data structure independently. Ensuring that
the underlying static scheme is result-hiding allows us to prove
that SDa is backward private. Similar to the majority of DSE
constructions from the literature, we store triplets of the form
(w, id, op) where op = add/del, that is, deletions are also
“stored”. During search, the client filters out deleted entries.

Private lazy rebuild. For SDd, we propose a way to
implement the lazy rebuild de-amortization technique of [45]
for searchable encryption. At a high level, a fixed small
number of steps of the setup routine of the underlying static
SE need to be run for each update. In order to achieve a
backward-and-forward private DSE scheme, the static SE
must have a setup that is naturally “decomposable” into
steps with small, efficiently retrievable local state. For our
instantiation, we choose PiBas, an efficient static scheme
from [12]. During setup, PiBas parses the input dataset in
a deterministic manner, one keyword-document identifier
pair at a time, storing the corresponding entry (w, id) in a
pseudorandom position at a hash table. The only state for
the client is a counter of the times each keyword w has
been inserted so far (Figure 9). In SDd , we store this state
at the server using an OMAP. For every update, the client
performs one step of the PiBas setup process for every data
structure size in the worst-case. For each of these, it needs
the counter for the related keyword which is retrieved with
an OMAP access. Due to the deterministic access pattern of
PiBas and the oblivious accesses, the resulting scheme is
forward-and-backward private.

OMAP for updates; not for searches. A very interesting as-
pect of SDd is that, although it uses an oblivious map, it is only
accessed during updates. Due to this, searches are executed
non-interactively.

QOS: Practical quasi-optimal search. Unlike all previous
quasi-optimal search DSE that need to perform nw oblivious
accesses, QOS requires a single OMAP query which makes
it much faster in practice. This is achieved by decoupling the
result retrieval from the oblivious primitives.

QOS stores inserted entries of the form (w, id) in a
hash table I where the position is computed based on a
pseudorandom token, similar to most existing DSE schemes.
Where it deviates is in the way it treats deletions. For each w,
the client maintains a “conceptual” binary tree that describes
its update history (see Figure 3). It has N leafs, where N is
an upper bound in the number of supported insertions; initially
all nodes are white. Every node is numbered naturally, starting
from leafs 1, . . . , N , on to their parents N + 1, . . . , 3N/2 + 1,
etc. Inserted entries are “mapped” to the leafs of the tree
from left to right. In practice, this is done by storing the i-
th insertion (wi, idi) to a position in I that depends on the
leaf label i. Deletions mark tree nodes as black, e.g., deleting
(wi, idi) would color the i-th leaf black. Black nodes then
“propagate” upwards: if two siblings are black, their parent is
also colored black. After every deletion, let j be the single
top-most node that was just colored black. The client marks
a position (computed pseudorandomly based on w, j and the
search counter of w) in a separate hash table D. To hide the
tree manipulation part (coloring the nodes), and to be able
to efficiently retrieve the leaf where (wi, idi) is stored, QOS
involves two additional OMAPs, in addition to the “standard
one” for retrieving search and insertion counters for w.

During a search for w, after retrieving the search counter
from the OMAP, the client releases the PRF tokens. The server
uses them to non-interactively find the positions in I,D for
the nodes of the update tree for w. To speed up the process,
it starts from the Best Range Cover (selects the minimum
number of nodes that cover exactly the range) of leafs [1, iw]
and proceeds downwards, always checking whether it found
a black node by looking up positions of D, in which case it
abandons this path. Upon reaching non-black leafs, the server
looks up their positions in I; by construction, this is where
non-deleted entries are found. After decrypting and retrieving
the result, the client “re-maps” the accessed entries in I,D
to new locations using freshly computed PRF tokens with
increased search counter.

Clean-up. As discussed above, many DSE schemes, including
SDa and SDd, store deletions as actual entries. Thus, the server
storage is not reduced after deletions. However, this is almost
unavoidable when storing the encrypted entries in a hash
table/map (where memory is not de-allocated). One notable
exception is the forward-private DSE of [38] but no backward-
private scheme with this property exists. On the other hand,
reducing search time for future searches is—arguably—more
important than saving storage space at the server. Many
existing DSE schemes have a special “clean-up” phase for this,
typically executed in tandem with searches. Our SDa and SDd
schemes are amenable to such a clean-up process taking place
during updates (the first very naturally whereas the second

3



requires some additional bookkeeping). On the other hand,
quasi-optimal schemes like QOS inherently achieve this since
searches are (almost) unaffected by deletions.

Experimental evaluation. We implemented our three schemes
and compare their search, update, and storage performance
with existing forward-and-backward private DSE (Section V).
In particular, we compare them with the best low-client-storage
scheme, MITRA [29] with the word counter stored in an
oblivious map, and HORUS [29], the faster quasi-optimal
scheme. In terms of search time, SDa and SDd take less than
0.1ms for retrieving a result of 100 elements from a dataset
of 1M records. Moreover, for small results, they are between
20× and 85× faster than MITRA, with the added benefit
of being non-interactive. Turning to quasi-optimal schemes,
QOS takes 1.3ms for the same setting, vastly outperforming
HORUS (14-16531× throughout our experiments). Where our
schemes perform worse is in updates (as is evident from the
asymptotic analysis in Table I), e.g., for our tested cases QOS
is roughly 2× slower than HORUS (with the same blowup
factor for communication size), whereas MITRA is up to 14×
faster than SDd (in the worst case). All these results are for
10% deleted entries. For larger delete percentages we show that
QOS has the potential to become the most efficient solution.
It outperforms both MITRA and SDd after different ratios
between 40-80%, depending on the number of insertions.

B. Related Work

Searchable encryption—considered a special type of struc-
tured encryption [18]—was introduced by Song et al. [50].
Curtmola et al. [20] proposed the most widely used security
definition and the first scheme with non-trivial search time.
It has since been improved in several ways, e.g., support for
multiple users [48], [49], [32], more expressive queries in-
cluding relational databases, conjunctive keywords, and graph
queries [13], [33], [18], [40], [34], [23], [39], or efficient on-
disk storage [14], [42], [7], [24], [21].

The first DSE schemes were presented in [36], [35];
these schemes achieve optimal search time at the expense
of increased leakage (none of these schemes are forward or
backward private). The notion of forward privacy was first
discussed in [17] and improved in multiple subsequent works
(e.g., [51], [31], [12], [43], [9], [38], [28], [26]). Backward
privacy was first considered by Stefanov et al. [51] and
formally defined much later by Bost et al [10]. Since then,
Ghareh Chamani et al. [29], and Sun et al. [53] presented
more efficient schemes, and Amjad et al. [5] proposed a
scheme using trusted hardware. The use of classic “static-to-
dynamic” data structure techniques for DSE has been proposed
before, e.g., [23], [24]. However, these works only consider
forward privacy and amortized solutions—our scheme SDd
is the first to achieve backward privacy and worst-case low-
storage updates. A forward-private DSE with (quasi-)optimal
search was first proposed in [51]. The property was defined
in [29] that also presented quasi-optimal DSE with forward and
backward privacy. A general performance comparison of our
schemes with previous low-storage DSE is shown in Table I.

Our QOS scheme organizes updates in a conceptual binary
tree and uses each node’s natural label to compute its corre-
sponding storage position via a PRF. We believe a very similar

scheme can be achieved using the classic tree-based GGM
PRF/DPRF [30], [37], [8], [11], mapping leafs to its outputs
and nodes higher in the tree to “intermediate” evaluations.
This construction would avoid the random oracle assumption
(without additional interaction), however we instead chose to
build QOS in a black-box way from any PRF.

Recent advances in ORAM. Recently, [46], [6] proposed
novel ORAM constructions, with improved efficiency match-
ing the theoretical optimal overhead of O(logN). It is possible
to modify these to yield oblivious maps, thus asymptotically
improving our schemes SDd and QOS as well as [28], [10],
[29]. However, they achieve amortized performance. While it
may be possible to de-amortize them, this will undoubtedly
result in additional cost.3

II. PRELIMINARIES

We denote by λ ∈ N a security parameter. PPT stands
for probabilistic polynomial-time. Our protocols are executed
between two parties, a client and a server. Slightly abusing
notation, we let (x′; y′) ↔ P (x; y) denote a (possibly multi-
round) protocol execution with input x and output x′ for the
client, and input y and output y′ for the server. We consider a
collection of D documents with identifiers id1, . . . , idD, each
of which contains textual keywords from a given alphabet Λ.
Let the dataset DB consist of pairs of keyword-file identifiers,
such that (w, id) ∈ DB if and only if the file id contains key-
word w. For each w, let DB(w) denote the set of documents
that contain keyword w. Let W denote a set of keywords that
contains all the keywords from DB (possibly more).

