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Abstract

While deep learning demonstrates its strong ability to han-
dle independent and identically distributed (IID) data, it often
suffers from out-of-distribution (OoD) generalization, where
the test data come from another distribution (w.r.t. the train-
ing one). Designing a general OoD generalization framework
for a wide range of applications is challenging, mainly due
to different kinds of distribution shifts in the real world, such
as the shift across domains or the extrapolation of correla-
tion. Most of the previous approaches can only solve one spe-
cific distribution shift, leading to unsatisfactory performance
when applied to various OoD benchmarks. In this work, we
propose DecAug, a novel decomposed feature representation
and semantic augmentation approach for OoD generaliza-
tion. Specifically, DecAug disentangles the category-related
and context-related features by orthogonalizing the two gra-
dients (w.r.t. intermediate features) of losses for predicting
category and context labels, where category-related features
contain causal information of the target object, while context-
related features cause distribution shifts between training and
test data. Furthermore, we perform gradient-based augmenta-
tion on context-related features to improve the robustness of
learned representations. Experimental results show that De-
cAug outperforms other state-of-the-art methods on various
OoD datasets, which is among the very few methods that can
deal with different types of OoD generalization challenges.

Introduction

Deep learning has demonstrated superior performances on
standard benchmark datasets from various fields, such as im-
age classification (Krizhevsky, Sutskever, and Hinton 2012),
object detection (Redmon et al. 2016), natural language pro-
cessing (Devlin et al. 2019), and recommendation systems
(Cheng et al. 2016), assuming that the training and test data
are independent and identically distributed (IID). In practice,
however, it is common to observe distribution shifts among
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Figure 1: Illustration of the two-dimensional OoD shifts
among datasets in different OoD research areas, including
Colored MNIST, PACS, and NICO. Extensive experiments
showed that many OoD methods can only deal with one di-
mension of OoD shift.

training and test data, which is known as out-of-distribution
(OoD) generalization. How to deal with OoD generalization
is still an open problem.

To improve a DNN’s OoD generalization ability, diversi-
fied research endeavors are observed recently, which mainly
includes domain generalization, invariant risk minimization,
and stable learning. Various benchmark datasets are adopted
to evaluate the proposed OoD generalization algorithms,
such as Colored MNIST (Arjovsky et al. 2019), PACS (Li
et al. 2017a), and NICO (He, Shen, and Cui 2020). Among
these datasets, PACS are widely used in domain general-
ization (Carlucci et al. 2019; Mancini et al. 2020) to val-
idate DNN’s ability to generalize across different image
styles. On the other hand, in recent risk regularization meth-
ods, Colored MNIST is often considered (Arjovsky et al.
2019; Ahuja et al. 2020; Krueger et al. 2020; Xie et al.
2020), where distribution shift is introduced by manipulat-
ing the correlation between the colors and the labels. In sta-
ble learning, another OoD dataset called NICO was intro-
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Figure 2: Typical examples of out-of-distribution correlation
shift data from the Colored MNIST dataset.

duced recently (He, Shen, and Cui 2020), which contains
images with various contexts. Along with this dataset, an
OoD learning method, named CNBB, is proposed, based on
sample re-weighting inspired by causal inference.

In this paper, we observe that methods perform well in
one OoD dataset, such as PACS, which may show very poor
performance on another dataset, such as Colored MNIST, as
shown in our experiments (see experimental results in Sec. ).
That may because of the different types of OoD shifts. Here,
we identify two types of out-of-distribution factors, includ-
ing the correlation shift and the diversity shift.

Correlation shift. One is the correlation shift, which
means that labels and environments are correlated and the
relations change across different environments. For exam-
ple, in Fig. 2, we observe the correlation shift between the
training set and the test set in Colored MNIST. Specifically,
in training set, the number 5 is usually in green while the
number 4 is usually in red. However, in test set, the number
5 tends to be in red while the number 4 tends to be in green.
If a model learns color green to predict label 5 when train-
ing, it would suffer from the correlation shift when testing.