Pseudorandom functions. Let Gen(1λ) ∈ {0, 1}λ be a
key generation function, and F : {0, 1}λ × {0, 1}` →
{0, 1}`′ be a pseudorandom function (PRF) family. F is a
secure PRF family if for all PPT adversaries Adv,|Pr[K ←
Gen(1λ); AdvF (K,·)(1λ) = 1]−Pr[AdvR(·)(1λ) = 1]| ≤ v(λ),
where R : {0, 1}` → {0, 1}`′ is a truly random function.

Searchable encryption. A dynamic symmetric searchable
encryption scheme (DSE) Σ = (Setup, Search, Update)
consists of algorithm Setup, and protocols Search, Update
that are executed between a client and a server:

• Setup(λ) on input λ outputs (K,σ,EDB) where K is
a secret key for the client, σ is the client’s local state,
and EDB is an (initially empty) encrypted database
that is sent to the server. The notation Setup(λ,N)
refers to a setup process that takes a parameter N for
the maximum supported number of entries.

• Search(K, q, σ;EDB) is a protocol for searching
the database. Here, we consider search queries for a
single keyword i.e., q = w ∈ Λ∗. The client’s output
is DB(w). The protocol may also modify K,σ and
EDB.

• Update(K, op,w, id, σ;EDB) inserts an entry to or
removes an entry from DB. Input consists of op =

3However, note that the quasi-optimal Horus scheme of [29] which we
compare the performance of our schemes against, uses Path-ORAM in a
non-black-box way and it is not readily compatible with these new ORAM
schemes.
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add/del, file identifier id and keyword w. The proto-
col may modify K,σ and EDB.

In the above, we mostly followed the description of [9],
[10], [29]. Given the above API, on input the data collection
the client can run Setup, followed by N calls to Update to
“populate” EDB. Assuming the scheme is forward private
(see below) this leaks nothing more than running an initial
setup operation on the DB. Other works [26], [38] model
Update as “file” addition or deletion, where the protocol
adds/removes all the relevant keywords to/from DB. This is
functionally equivalent as this process can be decomposed to
multiple calls of the above Update protocol.

At a high level, Σ is correct if the returned result DB(w)
is correct for every query (for a formal definition, see [12]).
The privacy of Σ is parametrized by a leakage function L =
(LStp,LSrch,LUpdt) that describes the information revealed
to the server throughout the protocol execution. LStp refers
to leakage during setup, LSrch during a search operation, and
LUpdt during updates. Standard search leakage types form the
literature include search pattern that reveals which searches
are related to the same w, and access pattern that reveals
DB(w) during a search for w. Note that access pattern leakage
is unavoidable if the client wishes to retrieve the actual files
and not just their identifiers (unless the files themselves are
stored in a protected manner, e.g., Oblivious RAM). Schemes
that avoid this leakage are called result hiding.

Informally, a secure SSE scheme with leakage L should
reveal nothing about the database DB other than this leakage.
This is formally captured by a standard real/ideal experiment
with two games RealSSE, IdealSSE presented in Figure 8 in
Appendix A, following the definition of [51].

Definition 1 ([51]): A DSE scheme Σ is adaptively-secure
with respect to leakage function L, iff for any PPT adversary
Adv issuing poly(λ) queries/updates q, there exists a stateful
PPT simulator Sim = (SimInit, SimSearch, SimUpdate)
such that |Pr[RealSSE

Adv (λ, q) = 1] − Pr[IdealSSE
Adv,Sim,L(λ, q) =

1]| ≤ v(λ).

Forward and backward privacy. SE schemes with forward
and backward privacy aim to control what information is
revealed in relation to updates. Informally, a scheme is forward
private if it is not possible to connect a new update to previous
operations, when it takes place. E.g., it should be impossible to
tell whether an addition is for a new keyword or a previously
searched one.

Definition 2 ([10]): An L-adaptively-secure DSE scheme
that supports single-keyword additions/deletions is forward
private iff the update leakage function LUpdt can be written
as: LUpdt(op, w, id) = L′Updt(op, id) where L′ is a stateless
function, op = add/del, and id is a file identifier.

Backward private DSE schemes limit the information that
the server learns during a search for w for which some entries
have been previously deleted. Ideally, the scheme should reveal
nothing about these deleted entries and, at the very least, not
their corresponding file identifiers [51]. Bost et al. [10] gave
the first formal definition for three types of backward privacy
with different leakage patterns, from Type-I which reveals
the least information to Type-III which reveals the most. In

order to present their definition, we need to first define some
additional functions.

Let Q be a list with one entry for each operation. For
searches the entry is (u,w) where u is the timestamp and w is
the searched keyword. For updates it is (u, op, (w, id)) where
op = add/del and id is the modified file. TimeDB(w) =
{(u, id) | (u, add, (w, id)) ∈ Q ∧ ∀u′, (u′, del, (w, id)) /∈
Q} is the function that returns all timestamp file-identifier
pairs of keyword w that have been added to DB and have
not been deleted. Updates(w) = {u|(u, add, (w, id)) ∈
Q or (u, del, (w, id)) ∈ Q} is the function that returns the
timestamp of each insertion/deletion operation for w. Finally,
DelHist(w) = {(uadd, udel) | ∃ id : (uadd, add, (w, id)) ∈
Q ∧ (udel, del, (w, id)) ∈ Q} is the function that returns for
each deletion timestamp the timestamp of the corresponding
insertion it cancels. Using the above functions, backward
privacy is defined as follows.

Definition 3 ([10]): An L-adaptively-secure SSE scheme
has backward privacy:

BP-I (BP with insertion pattern): iff LUpdt(op, w, id) =
L′

(op) and LSrch(w) = L′′
(TimeDB(w), aw),

BP-II (BP with update pattern): iff LUpdt(op, w, id) =
L′

(op, w) and LSrch(w) = L′′
(TimeDB(w),Updates(w)),

BP-III (weak BP): iff LUpdt(op, w, id) = L′
(op, w) and

LSrch(w) = L′′
(TimeDB(w),DelHist(w)),

where L′
and L′′

are stateless functions. We stress that
the above definitions (even BP-I) reveal the files currently
containing w due to TimeDB(w)—this is in order to account
for the leakage from retrieving the actual files. One could
define an even stronger definition that avoids this leakage (in
practice this could be achieved by using oblivious storage, or
when limited to applications that look to return just the iden-
tifiers and not the files). None of our constructions explicitly
leaks TimeDB(w); indeed we never use it in our proofs for
simulation.

An efficient static scheme. Our SDa and SDd schemes use as
a building block PiBas, a very simple and efficient static SE
scheme from [12].4 Static schemes do not allow for updates
as the entire DB is set up ahead of time. Security is modified
analogously in Definition 1 by allowing only for search oracles
after initialization and removing SimUpdate. Since we need
a result-hiding scheme (in order to get backward privacy), we
slightly modify PiBas. We present the scheme in detail in
Appendix A.

DSE with optimal search time. The majority of existing DSE
schemes adopt the approach of “storing” deletions as regular
entries. During searches, they are used to filter out which
insertion entries have been removed. This approach implies
that the search cost will be Ω(aw), i.e., linear in the total
number of total updates for w, as opposed to the optimal cost
O(nw), linear in the number of files currently containing w.
Notable exceptions to these are the construction of Stefanov
et al. [51] (which, however, is not backward private) and two
constructions from the recent work of Ghareh Chamani et
al. [29] which have quasi-optimal search time according to
the following definition.

4The version we use corresponds to Πro
bas from [12].
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Definition 4 ([29]): A DSE scheme Σ has optimal (resp.
quasi-optimal) search time, if the asymptotic complexity of
Search is O(nw) (resp. O(nw· polylog(N))).

Oblivious Maps Our constructions use in a black-box manner
an oblivious map (OMAP) which is a privacy-preserving ver-
sion of a key/value map data structure that aims to hide the
type and content of a sequence of operations performed. Intu-
itively, for any two possible sequences of polynomially many
operations, their resulting access patterns (i.e., the sequence of
memory addresses accessed while performing the operations)
must be indistinguishable. An OMAP offers a setup algorithm
for initializing the structure, and two interactive protocols get,
put for retrieving the value for a key, and inserting a key/value
pair, respectively (see [54], [47] for a formal definition). In
our constructions, we use the OMAP of [54] with block size
O(logN). When reporting OMAP asymptotic efficiency, we
always measure number of blocks.

III. FROM STATIC TO DYNAMIC SCHEMES

A. Amortized construction

Our starting point is a static, result-hiding searchable
encryption scheme SE, which we modify to store triplets of the
form (w, id, op) (instead of the standard w, id), where op =
add/del. The main idea behind our DSE construction called
SDa (Figure 1), is to organize N (without loss of generality,
let N be a power-of-two) updates into a collection of logN
independent encrypted indexes EDB0, . . . , EDBlog(N−1) for
sizes 20, . . . , 2log(N−1), each one created with a separate
invocation of SE.Setup with a fresh key.

Initially, all EDBi are empty. For the first update the client
sets up an encrypted index for the singleton set (w, id, op)
using SE.Setup and sends it to server who stores it as EDB0.
For future updates, let j be the smallest value for which EDBj
is empty. The server first sends to the client all EDBi for
i < j and deletes them locally. The client fully decrypts them
(we denote this in Figure 1 with SE.DecryptAll function) and
runs SE.Setup for the union of their entries, together with
the current update (w, id, op). Note that the total size of the
returned EDBi is 2j − 1, thus the output of SE.Setup is
a new encrypted index of size 2j ; this is sent to the server
who stores it as EDBj . At all times, the client stores locally
the corresponding keys and states of the different non-empty
instance of SE as K and σ.

For searches, the parties run SE.Search for each (i.e., non-
empty) instance of SE and return all the individual search
results. Since SE is result-hiding, the client needs to do the
extra work of decrypting the returned values and extracting the
pairs (id, op). The final answer is the result of “filtering out”
the deleted entries.

Security. Assuming that the underlying SE scheme is adap-
tively secure, we can argue about the security of our con-
struction as follows. Regarding forward privacy, note that each
update (w, id, op) results in running SE.Setup with a freshly
chosen key. The size of the encrypted index (2j in the above
description) is fully determined by the number of previous
updates, thus an update operation can be perfectly emulated
by the setup simulator of SE, even if the setup leakage of
SE is just the database size. This implies that the information

Let SE = (Setup, Search, DecryptAll) be a result-
hiding, static searchable encryption scheme.

(K,σ,EDB)← Setup(1λ)

1: Set EDB to be an empty vector of indexes EDBi
2: Set K,σ to be empty vectors

(K,σ;EDB)↔ Update(K, op,w, id, σ;EDB)

Server:
1: Find the minimum j such that EDBj = ∅
2: Send to client EDB0, . . . , EDBj−1

Client:
3: Set A← ∅
4: for i = 0, . . . , j − 1 do
5: A← A ∪ SE.DecryptAll(K[i], σ[i], EDBi)
6: K[i]← ⊥, σ[i]← ⊥
7: (K[j], σ[j], EDBA)← SE.Setup (1λ, A ∪ (w, id, op))
8: Send EDBA to server

Server:
9: Set EDBj ← EDBA

10: for i = 0, . . . , j − 1 do
11: Set EDBi ← ∅

DB(w)↔ Search(K, q, σ;EDB)

Client ↔ Server:
1: X ← ∅.
2: for all i such that EDBi 6= ∅ do
3: Let Xi ↔ SE.Search(K[i], q, σ[i];EDBi)
4: X ← X ∪ Xi

Client:
5: Decrypt entries of X with K and parse them as

(id, op)
6: DB(w)← {id | (id, add) ∈ X ∧ (id, del) 6∈ X}

Fig. 1: SDa: from static to dynamic (amortized version).

the server sees during updates, is independent of any previous
entries in EDB (including entries about w) which gives us
forward privacy. Regarding backward privacy, things are also
straight-forward. Firstly, since SE is result-hiding and we
store deletions as regular entries, the server does not learn the
indexes of files that previously contained w. Moreover, during
searches the server learns |DB(w)| as well as how many result
elements come from each of EDBi. In order to simulate the
second part, we only need to know when each update for w
took place—this information together with the total update
count so far, determines in which EDBi each update resides.
We previously defined this information as Updates(w)), hence
our scheme is BP-II.

Observe that SimSeach does not always need Updates(w)
to simulate the search transcript. It suffices to know which
index each update should be mapped, to according to its times-
tamp. The actual leakage can be much smaller—depending on
the update counter upd it may be as small as |Updates(w)|
(e.g., if upd = 2i for some i ∈ N, the largest index has just
been rebuilt and the previous ones are empty, hence all the
entries for w will come from the same index and SimSeach
does not need their individual timestamps).
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Efficiency. After N updates, SDa consists of logN encrypted
indexes, each of which is either empty or stores exactly 2i

items. Assuming SE has linear storage, SDa has server storage
O(N). If SE has optimal search time, the query cost for
retrieving all the updates for w is O(aw). Since there can be
at most logN non-empty indexes EDBi and a search needs
to be performed in each of them, the total search time for
SDa is O(aw+logN). Finally, after 2j updates the client will
have run SE.Setup once for size 2j and once for 2j−1, twice
for 2j−2, etc., all the way down to 2j−1 times for size one.
Assuming an underlying static scheme with linear setup time,
the amortized cost per update after N updates is O(logN).

One static scheme that satisfies these assumptions is the
PiBas construction of [12], which we describe in Figure 9.
Moreover, with PiBas the client has to store one key for each
instance and this requires from the client to store O(logN)
keys. In order to reduce the local storage to O(1), we can
generate the key for each instance pseudorandomly from
a single master secret key using a PRF. Instantiated with
PiBas, SDa requires a single roundtrip for retrieving the result
DB(w). Updates require one rountrip for retrieving the old
indexes to be merged, and one more message from the client
to the server (possibly “piggy-backed” to the next operation)
for writing the new EDBj .

With SDa it is easy to clean-up deleted entries. During
updates, before creating the merged EDBj the client identifies
all the entries in EDBi, for i < j, that have corresponding
deletions and removes them (padding with dummy records to
fill up EDBj).

B. De-amortized construction

Recall that our key goal is to design schemes with small
client storage. SDa has excellent performance, albeit in the
amortized setting; during updates the client needs to download
and locally rebuild an encrypted index. Most times, that index
will be relatively small but once in a while this index will
become very large (up to the entire DB) as it is shown in
Figure 6(c), which invalidates our key goal. To overcome
this obstacle, we present here a de-amortized version of our
SDa construction which we call SDd . Unlike our amortized
scheme that can work with any result-hiding static scheme,
SDd requires the setup process of the static scheme to be
efficiently decomposable to discrete steps so that the necessary
local state for executing each step is small and efficiently
retrievable—PiBas is again a natural candidate, hence SDd
is specifically instantiated with it. The reason for this is that
the key technical idea is inspired by the classic lazy rebuild
technique of Overmars and van Leeuwen [45]. The O(2i)
steps necessary for running PiBas.Setup for a database of 2i

elements are split over the previous 2i updates, executed one
at a time.

With SDd, four encrypted indexes OLDESTi, OLDERi,
OLDi, and NEWi are maintained for each i = 0, . . . , logN−1.
Each of the “old” indexes is either empty or contains exactly 2i

items. Moreover, if OLDESTi is empty then so is OLDERi,
and if OLDERi is empty then so is OLDi. The fourth data
structure NEWi is either empty or a partially built index. The
setup process of NEWi is executed over 2i updates. In this
manner, we guarantee that each entry is stored in exactly one of

the “old” encrypted index (across all sizes). Hence, the search
protocol (Figure 2) is almost unchanged—the server just needs
to search in at most three indexes per size.

Where SDd strongly deviates from the amortized construc-
tion SDa is during updates (Figure 2). Recall that we are
using PiBas (Figure 9) but we are storing triplets of the form
(w, id, del). The update algorithm passes through all sizes i
from largest to smallest and moves one element from the set
of indexes of size i − 1 to the set of indexes of size i. For
each size, if both OLDESTi−1, OLDERi−1 are non-empty,
this implies that within the next 2i updates an index of size
2i needs to have been fully rebuilt—else we would run out of
space at level i−1! Therefore, one step of PiBas.Setup needs
to be executed during each of these 2i updates, moving one
entry (w, id, op) from OLDESTi−1 ∪OLDERi−1 into NEWi.
Moreover, to preserve forward privacy we must guarantee that
this step does not reveal any information to the server. We
explain how we achieve this next.

The EDB encrypted index of each PiBas instance con-
tains one map T the keys and values of which are computed
with the PiBas.Map function. For each of the 2i updates, the
client retrieves from the server and decrypts one entry from
the maps T corresponding to OLDESTi−1 and OLDERi−1,
sequentially from beginning to end, i.e., treating the maps
as arrays (the position of the next entry to retrieve can be
computed efficiently based only on the current global update
counter). The Map algorithm takes as input K,w, id, op, c
where K is a key for PiBas freshly chosen every time the
client starts rebuilding NEWi, w, id, op are read from the
retrieved entry, and c is a counter that counts how many times
w has already appeared in the NEWi index. Unfortunately, c
cannot be stored locally in an efficient manner. In order to
retrieve it, we deploy one oblivious map OMAPi for each
size 2i that maps w to c. At every step, the client queries
the corresponding OMAPi, uses the retrieved c to run Map,
increments it, and stores it back to the same OMAPi.