Diversity shift. Another out-of-distribution factor is the
diversity shift. For example, in PACS, the data come from
four different domains: photo, art painting, cartoon and
sketch. Data in different domains have significantly different
styles. Usually, we leave one domain out as the test set, and
the remaining three domains as the training set. The model
trained on the training set would susceptible to the diversity
shift on the test set. See Fig. 3 as an illustration.

Two-dimension OoD shifts. Data in actual scenarios usu-
ally involve two different OoD factors simultaneously. For
example, in NICO (Fig. 4), different contexts such as “in
cage”, “in water”, and “on grass” lead to diversity shift,
while some contexts are related to specific categories, such
as a bird would be “in hand” and a dog may be “at home”.
We also put datasets from multiple research areas on the
same axis (Fig. 1), the X-axis denotes the correlation shift
which controls the contribution proportions of correlated
features, the Y -axis denotes the diversity shift which stands
for the change of feature types. Specifically, in the Colored
MNIST dataset, the correlation between color and label is
high, while in the PACS, the style of images is more diverse.
In the NICO, both correlation shift and diversity shift exist.

To handle different OoD factors simultaneously, we pro-
pose DecAug, a novel decomposed feature representation
and semantic augmentation approach for OoD generaliza-
tion. Specifically, our method first decomposes the high-
level representations of input images into category-related
and context-related features by orthogonalizing the two gra-
dients of losses for predicting category and context labels
respectively. Here, category-related features are essential for
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Figure 3: Typical examples of out-of-distribution diversity
shift data from the PACS dataset. (a) Photo. (b) Art Painting.
(c) Cartoon. (d) Sketch.
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Figure 4: Some examples of the two-dimensional out-of-
distribution data from the NICO dataset. Contexts such as
“in cage”, “in water” and “on grass” result in mini-domains
in the dataset, suggesting the diversity shift among the data.
On the other hand, specific contexts such as “in hand” are
common for birds while is unusual for dogs. The category
and context labels are correlated, indicating the correlation

shift among data.

recognizing the category labels of the images, while context-
related features are not essential for the recognition but cor-
related with the category labels. After obtaining the de-
composed features, we do gradient-based semantic augmen-
tation on context-related features, representing attributes,
styles, backgrounds, or scenes of target objects, to disen-
tangle the spurious correlation between features that are not
essential for the recognition and category labels.

Our contributions are as follows:

1. We test OoD methods from diversified research areas and
show that very often, they only deal with one special type
of OoD generalization challenge.

2. We propose DecAug to learn disentangled features that
capture the information of category and context respec-
tively and perform gradient-based semantic augmentation
to enhance the generalization ability of the model.

Extensive experiments show that our method consistently
outperforms previous OoD methods on various types of
OoD tasks. For instance, we achieve an average accuracy
of 82.39% with ResNet-18 (He et al. 2016) on PACS (Li
et al. 2017a), which is the state-of-the-art performance.



Related Work

In this section, we review literature related to risk regulariza-
tion methods, domain generalization, stable learning, data
augmentation and disentangled representation.

Risk regularization methods for OoD generalization. The
invariant risk minimization (IRM, Arjovsky et al. (2019))
is motivated by the theory of causality and causal Bayesian
networks (CBNs), aiming to find an invariant representation
of data from different training environments. To make the
model robust to unseen interventions, the invariant risk min-
imization added invariant risk regularization to monitor the
optimality of a dummy classifier on different environments.
IRM-Games (Ahuja et al. 2020) further improves the stabil-
ity of IRM. Risk extrapolation (Rex, Krueger et al. (2020))
adopts a min-max framework to derive a model that can per-
form well on the worst linear combination of risks from dif-
ferent environments. These methods typically perform well
on synthetic datasets, such as Colored MNIST. However, it
is unknown how they can generalize on more complex prac-
tical datasets beyond MNIST classification tasks.

Domain generalization. Carlucci et al. (2019) proposed a
self-supervised learning method for typical domain general-
ization datasets, such as PACS, by solving Jigsaw puzzles.
Dou et al. (2019) adopted meta-learning to learn invariant
feature representations across domains. Recently, Mancini
et al. (2020) proposed the curriculum mixup method for do-
main generalization, in which data from multiple domains
in the training dataset mix together by a curriculum sched-
ule of mixup method. Domain generalization methods have
achieved performance gain in generalizing models to unseen
domains. However, recent OoD research finds that domain
adaptation methods with similar design principles can have
problems when training distribution is largely different from
test distribution (Arjovsky et al. 2019).