This leaves one issue to be handled: Between rebuilds of
NEWi, the counters c need to be reset as PiBas searches
always start from zero. Since the client cannot do that in one
pass efficiently, we use an alternative approach. OMAPi maps
(w, num) to c, where num is the number of times NEWi has
previously been rebuilt (computable from )the current global
update counter). When querying OMAPi for (w, num), the
client treats all returned entries with num′ < num as null
and can safely overwrite them.

Every time NEWi is fully built (i.e., has size 2i), the server
moves it to the oldest non-empty index among OLDESTi,
OLDERi, OLDi. Moreover, both OLDESTi−1 and OLDERi−1
are deleted since their purpose is served—all of their entries
have been moved to NEWi. Then, if OLDi−1 exists, the
server moves it to OLDESTi−1. Finally, every update creates
a “singleton” encrypted index at the oldest available slot for
size 0 for the newly inserted entry. All PiBas instances are
always instantiated with a freshly chosen key.

Security. The backward privacy of SDd is proven exactly in
the same manner as that of SDa since the search protocol
is essentially the same. Forward privacy follows from these
observations. First, for each update (w, id, op) the server sees a
new PRF evaluation since we choose new PiBas keys for each
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Let (KeyGen, Setup, Map, Search) refer to the PiBas routines [12], as described in Figure 9.

(K,σ;EDB)← Setup(λ,N)

1: Set `← blogNc
2: for i = 0, . . . , ` do
3: Initialize OMAPi with capacity 2i

4: Set OLDESTi, OLDERi, OLDi and NEWi to ∅
5: Set cnti ← 0

6: Set EDB ← {OMAPi,OLDESTi,OLDERi,
OLDi,NEWi, cnti}`i=0

7: Set updcnt ← 0
8: Set σ ← {updcnt,cnti}`i=0 and the OMAP states
9: Set K an empty matrix of size 4 · (`+ 1)

10: for i = 0, . . . , 3 do
11: for j = 0, . . . , ` do
12: K[i][j]← PiBas.KeyGen(1λ)

DB(w)↔ Search(K, q, σ;EDB)

Client ↔ Server:
1: X ← ∅.
2: for i = ` · · · 0 do
3: if OLDESTi 6= ∅ then
4: X ← X ∪ PiBas.Search(K[i][0],OLDESTi)
5: if OLDERi 6= ∅ then
6: X ← X ∪ PiBas.Search(K[i][1],OLDERi)
7: if OLDi 6= ∅ then
8: X ← X ∪ PiBas.Search(K[i][2],OLDi)

Client:
9: Decrypt the entries of X with K and parse them as

(id, op)
10: DB(w)← {id | (id, add) ∈ X ∧ (id, del) 6∈ X}

(K,σ;EDB)↔ Update(K, op,w, id, σ;EDB)

Client ↔ Server:
1: for i = `, . . . , 1 do
2: if OLDESTi−1 6= ∅ ∧ OLDERi−1 6= ∅ then
3: if cnti < 2i−1 then
4: Server sends to client OLDESTi−1[cnti] who decrypts it with K[i− 1][0] and parses it as (w′, id,′ op′)
5: else server sends to client OLDERi−1[cnti % 2i−1] who decrypts it with K[i−1][1] and parses it as (w′, id′, op′)

6: cnti ← cnti + 1
7: Client computes num as the number of times NEWi has been fully rebuilt and cw ←OMAPi.get(w′, num)
8: if cw′ = ⊥ then client sets cw′ ← 0

9: Client sets cw′ ← cw′ + 1 and runs OMAPi.put((w′, num), cw′)
10: Client sends to server (key, value)←PiBas.Map(w, id′, op′, cw′ ,K[i][3])
11: Server runs NEWi.put(key, value)
12: if |NEWi| = 2i then . Client can deduce this from updcnt
13: Server sets OLDESTi−1 ← OLDi−1 and OLDERi−1 ← ∅
14: if OLDESTi = ∅ then server sets OLDESTi ← NEWi and client sets K[i][0]← K[i][3]
15: else if OLDERi = ∅ then server sets OLDERi ← NEWi and client sets K[i][1]← K[i][3]
16: else server sets OLDi ← NEWi and client sets K[i][2]← K[i][3]

17: Client sets K[i][3]← PiBas.KeyGen(1λ)

18: Client sets K[0][3]← PiBas.KeyGen(1λ)
19: Client runs PiBas.Setup(K[0][3], (w, id, op)) and sends the output to server who stores it as NEW0

20: if OLDEST0 = ∅ then server sets OLDEST0 ← NEW0 and client sets K[0][0]← K[0][3]
21: else if OLDER0 = ∅ then server sets OLDER0 ← NEW0 and client sets K[0][1]← K[0][3]
22: else server sets OLD0 ← NEW0 and client sets K[0][2]← K[0][3]

23: Client sets updcnt ← updcnt + 1

Fig. 2: SDd: from PiBas to DSE (de-amortized version).

instance and always increment the keyword counter for that
keyword-instance combination. Second, our modified version
of PiBas is response-hiding. Third, each update accesses a
predetermined position in at most 2·logN map data structures,
and logN read/write oblivious map queries that do not reveal
anything to the server about the accessed entries.

Efficiency. Updates require O(logN) OMAP queries. With
the oblivious map of [54], their total access overhead is
O(log3N), which is the dominating cost for updates. This
is worst-case asymptotic update efficiency, as opposed to the
amortized performance of SDa. Search time is O(aw+logN),
same as that of the amortized version (up to three times
slower due to multiple structures per size). Server storage is

linear to the number of total updates; more concretely, the
client chooses an upper bound on the total number of updates
ahead of time and initializes the oblivious maps—for better
server space efficiency, the above initialization can be split
into multiple smaller steps, i.e., when the set of indexes of size
i−1 becomes full we start initializing with dummy values the
oblivious maps for the indexes of size i+ 1.

Crucially, permanent client storage is Õ(log2N) in order
to store all the OMAP stashes and the PiBas keys. For appro-
priately chosen parameters, this is very small in practice since
these stashes are usually sparsely populated (see experimental
evaluation in Section V). If we want to minimize client storage,
there are two additional tricks: (i) stashes are stored at the
server and downloaded as necessary during updates without
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Fig. 3: Update tree for QOS with maximum insertions N = 8.
Nodes are labeled with [1, 15] leafs-to-root and left-to-right.
This is the tree state after five insertions 1-5, and three
deletions for 1, 2, 4. A subsequent search starts from the Best
Range Cover of leafs [1, 5] = (13, 5) and proceeds downwards
until it finds a black node or a leaf. The result is (3, 5).

affecting the update asymptotics, and (ii) the keys for PiBas
are generated with a PRF from a single master secret key.
These make the client storage O(1). While describing SDd
in Figure 2, we assume parties store a counter cnti that is
used to deduce which are the next elements to be retrieved for
lazy rebuild. This is just for clarity of presentation; they can
be efficiently computed by keeping a global update counter.
Finally, although SDd entails oblivious maps, they are only
used during updates and not during searches. As a result of
this, while updates require O(logN) rounds of interaction,
searches are still non-interactive.

Clean-up of is somewhat more involved with SDd but it
only affects the performance of updates and not searches. At
a high level, the client maintains an additional OMAP OMdel

accessed with key (w, id). During updates, while writing a
record to NEWi, for i > 0, the client looks up OMdel. If
he receives ⊥ he proceeds normally, else he writes a dummy
value to NEWi instead.

IV. EFFICIENT DSE WITH QUASI-OPTIMAL SEARCH

In this section, we present our third construction QOS that
achieves quasi-optimal search time, according to Definition 4.
The only existing backward-private constructions that achieve
this are Orion and Horus from [29]. Both these schemes
replace each of the nw accesses necessary for retrieving the
result DB(w) with an oblivious map/oblivious RAM access.
Contrary to this, QOS requires a single read and write to
an oblivious map during search (independently of nw); the
remaining computation for retrieving the result is executed at
the server by traversing a tree data structure that serves as a
“pivot” to identify deleted entries.

The basic idea behind QOS is described in Figure 3.
Consider a full binary tree with N leafs, where N is an upper
bound on the total number of insertions in the DSE (N can
also serve as a trivial bound for the number of deletions). The
function label(v) returns a value in [1, 2N − 1] which is the
result of the “natural” labeling of tree nodes as follows: The
N leafs are labeled from leftmost to rightmost with 1, . . . , N .
The remaining nodes are labeled in an increasing order per
level and from left to right, e.g., the parent of the two leftmost

leafs is labeled with N + 1, its right sibling with N + 2, and
so on, all the way to the root that is labeled with 2N − 1.
Every node has a corresponding color cv ∈ {white,black}; all
nodes are initially white. The client holds a “conceptual” tree
like this for every keyword w. In said tree, inserted entries
correspond to leafs that are being populated from left to right,
i.e., after iw insertions (and without deletions), the result of
the search is related to the iw first leafs with labels 1, . . . , iw.