Stable learning. Stable learning is a recently proposed new
concept (Kuang et al. 2018), which focuses on learning
a model that can achieve stable performances across dif-
ferent environments. The methodology of stable learning
largely inherited from sampler reweighting in causal infer-
ence (Kuang et al. 2018; Shen et al. 2020; He, Shen, and Cui
2020). While these methods can have theoretical guaran-
tees on simplified models, when confounder results in strong
spurious correlations, this method may not be able to work
well especially in the deep learning paradigm.

Data augmentation. Data augmentation has been widely
used in deep learning to improve the generalization ability of
deep models (Krizhevsky, Sutskever, and Hinton 2012; Sri-
vastava, Greff, and Schmidhuber 2015; Han, Kim, and Kim
2017). Elaborately designed augmentation strategies, such
as Cutout (DeVries and Taylor 2017), Mixup (Zhang et al.
2017), CutMix (Yun et al. 2019), and AugMix (Hendrycks
et al. 2019), have effectively improved the performance of
deep models. A more related augmentation method is to in-
terpolate high-level representations. Upchurch et al. (2017)
shows that simple linear interpolation can achieve meaning-
ful semantic transformations. Motivated by this observation,
Wang et al. (2019) proposes to augment deep features with
random vectors sampled from class-specific normal distri-
butions. Instead of augmenting the features explicitly, they
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minimize an upper bound of the expected loss on augmented
data. To tackle the few-shot learning problem, Hariharan and
Girshick (2017) suggest training a feature generator that can
transfer modes of variation from categories of a large dataset
to novel classes with limited samples. To ease the learning
from long-tailed data, Liu et al. (2020a) proposes to transfer
the intra-class distribution of head classes to tail classes by
augmenting deep features of instances in tail classes. Differ-
ent from these approaches, our method performs gradient-
based augmentation on disentangled context-related features
to eliminate distribution shifts for various OoD tasks.
Disentangled representation. Disentangling the latent fac-
tors from the image variants is a promising way to provide
an understanding of the observed data (Chen et al. 2016;
Higgins et al. 2017; Ma et al. 2019). It aims to learn rep-
resentations that separate the explanatory factors of varia-
tions behind the data. Such representations are more resilient
to the complex variants and able to bring enhanced gen-
eralization ability (Liu et al. 2018; Peng et al. 2019). Dis-
entangled representations are inherently more interpretable.
How to obtain disentanglement is still a challenging prob-
lem. Shen and Zhou (2020) identifies latent semantics and
examines the representation learned by GANs. Bahng et al.
(2020) trains a de-biased representation by encouraging it
to be different from a set of representations that are biased
by design. In this paper, semantic vectors found by DecAug
with orthogonal constraints are disentangled from each other
in the feature space.

Methodology

To deal with the aforementioned two different types of dis-
tribution shifts simultaneously, we argue that it is critical to
obtain the decomposed features, one is essential for predict-
ing category and the other is not essential but correlated for
recognition. In this section, we propose DecAug to learn
decomposed high-level representations for the input data.
The decomposition is achieved by orthogonalizing the two
gradients of losses for predicting category and context la-
bels respectively. To improve the generalization ability, we
perform gradient-based semantic augmentation on context-
related features and concatenate the augmented features to
category-related features to make the final prediction. An
overview of the proposed method is illustrated in Fig. 5.

Feature Decomposition

Consider an image recognition task with the training set
D = {(xi,yi, c;) }}L,, where z; is the input image, y; is the
corresponding category label, ¢; is the corresponding con-
text label, and N is the number of training data. As shown in
Fig. 5, the input data are mapped to the feature space and are
decomposed into two branches: category branch and context
branch. Given an input image x; with category label y; and
context label ¢;, let z; = gy (z;) be the features extracted by
a backbone ggy. For the category branch, z; is decomposed
into z} = fy1(2;) by a category feature extractor fy1, fol-
lowed by a classifier hy1(2}) to predict the category label.
For the context branch, z; is decomposed into 22 = fy2(2;)
by a context feature extractor fy2, followed by a classifier
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Figure 5: An overview of the proposed DecAug. The input features z extracted by the backbone are decomposed into category-
related and context-related features with orthogonal regularization. Gradient-based augmentation is then preformed in the fea-

ture space to get semantic augmented samples.