For each deletion, the client needs to mark one node as
black. Assuming the deleted entry was previously stored at
the j-th leaf, this is the node that will be marked as black.
However, additional nodes may be marked black according to
the following simple rule: “if both children of a node are black,
it is also marked black.” Hence, for the above deletion the
client needs to access the colors of all the ancestors of the j-
th leaf and their siblings. With this information, he can update
their colors accordingly. Simply, each deletion “eliminates” an
entire subtree by marking its root black.

During a search after iw insertions, the leafs that contain
the result can be reached as follows. First, we compute the
Best Range Cover for leafs with labels [1, iw]. Then, starting
independently from each node in the Best Range Cover the
search progresses downwards towards the leafs. If it encounters
a black node it stops (knowing that there is no undeleted
entry below). Upon reaching a leaf that is not black, the
corresponding entry is added to the result. In our analysis we
show that, while the entire subtree that covers the leafs [1, iw]
is of size < 2iw, the nodes that are accessed during this process
are O(nw log iw). Next, we describe our scheme in detail and
we explain the implementation decisions we made in order to
hide the necessary actions for manipulating this tree.

Setup. During Setup (Figure 4), the client initializes three
empty OMAPs with capacity |W |, N , N , respectively:

(i) OMcnt maps keywords w to cntw and iw, where
cntw is the number of previous searches for w, and
iw is number of previous insertions for w.

(ii) OMdel maps each keyword-file identifier pair w, id to
label(v) where v is the leaf to which it was inserted;
during deletions, this is used to retrieve the “position”
of the entry to be deleted.

(iii) OMstate maps a keyword-node label pair w, label(v)
to the color of the node v.

The encrypted index EDB stored at the server consists of
the oblivious maps and two empty maps I,D of capacity
N,D respectively (D is an upper bound on deletions that
can also serve as the capacity of OMstate; trivially it can
be set to O(N)). The client stores locally the states of the
three oblivious maps, two PRF keys kI , kD and a symmetric
encryption key k.

Update. For updates (Figure 4), the client first retrieves the
number of previous searches cntw and the insertion count iw
via OMcnt. Then, we describe the two cases separately. For
insertions (lines 2-6), the client increments the update count
and writes it to OMcnt. He also writes an entry at OMdel that
maps (w, id) to the leaf location where it is stored in I (this
will be used for deleting this entry in the future). Finally, the
client encrypts id, iw+1. The resulting ciphertext is stored at
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F is a PRF, RND = (Gen,Enc,Dec) is a semantically secure symmetric encryption scheme, and H,H ′ are hash functions.

(K,σ;EDB)← Setup(1λ)

1: Initialize OMAPs OMdel, OMstate of capacity N
2: Initialize OMAP OMcnt of capacity |W |
3: Initialize empty maps D, I
4: Set EDB ← {OMcnt, OMdel, OMstate,D, I}
5: kI ← F.Gen(1λ), kD ← F.Gen(1λ),
k ← RND.Gen(1λ)

6: State σ contains the OMAP states
7: Key K contains kI , kD, k

(K,σ,EDB)↔ Update(K, op,w, id, σ;EDB)

Client:
1: (cntw, iw)← OMcnt.get(w)
2: if op = add then
3: OMcnt.put(w, (cntw, iw + 1))
4: OMdel.put((w, id), iw + 1))
5: tk ← F (kI , (w, cntw))
6: key ← H(tk, (w, iw + 1)),

value← Enc(k, (id, iw + 1))
7: else B op = del
8: pos← OMdel.get(w, id)
9: d0 . . . dp ← labels of ancestors of pos B d0 = pos

10: d′0 . . . d
′
p ← labels of siblings of d0 . . . dp B d′p = ⊥

11: for each di do color ci ← OMstate.get(w, di)
12: for each d′i do color c′i ← OMstate.get(w, d′i)
13: cnew0 , . . . , cnewp ← Update the colors ci
14: Let j ← max{ i | cnewi 6= ci ∧ cnewi = black}
15: OMstate.put((w, dj), cnewj )
16: tk ← F (kD, (w, cntw))
17: key ← H ′(tk, (w, dj)); value← 1

18: Send (key, value) to server
Server:
19: if op = add then I.put(key, value)
20: else D.put(key, value)

DB(w)↔ Search(K, q, σ;EDB)

Client:
1: (cntw, iw)← OMcnt.get(w)
2: tkI ← F (kI , (w, cntw)); tkD ← F (kD, (w, cntw))
3: cntw ← cntw + 1; OMcnt.put(w, (cntw, iw))
4: Send (tkI , tkD, iw) to server

Server:
5: d0, . . . , dm ← labels of Best Range Cover for leafs

[1, iw]
6: (X ,Y)← (∅, ∅) . X will contain encrypted result, Y

the labels of black nodes encountered in search
7: for i = 0 . . .m do
8: (X ,Y)← (X ,Y) ∪ RecSrc(EDB, tkI , tkD, di)

9: Send X ,Y to client
Client:
10: (DB(w),X ′,Y ′)← (∅, ∅, ∅)
11: for x ∈ X do
12: (id, leaf)← RND.Dec(k, x)
13: tk ← F (kI , (w, cntw)); key ← H(tk, (w, leaf))
14: value← RND.Enc(k, (id, leaf))
15: X ′ ← X ′ ∪ (key, value)
16: DB(w)← DB(w) ∪ id
17: for y ∈ Y do
18: tk ← F (kI , (w, cntw)), key ← H ′(tk, (w, y))
19: Y ′ ← Y ′ ∪ (key, 1)

20: Shuffle each of X ′, Y ′ and send them to server
Server:
21: for (key, value) ∈ X ′ do I.put(key, value)
22: for (key, value) ∈ Y ′ do D.put(key, value)

(X ,Y)← RecSrc(EDB, tkI , tkD, d)

1: if D.get(H ′(tkD, d)) = 1 then return (∅, d)

2: if d is a leaf then return (I.get(H(tkI , d), ∅)
3: Let dl, dr be the labels of the left and right child of d
4: (Xl,Yl)← RecSrc(EDB, tkI , tkD, dl)
5: (Xr,Yr)← RecSrc(EDB, tkI , tkD, dr)
6: return (Xl ∪ Xr,Yl ∪ Yr)

Fig. 4: QOS: DSE with quasi-optimal search time O(nw log(iw)).

the server in map I at a location computed by the hash function
H , using a token tk that the client computes pseudorandomly
with kI for (w, iw + 1).

For deletions (lines 7-17), the client retrieves the label pos
of the tree leaf at which w, id has been stored via OMdel.
Then, he computes the labels of all the ancestors and the
siblings of the ancestors of pos, and retrieves their colors from
OMstate (lines 9-12). With these, he can update the colors
of all the ancestors of pos (in the simplest case, pos is set
to black, more generally this deletion may cause some of its
ancestors to become black too). Finally, the client finds dj ,
the furthest ancestor of pos that was first set to black during
this deletion. He then marks an entry at D (at the server) at a
location computed by the hash function H ′, using a token tk
that the client computes pseudorandomly with kD for (w, dj),
as well as store its new color at OMstate.

Search. During searches (Figure 4, the client first retrieves
cntw, iw from OMcnt and pseudorandomly computes two
search tokens for w, cntw: (i) tkI is computed with kI and
will be used to retrieve the result, and (ii) tkD is computed
with kD and will be used to identify black nodes encountered
during the search, corresponding to deletions. These tokens
and iw are sent to the server. The client also increments the
search counter cntw and stores it to OMcnt.

The server first computes the set of tree nodes d0, . . . , dm
that constitute the Best Range Cover of leaf nodes [0, iw]—
each entry of DB(w) will be related to a descendant of one of
di. The search process is quite simple and it entails a recursive
search process starting from each of di and progressing down-
wards at the tree (Figure 4, Algorithm RecSrc). At each node
d, the server checks whether the location H ′(tkD, d) has been
written at D, in which case, this is a “black” node, i.e., any
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previously inserted entries at the subtree with root d have since
been deleted. Hence, the server can simply record its node
label and return. Otherwise, he proceeds to parse its children.
Upon reaching a leaf that is not black, the server returns the
encrypted entry from I at position H(tkI , d)—since d is a
non-deleted leaf, it corresponds to an entry of DB(w).

The server returns to the client all retrieved values from
I and all marked entries from D that correspond to black
nodes encountered during the tree traversal (and removes them
from I,D). The client computes DB(w) by decrypting the
first ones. Finally, he “re-maps” all the entries of I and D,
using new pseudorandom tokens with keys kI , kD respectively
but increased search counter cntw, and sends them back to the
server who stores them at I and D.