Algorithm 1 DecAug: Decomposed Feature Representation
and Semantic Augmentation for OoD generalization

Input: Training set D, batch size n, learning rate /3, hyper-
parameters e, A1, A2, \°rth,
Output: 6, 01, ', 62, ¢2, ¢.
1: Initialize 0, 01, @1, 62, ¢2, &;
2: repeat
3:  Sample a mini-batch of images {(z;, v, ¢;) -y C D
with batch size n;
for each (z;,y;,c;) do
Zi1<— gel(xil);
222(97 927 ¢2) — g(h(bl © f91 (21)7 yz)’
7 (97 0 7¢ ) — E(h(bQ © f@z(zi)7ci)v
Compute L5101, 1, 62, ¢?) according to Eq. (1);
9: Randomly sample «; from [0, 1];

10: Generate 72 according to Eq. (2);

L1 Lgoncal(g’ 01’ 027 (rb) — é(h¢([f91 (Zi)a 212])5 yi);
12: Compute £; according to Eq. (3);

13:  end for

14: (07017¢17027¢27¢) % (07917¢17927¢27¢)

8-v1L iﬁiw,ew%ew?,@;

15: until convergence;

hg2(22) to predict the context label. We use the standard
cross-entropy losses £}(0,6",¢') = l(hg o foi(z:),y:)
and £2(0,60%,¢?) = €(hge o fg2(zi),c;) to optimize these
two branches, together with the backbone, respectively.

It is known that the direction of the non-zero gradient of a
function is the direction in which the function increases most
quickly, while the direction that is orthogonal to the gradi-
ent direction is the direction in which the function increases
most slowly. To better decompose the features into category-
related and context-related features, we enforce the gradient
of the category loss £(hg1 o fg1(2;), ;) to be orthogonal to
the gradient of the context loss £(hg2 o fg2(2;), ¢;) with re-
spect to z;, such that the direction that changes the category
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loss most quickly will not change the context loss from z;
and vice versa. Specifically, let gl(el o) = V E(h¢1 o
for (ZZ) yl) and g2(92 ¢2 2 Of02 Zz be the
gradients of the category and contextf oss with respect to 2;
respectively. To ensure the orthogonality, we minimize the
following loss:

gi (0%,
g2,

?)
ol

( Gg:(9',¢")
IIQ 01, oY)l

Semantic Augmentation
Considering that context-related features cause correlation
or diversity shifts in our setting, we perform augmentation
on the context-related features to eliminate such kind of dis-
tribution shifts. As in the semantic feature space, we may
have multiple alternative directions for OoD. To ensure good
performances across different environments, we postulate a
worse case for the model to learn for OoD generalization by
calculating the adversarially perturbed examples in the fea-
ture space. Specifically, let G; "¢ = V.2 (hge (22), ¢;) be the
gradient of the context loss with respect to z2. We augment
the context-related features 22 as follows:
52 = 22 G 2)
S (
where € is a hyper-parameter that determines the maximum
length of the augmentation vectors and «; is randomly sam-
pled from [0, 1].

After augmenting the context-related features, we con-
catenate Z? to the category-related features z! to make
the final prediction hy([2},7?]), where hy is a classifier
and [z}, 7] is the concatenation of two features. We still
use the standard cross-entropy loss L£5°%(6, 61,02, ¢) =
U(hy([2},72]),yi) to optimize the corresponding parame-
ters. Together with the aforementioned losses, the final loss
is then defined as
Li(9,917 ¢1’02,¢27¢) _ E({oncal(9761702’¢)

+ AN LH0,0%, 0") + N £7(0,0%,97)

+)\0nh ‘ﬁgr(h(917¢1’02’¢2),

LM 1,62, ¢%) = Z 2

3)



where A, A\? and A" are hyper-parameters that balance dif-
ferent losses. We formulate the learning of DecAug as the
following optimization problem:

N
1 1 1 1 2 2
0,01,01,0%,6%,6 N;&(Q’e (61,6%,6%0). @
The stochastic gradient descent (SGD) algorithm can be ap-

plied to optimize the above objective. The detailed proce-
dures are summarized in Algorithm 1.