Security. QOS is forward-private because during updates the
server observes two types of accesses: (i) a fixed number of
oblivious map operations (depending on the type of update)
that reveal nothing, and (ii) a pair (key, value) that consists
of the outputs of a hash function modeled as a random oracle,
and a semantically secure ciphertext. The latter clearly reveals
nothing. For the former, note that we ensure that the same input
is never passed to the random oracle twice during updates. This
follows from incrementing iw during insertions and from the
fact that deletions never mark the same node as black. Since
the input to the random oracle contains a token computed from
a PRF for which the server does not have the key (and is
only revealed during a future search), querying the oracle for
“valid” values not previously seen is infeasible. Finally, note
that after every search both tokens are changed so the server
cannot connect future updates with ones prior to the search.

Regarding backward privacy, during searches the server
learns the PRF tokens kI , kD which allows him to compute
the I,D locations that he needs to access. This also allows
him to recall when these entries in I,D where made, i.e., the
timestamp and type for all update operations for the queried
keyword w. Moreover, since the topology of the tree is revealed
to the server and the leafs of the tree are naturally mapped to
timestamps of insertions, the server can deduce exactly which
deletion canceled which prior insertion. As a result of this,
QOS achieves BP-III.

Efficiency. Updates with QOS require O(logN) OMAP
queries resulting to a total of O(log3N) operations and logN
roundtrips, using the OMAP of [54]. Setup is linear to N,D,
the upper bound on insertions and deletions, as is the server’s
storage. The search time can be computed as follows. The
OMAP queries take O(log2 |W |) operations. Computing the
Best Range Cover takes O(log iw), same as the cover size
itself. Parsing the tree in order to retrieve the result, takes
O(nw log iw) since nw leafs will be reached and the maximum
height from each of them to the one of the nodes in the Best
Range Cover is log iw. Even if every node along this traversal
has a black sibling (which is a huge overestimation), the total
number of black nodes encountered is O(nw log iw) as well.
From all the above, the total search overhead with QOS is
O(nw log iw + log2 |W |) and it takes O(log |W |) rounds of
interaction.

The client’s permanent storage is O(log2N) due to the
OMAP stashes. If necessary, this can again be reduced to O(1)
at no asymptotic cost by storing the stashes at the server.

V. EXPERIMENTAL EVALUATION

We implemented our three schemes in C++ in order to
benchmark their performance and compare them with previous
works. We used the OpenSSL [4] library for AES for our
PRF and semantically secure encryption. For our experiments
we used t2.xlarge AWS machines with four-core Intel Xeon
E5-2676 v3 2.4GHz processor, running Ubuntu 16.04 LTS,
with 16GB RAM, 100GB SSD (GP2) hard disk, and AES-NI
enabled. All schemes were instantiated on a single machine
with in-memory storage. We will make our code publicly
available.

We compared SDa and SDd with the previous state-of-the-
art schemes with small client storage which can be achieved by
the “word counter + oblivious map” approach. As described in
the introduction, several schemes can be used in this manner,
but MITRA [29] is simultaneously the most efficient and most
secure (BP-II). For QOS, the main competitor is HORUS
[29] which is the fastest existing quasi-optimal scheme. Orion
achieves BP-I but it is considerably slower in practice. For both
these schemes, we used the code provided in [15] of Ghareh
Chamani et al. [29].

Since we do not adopt a “clean-up” phase for SDa and
SDd, for fairness we also run MITRA without clean-up (this
is faster than the MITRA∗ numbers reported in [29] by up
to 50%). We stress that both schemes are compatible with
clean-up, with an additional update cost for SDd and at no
additional search cost for either one. For SDa and SDd we
used one additional optimization, by storing the first 10 levels
of the index collections locally. As we demonstrate below, the
effect of this on local storage is small enough to be negligible,
but it helps further improve their performance otherwise.

Our basic efficiency measurement is computation time and
total communication size for search and update operations.
Since our goal is to minimize permanent client storage, we also
report it for the various constructions. We consider variable
datasets of synthetic records and size |DB| = 102–106,
setting |W | to one-hundredth of |DB|. We also vary the
search result size between 10–105. In our experiments, before
searching for w we delete at random 10% of its corresponding
entries, in order to show the impact of deletions in the search
performance. The average of 10 executions is reported.

A. Search performance

Computation time. Figure 5(a) shows the execution time
when searching for different result sizes and Figure 5(b) for
different database sizes. First, we note that the time increases
more steeply with larger result sizes than with larger |DB|,
as expected. Second, for small result sizes SDa and SDd are
much faster than MITRA. E.g., for |DB(w)| = 10 they are
85× and 20× faster than MITRA, respectively. This comes
naturally as, for such sizes, the OMAP overhead of MITRA
is dominating. Concretely, for retrieving 100 result records
from a dataset of size 106, SDa takes 0.09ms, SDd 0.12ms,
and MITRA 1.11ms. As |DB(w)| grows, the OMAP overhead
becomes less important, and the performance of the three
schemes converges, e.g., for 104 and |DB| = 106, SDa takes
9.8ms, SDd 13.3ms, and MITRA 13.2ms.

QOS has tremendously better search performance com-
pared to the previous best quasi-optimal scheme HORUS,
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Fig. 5: Search (a) computation time vs. variable result size for |DB| = 1M, (b) computation time vs. variable |DB| for result
size 100, (c) communication size vs. variable result size for |DB| = 1M.
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Fig. 6: Update (a) computation time vs. variable |DB|, (b) communication size vs. variable |DB|, (b) computation time with
SDa for 1000 updates staring from empty DB.

ranging from 14 up to 16531× faster. This comes naturally as
the number of oblivious operations for HORUS is O(|DB(w)|)
ORAM accesses, whereas for QOS it is a single OMAP access
to retrieve the counter aw. E.g., for |DB(w)| = 104 and
|DB| = 106, HORUS takes ~50sec and QOS takes 33.5ms.
The performance of QOS is worse than MITRA, which is
explained from the relatively small deletion rate (10%)—quasi-
optimal schemes like QOS perform better for large deletion
rates (for 10% deletions aw is very close to nw).

Communication size. Figure 5(c) shows the search com-
munication size when |DB(w)| varies between 10-105 for
|DB| = 106. For all schemes, communication is increasing
almost linearly with the result size. One exception is QOS and
MITRA where for small result sizes (e.g., < 1000) because the
communication cost is dominated by the OMAP operations.
In practice, QOS requires 19-53× less communication than
HORUS whose overhead is dominated by the ORAM accesses.
For |DB(w)| = 1000, QOS sends 40KB whereas HORUS
sends 2MB. Furthermore, SDd requires 2-10× and SDa 14×
smaller communication size for search than MITRA, since both
in SDa and SDd search does not depend on oblivious accesses.
For the same result size as above, SDa sends 19.7KB, SDd
19.9KB, and MITRA 44KB.

B. Update performance

Computation time. Figure 6 shows (a) the update computation
time and (b) the update communication size for variable
database sizes for all schemes except for SDa, which has
amortized update cost. The update performance of SDa is

reported in Figure 6(c), which shows the update time (step-
by-step) for a sequence of 103 consecutive updates (inser-
tions/deletions), starting from empty DB. As explained above,
we store the first 10 levels of SDd locally to optimize per-
formance, hence for small database sizes the update time is
negligible (less than 0.01ms).

For our tested sizes, MITRA is 9 to 14× faster than SDd
(e.g. for |DB| = 106 its update time is 1ms while SDd takes
14ms). We stress that the update time of SDd is increasing with
the number of updates, as more OMAP accesses are necessary.
Regarding QOS, we consider only delete operations since they
are costlier than insertions. Compared to HORUS our deletion
time is, as expected, slightly worse—up to 1.7× slower for
the tested sizes (e.g., for |DB| = 106 QOS takes 137ms and
HORUS 82ms). Figure 6(c) shows the SDa update time for
103 consecutive updates. For each update, the client has to
fetch and merge some of the previously filled indexes, which
corresponds to the variable cost shown in the plot. For 103

updates, the minimum and maximum observed times are 1µs
and 777µs, and the average is 7µs.

Communication size. Figure 6(b) shows the update communi-
cation size which (not surprisingly) has similar patterns with
Figure 6(a). For SDd, due to our optimization (keeping 10
levels locally) the communication size for |DB| ≤ 103 is zero.
For |DB| > 103, the cost of SDd is larger than MITRA (e.g.,
61KB vs. 5KB for |DB| = 106). Regarding QOS versus
HORUS, the first requires 0.9 to 2.4× more communication
than the latter (e.g. for |DB| = 106 QOS sends 602KB,
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Fig. 7: Search computation time for |DB| = 1M and variable deletion percentage for: (a) iw = 100 using OMAP, (b) iw = 20K
using OMAP, (c) iw = 100 storing word counters locally, (d) iw = 20K storing word counters locally.

whereas HORUS sends 246KB).

C. Client storage

For all schemes, we store the OMAP stashes and all the
keys in K locally at the client. We are interested in measuring
the permanent local client storage, in order to ensure it remains
reasonably small. Throughout our experiments, the permanent
local storage for QOS , HORUS , and MITRA was never
above 2.5KB, even for |DB| = 106. With our optimization
of storing the 10 smallest levels locally at the client, SDa and
SDd needed at most 33KB and 150KB local client storage,
respectively (without this optimization, the corresponding sizes
were 400B and 18KB respectively). Recall that we can further
reduce the local storage to few bytes (O(1)) by storing the
stashes on the server and generating the keys from a PRF.
However, we consider these sizes essentially negligible for
modern devices, even for tablets and mobile phones.

D. Quasi-optimal search performance for variable deletion
percentages

Our main motivation for studying DSE with quasi-optimal
search time is to avoid paying the cost of past deletions
during searches. In all the above experiments, we assume a
10% deletion ratio, rendering the effect of deletions for search
negligible. Now, we focus on our new quasi-optimal scheme
QOS and we provide experiments for variable deletion ratios.

As is evident from the experiments so far, QOS vastly
outperforms the previous state-of-the-art quasi-optimal DSE
HORUS for searches. In this set of experiments, we compare
QOS with SDd and MITRA (the latter two schemes had better
performance for 10% deletions). In this setting, we first insert
a fixed number of entries iw for keyword w and then report
the search time after deleting a percentage of iw between 0-
90%. We focus on two cases iw = 100 (small results) and
iw = 20K (large results). Since both SDd and MITRA have
search Ω(aw) their performance should worsen as the deletion
rate increases. On the other hand, the search time of QOS
should be better. Hence, we want to find at which deletion
ratio QOS will outperform the others.

Figure 7 shows the results for small (a) and large (b)
iw respectively. First, for iw = 100 QOS and MITRA have
similar search times since the main bottleneck for both is the
OMAP accesses. However, QOS becomes slightly faster and
MITRA slightly slower as the deletion ratio increases; the first
outperforms the second after roughly 60%. On the other hand,
SDd remains much faster than both of them throughout the

experiment since it does not need to perform OMAP accesses.
The results are different for iw = 20K in Figure 7(b). QOS
starts off much slower (as was the case in the experiments
above), however, it becomes faster very quickly as deletions
increase. It outperforms MITRA at ~65% and even SDd at
~80%! The reason is that for large iw the OMAP cost becomes
a small percentage of the search process.

We believe that these results serve as a good indication for
the practical potential of schemes with (quasi-)optimal search
time while there is still room for improvement. To further
support this point, we consider another scenario in which
permanent client storage is not a bottleneck and we implement
both QOS and MITRA to store the word counter maps locally
(avoiding the OMAP overhead) The results are shown in
Figures 7(c) and (d) for iw = 100 and 20K, respectively. They
follow the trends of the corresponding Figures 7(a),(b), but the
crossover points are moved to the left. QOS becomes better
than MITRA for ~40% deletions for iw = 100, and for ~60%
for iw = 20K. Compared to SDd, it becomes better in both
cases at ~80% (in the previous scenario, SDd was strictly better
for iw = 100).

VI. CONCLUSION/FUTURE WORK

In this paper, we revisited the problem of forward and
backward private DSE. Prior state-of-the-art schemes either
require from the client to store a counter per keyword, or
obliviously access this information at the server limiting their
practicality for real-world applications. We presented three new
schemes with constant permanent client storage and better
search performance, both asymptotically and experimentally,
than previous works. Moreover, our two schemes SDa and
SDd not only eliminate the need for oblivious accesses during
searches but also minimize the required round-trips. QOS is
the most efficient DSE with quasi-optimal search time, improv-
ing previous performance by orders of magnitude. Regarding
future work, one possible direction is to develop forward and
backward private schemes with optimal search time, ideally
without oblivious primitives and with small client storage.
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APPENDIX

Figure 8 shows the RealSSE and IdealSSE games for the
DSE security definition 1. The original PiBas scheme was
slightly different: entries for each w were encrypted by a
different key (pseudorandomly generated from a master secret
key). During search, this key was sent to the server who
could decrypt them and directly return the indexes. Since
we need a result-hiding scheme (in order to get backward
privacy), we modify the scheme in the following manner. First,
all entries are encrypted with the same key. During search,
the server sends the encrypted values back and the client
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b← RealSSE
Adv (λ, q):

1: N ← Adv(1λ)
2: (K,σ0, EDB0)← Initialize(1λ, N)
3: for k = 1 to q do
4: (typek, idk, wk)← Adv(1λ, EDB0, t1, . . . , tk−1)
5: if typek = search then
6: (σk, DB(wk);EDBk)← Search(K,wk, σk−1;EDBk−1)
7: else if typek = update then
8: (σk;EDBk)← Update(K, add/del, (idk, wk), σk−1 EDBk−1)

9: Let tk be the messages from client to server in the Search/Update protocols above
10: b← Adv(1λ, EDB0, t1, t2, . . . , tq);
11: return b;

b← IdealSSE
Adv,Sim,L(λ, q):

1: N ← Adv(1λ)
2: (stS , EDB0)← SimInit(1λ, N)
3: for k = 1 to q do
4: (typek, idk, wk)← Adv(1λ, EDB0, t1, . . . , tk−1)
5: if typek = search then
6: (stS ; tk, EDBk)← SimSearch(stS ,LSrch(wk);EDBk−1)
7: else if typek = update then
8: (stS ; tk, EDBk)← SimUpdate(stS ,LUpdt(wk);EDBk−1)

9: b← Adv(1λ, EDB0, t1, t2, . . . , tq);
10: return b;

Fig. 8: Real and ideal experiments for the SSE scheme.

decrypts them locally. The scheme is described in detail in
Figure 9. It is adaptively secure in the random oracle model
with setup leakage |DB| and search leakage |DB(w)|. The
random oracle assumption can be removed without any change
in the efficiency of the scheme, by replacing H with a PRF
F and having the client send all the PRF evaluations in a
“streaming” manner until a stop message has been sent by the
server (see [12] for details).

Theorem 1: Assuming SE is an adaptively-secure result-
hiding static searchable encryption scheme, SDa is an
adaptively-secure DSE according to Definition 1 with
LUpdt(op, w, id) = ⊥ and LSrch(w) = Updates(w).

Proof sketch. Building a simulator Sim is straight-
forward, given the existence of a simulator SimSE =
{SimInitSE, SimSearchSE}. SimInit returns empty vector
EDB and initializes and update counter upd = 0. During
each update, SimUpdate computes j as the least significant
zero bit position of upd, runs a new instance Sim

(j)
SE =

{SimInit(j)SE , SimSearch
(j)
SE }, executes SimInit(j)SE on input

2j , and sends the result to the adversary. It also terminates cur-
rently running instances of SimInit(i)SE for i = 0, . . . , j−1, and
increments upd. During a search for w, let upd be the current
update counter. SimSeach receives as input Updates(w). It
then initializes values t0, . . . , tblog updc to 0. For each entry
u ∈ Updates(w), it computes i as the index in which the
update with timestamp u was stored (determined by upd, u)
and increments ti by one. Finally for j = 0, . . . , blog updc,
it runs SimSearch(j)SE on input tj , and sends all the outputs
to the adversary. Assuming SE is secure and result-hiding,

and each instance SimSE is spawned independently with fresh
randomness, and given that the timestamp of an update fully
determines the corresponding index structure for its entry,
the transcript produced by Sim is indistinguishable from the
messages observed by the adversary during the real protocol
execution.�

Theorem 2: Assuming PiBas is an adaptively-secure
result-hiding static SE scheme, and OMAPi are secure obliv-
ious maps, SDa is an adaptively-secure DSE according to
Definition 1 with LUpdt(op, w, id) = ⊥ and LSrch(w) =
Updates(w).

Proof sketch. Let SimPB = {SimInitPB, SimSearchPB} be
the simulator for Pibas. First, we observer that SimInitPB
can be decomposed into calls to a stateful SimInitOnePB that
simulates just one step of the setup simulation at a time. The
input state of SimInitOnePB is the partially built table, and
the leakage N . After N executions, SimInitOnePB provides
an output that is identically distributed with that of SimInitPB
on input N . This follows easily by the fact that the setup
process of Pibas consists of populating a hash table with
N semantically secure encryptions, stored at pseudorandomly
computed positions. The simulator SimInitOnePB just needs
to remember its previous randomly chosen positions so that
eventually he outputs the entire table. 5

With that observation, we build our simulator Sim as

5For simplicity, we assume that the first time SimInitOnePB is called, it
just simulates (internally) the key generation process, hence SimInitOnePB
will be called a total of N + 1 times to emulate the execution of SimInitPB
on input N .
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Let RND = (KeyGen, Enc, Dec) be a semantically-
secure encryption scheme, F be a PRF, and H be a
collision-resistant hash function.