Experiments

In this section, we will conduct numerical experiments to
cross benchmark different methods from different perspec-
tives of OoD research on different typically challenging and
widely used datasets—Colored MNIST, NICO, and PACS.

Implementation Details and Datasets

We evaluate our method on three challenging OoD datasets
with different levels of correlation shift and diversity shift
as discussed above: Colored MNIST (Arjovsky et al. 2019),
PACS (Li et al. 2017a), and NICO (He, Shen, and Cui 2020).
The main task of DecAug is category classification subject
to unseen data distributions. For PACS and Colored MNIST,
the context labels are domain/environment IDs. For NICO,
it is attributes. The metric is the top-1 category classification
accuracy.

The Colored MNIST Dataset. The challenging Colored
MNIST dataset was recently proposed by IRM (Arjovsky
et al. 2019) via modifying the original MNIST dataset with
three steps: 1) The original digits ranging from O to 4 were
relabelled as 0 and the digits ranging from 5 to 9 were tagged
as 1; 2) The labels of 0 have a probability of 25% to flip to 1,
and vice versa; 3) The digits were colored either red or green
based on different correlation with the labels to construct
different environments (e.g., 80% and 90% for the training
environments and 10% for the test environment). In this way,
the classifiers will easily over-fit to the spurious feature (e.g.,
color) in the training environments and ignore the shape fea-
ture of the digits.

For a fair comparison, we followed the same experimen-

tal protocol as in IRM (Arjovsky et al. 2019) on the Colored
MNIST dataset. We equipped the IRMv1 scheme with our
DecAug approach using the same settings. The backbone
network was a three-layer MLP. The total training epoch was
500 and the batch size was the whole training data. We used
the SGD optimizer with an initial learning rate of 0.1. The
trained model was tested at the final epoch.
The PACS Dataset. This dataset contains 4 domains (Photo,
Art Painting, Cartoon, Sketch) with 7 common categories
(dog, elephant, giraffe, guitar, horse, house, person). We
followed the same leave-one-domain-out validation exper-
imental protocol as in (Li et al. 2017a). For each time, we
select three environments for training and the remaining en-
vironment for testing.

The backbone network we used on the PACS dataset was
ResNet-18. We followed the same training, validation and
test split as in JiGen (Carlucci et al. 2019). The number of
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training epochs was 100. The batch size was 64. We used the
SGD optimizer with a learning rate of 0.02.

The NICO Dataset. This dataset contains 19 classes with 9
or 10 different contexts,i.e., different object poses, positions,
backgrounds, and movement patterns, etc. The NICO dataset
is one of the newly proposed OoD generalization benchmark
in the real scenarios (He, Shen, and Cui 2020). The contexts
in validation and test set will not appear in the training set.

The backbone network was ResNet-18 without pretrain-
ing on the NICO dataset. The number of training epochs was
500 and the batch size was 128. We used the SGD optimizer
with a learning rate of 0.05.

We compare our proposed DecAug with the state-of-the-
arts, including empirical risk minimization (ERM), invariant
risk minimization (IRM, Arjovsky et al. (2019)), invariant
risk minimization games (IRM-Games, Ahuja et al. (2020)),
model-agnostic learning of semantic features (MASF, Dou
et al. (2019)), domain generalization by solving jigsaw puz-
zles (JiGen, Carlucci et al. (2019)) across multiple datasets,
debiased training method (ReBias, Bahng et al. (2020)), risk
extrapolation (Rex, Krueger et al. (2020)), and convnets with
batch balancing (CNBB, He, Shen, and Cui (2020)).

Our framework was implemented with PyTorch 1.1.0,
CUDA v9.0. For the baseline methods, we implement either
with Pytorch 1.1.0 or with Tensorflow 1.8 to keep the same
setting as their original source code. IRM, JiGen, ReBias,
Rex, and CNBB! were implemented with Pytorch. IRM-
Games and MASF were implemented with Tensorflow. We
conducted experiments on NVIDIA Tesla V100. More im-
plementation details can be found in the Appendix.