(K,EDB)← Setup(1λ, DB)

1: Initialize an empty map T
2: Set (k, k′)← KeyGen(1λ)
3: for each w ∈ DB do
4: Set counter c← 0
5: (key, value)← Map(K,w, id, c)
6: Store (key, value) to T ; c++
7: Set K ← (k, k′); EDB ← T

(k, k′)← KeyGen(1λ)

1: Choose random PRF key k for F
2: Set k′ ← RND.Enc(1λ)

(key, value)← Map(K,w, id, c)

1: key ← H(F (k,w), c)
2: value← RND.Enc(k′, w, id)

DB(w)↔ Search(K, q;EDB)

Client:
1: Send tk ← F (k,w) to server

Server:
2: Set X ← ∅; c← 0
3: while true do
4: Set res← T .get(H(tk), c)
5: if res = ⊥ then break
6: else X ← X ∪ res; c++
7: Send X to client

Client:
8: Decrypt entries of X with k′ and return them as
DB(w)

Fig. 9: Static searchable encryption PiBas [12].

follows. First, all calls to OMAP, are replaced by simu-
lated accesses. During setup, SimInit launches 4 · (` + 1)
independent instances of SimInitOneiPB for i = 0, . . . , `
and corresponding sizes 1, . . . , 2`, and initializes update
counter upd = 0. For each update, whenever OLDESTi,
OLDERi are full (which can be computed from i and upd),
SimUpdate calls SimInitOnei+1

PB . If SimInitOnei+1
PB is full

(after 2i+1 + 1 calls), the simulator terminates the existing
SimInitOneiPB instances mapped to OLDESTi, OLDERi and
map the SimInitOneiPB instance of OLDi to OLDESTi (if it
is not vacant). Moreover, it treats the SimInitOnei+1

PB instance
as mapped to the oldest vacant instance for size 2i+1, and
launches a new instance mapped to NEWi. Finally, it always
launches a new instance of SimInitOne1PB, maps it to the
oldest non-vacant instance for size 1, and increments upd. The
search simulator SimSearch is identical to that of SDa (it just
has to call up to three instances of SimSearchPB per size,
depending on upd).

By the same reasoning as that for SDa above, and since
OMAPi are independently instantiated with secure oblivious
maps, the transcript produced by Sim is indistinguishable
from the messages observed by the adversary during the real
protocol execution.�

Theorem 3: Assuming F is a PRF, RND is a semanti-
cally secure encryption scheme, and the three OMAPs are
secure oblivious maps, QOS is an adaptively-secure DSE
according to Definition 1 in the programmable random or-
acle model, with LUpdt(op, w, id) = op and LSrch(w) =
(Updates(w),DelHist(w)).

Proof. We prove the security of QOS by defining a sequence
of games as follows:

• Game−0: This is the RealSSE game as defined in
Appendix A.

• Game−1: This is the same as Game−0 but during
setup the OMAP initializations are replaced with
calls to the OMAP simulators for sizes W,N,N
respectively. All future OMAP accesses are emulated
by calls to the corresponding access simulators.
Game−1 is indistinguishable from Game−0 due to
the security of the oblivious maps.

• Game−2: This is the same as Game−1, except that
the encryptions value computed during update and
search are all replaced with dummy zero encryptions.
Game−2 is indistinguishable from Game−1 due to
the semantic security of RND.

• Game−3: This is the same as Game−2, except
that the tokens tkI , tkD generated during update
and search are generated uniformly at random
from the range of the PRF F , {0, 1}λ. The first
time a token is created for a certain w, cntw
combination it is appended to one of the two
lists TokensI(w), TokensD(w) (for insertions and
deletions respectively), that are different for every
keyword. Game−3 is indistinguishable from Game−2
due to the security of the PRF.

• Game−4: This is the same as Game−3, except that
calls to H are replaced with a programmable random
oracle as follows. For general H-calls from the
adversary, if the input has not be queried before and
the result has not been programmed, return a value
chosen uniformly at random from the range of H
and store the input-result pairs for future consistency.
Else, return the previously stored result for this input.

Specifically during insertion updates (line 6), H−
calls are entirely eliminated and instead key is chosen
uniformly at random from the range of H . The client
holds a list TI where he appends the chosen key. If
the update is a deletion he appends ⊥. Note that this
also eliminates token generation at line 5.

Then, during search, let U =
(u1, op1), . . . , (uaw , opaw) be the list of timestamp-
update type pairs corresponding to all previous
updates for the queried keyword w, sorted by
timestamp in increasing order. Let u′1, . . . , u

′
iw

be
the sub-list of U such that opi = add, again sorted
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in increasing order, and let d1, . . . , diw be the
natural ordering of u′i from 1 . . . , iw. The client then
programs the oracle such that H(tkI , di) = TI [u

′
i].

If H(tkI , di) has been set previously (due to an
adversarial query involving tkI before this token
was revealed), then the game aborts. Finally, line 13
of the search algorithm is replaced with choosing
key uniformly at random from the range of H .
Let dj = leaf , then client sets TI [u

′
j ] = key, in

preparation of future searches.

First, note that unless the game aborts it produces a
transcript identical to Game−3, in the programmable
random oracle model for H . Given that the range of
H is {0, 1}λ, whereas the total number of H-calls that
the adversary can do beyond the ones required during
searches is polynomial in λ (since the adversary is
PPT), the probability of aborting is negligible in
λ, hence Game−4 is indistinguishable from Game−3.

• Game−5: This is the same as Game−4 but we
now also replace H ′ with a programmable random
oracle. For general H ′-calls from the adversary, if
the input has not been queried before and the result
has not been programmed, return a value chosen
uniformly at random form the range of H and store
the input-result pairs for future consistency. Else,
return the previously stored result for this input.

Specifically during deletion updates (line 17), H ′−
calls are entirely eliminated and instead key is chosen
uniformly at random from the range of H ′. The client
holds a list TD where he appends the chosen key. If
the update is an insertion he appends ⊥. Note that
this also eliminates token generation at line 16.

Then, during search, let Dels =
(v1, v

′
1), . . . , (vdw , v

′
dw

) be the list of all timestamp-
pairs that match each deletion timestamp vi to the
timestamp v′i of the previous insertion it cancels out,
sorted in increasing order such that vi > vi−1. Using
U (from Game−4) and Dels the client builds the
entire update tree for w as follows. First create an
empty binary tree with 2dlogiwe leafs. Match each
leaf [1, iw] to an insertion operation’s timestamp u′i
(as computed in Game−4) starting from the leftmost

leaf. Then, for every vi ∈ Dels, mark the leaf with
timestamp v′i as black and then keep moving upwards,
reading at every level its ancestor and the sibling
of its ancestor. If both children of a node is black
mark it black. After finishing all steps for deletion
with timestamp vi, let d′i be the node closest to the
root that you just marked black. The client then
programs the oracle such that H(′tkD, d

′
i) = TD[vi].

If H ′(tkD, d′i) has been set previously (due to an
adversarial query involving tkD before this token was
revealed), then the game aborts.

Finally, line 18 of the search algorithm is replaced
with choosing key uniformly at random from the
range of H ′. Let d′j = y, then client sets TI [vj ] = key,
in preparation of future searches.

First, note that unless the game aborts it produces a
transcript identical to Game−3, in the programmable
random oracle model for H . This holds since the
combination of U,Dels uniquely define the colors
of the nodes of the update tree for w. Then, using
the same argument as above but for H ′, we conclude
that Game−5 is indistinguishable from Game−4.

• Game−6 : This is the same as Game−5 but client
receives op instead of op, w, id during updates,
and Updates(w),DelHist(w) instead of w during
searches. Since he does not have access to w, he
populates lists TokensI, TokensD as follows. For a
search at timestamp ŵ, the client first checks whether
the input update history Updates(w) is an extension
of one observed during a previous search that took
place during timestamp ŵ′. If so, this implies that
the searches at times ŵ and ŵ′ are for the same
keyword and he retrieves tkI , tkD as the latest entries
from TokensI(ŵ′), TokensD(ŵ′). Else, he chooses
fresh random tokens tkI , tkD and appends them to
TokensI(ŵ), TokensD(ŵ).

The client’s code as described in Game−6, is es-
sentially the code of the simulator in the IdealSSE

game since it only takes as input the leakage specified
in Theorem 3. By a standard hybrid argument, the
produced transcript is indistinguishable from the one
produced in Game−0, and the result follows. �
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