Results and Discussion

In this section, we evaluate and analyze the results of our ap-
proach on three datasets: Colored MNIST, PACS and NICO.
These datasets represent different aspects of covariant shifts
in OoD problems thus provide more thorough studies on
OoD generalization compared with previous ones.
Illustrative Results on the Colored MNIST Dataset. As
shown in Table 2, DecAug achieves the best generalization
performance on Colored MNIST, followed by risk regular-
ization methods, such as Rex and IRM. For typical domain
generalization methods, such as JiGen, and the recently pro-
posed method ReBias, are misled by the spurious correlation
existing in the training datasets. Notice that DecAug’s per-
formance is very close to ERM trained on grayscale MNIST
which provides an upper bound for MLP to generalize on
this task. As mentioned in (Arjovsky et al. 2019), typical do-
main generalization methods can only deal with one dimen-
sion of OoD problem where image style differs. Our method
further improves the performance in Colored MNIST by
decomposition and semantic augmentation in the feature
space, which disregards spurious features that are correlated
but not causal for predicting category.

Illustrative Results on the PACS Dataset. In PACS, De-
cAug achieves the state-of-the-art (SOTA) performance fol-
lowed by MASF and Cumix when using ResNet-18 as the
backbone network. The details of our results on PACS are

'The code of CNBB is from the authors of the paper.



Model Art Painting  Cartoon ~ Sketch  Photo | Average
ERM (Carlucci et al. 2019) 77.85 74.86 67.74 9573 | 79.05
IRM (Arjovsky et al. 2019)" 70.31 73.12 75.51 8473 | 7592
Rex (Krueger et al. 2020)" 76.22 73.76 66.00 9521 77.80
JiGen (Carlucci et al. 2019) 79.42 75.25 71.35  96.03 | 80.51
DANN (Ganin et al. 2016) 81.30 73.80 7430 94.00 | 80.80
MLDG (Li et al. 2017b) 79.50 77.30 71.50 9430 | 80.70
CrossGrad (Shankar et al. 2018) 78.70 73.30 65.10 94.00 | 80.70
MASF (Dou et al. 2019) 80.29 77.17 71.69 9499 | 81.03
Cumix (Mancini et al. 2020) 82.30 76.50 72.60 95.10 | 81.60
DecAug 79.00 79.61 75.64 9533 | 82.39

* Implemented by ourselves.

Table 1: Classification accuracy of our approach trained considering leave-one-domain-out validation compared with the state-
of-the-art methods on the PACS benchmark with the ResNet-18 backbone.

Model Acc test env
ERM" 17.10 + 0.6
IRM (Arjovsky et al. 2019) 66.90 £ 2.5
Rex (Krueger et al. 2020) 68.70 £ 0.9
F-IRMGames (Ahuja et al. 2020) 59.91 £2.7
V-IRMGames (Ahuja et al. 2020) 49.06 + 3.4
ReBias (Bahng et al. 2020)" 29.40 + 0.3
JiGen (Carlucci et al. 2019)" 1191 +£04
DecAug 69.60 £+ 2.0
ERM, grayscale model(oracle) 73.00 £ 04
Optimal invariant model (hypothetical) 75.00

* Implemented by ourselves.

Table 2: Results of our approach compared with different
methods on the Colored MNIST dataset(mean =+ std devia-
tion).

shown in Table 1. The worse performances for risk regular-
ization methods, such as IRM and Rex, are because these
methods add strong regularization terms in ERM to elim-
inate all features that are unstable across different envi-
ronments. This can work well in the standard and “clean”
dataset—-MNIST, where shapes of digits are always stable.
However, in realistic scenarios, the shapes of target objects
can change, meaning that even features for predicting object
category can be unstable in different training environments.

Ilustrative Results on the NICO Dataset. The recently
proposed NICO dataset considers more realistic general-
ization scenarios, where objects themselves and the back-
grounds, i.e., contexts in the dataset, can change vastly. For
example, in the training dataset, we have dog pictures on
the grass with dog faces posed to the camera, while in the
test dataset, there are pictures where dogs are moving on the
beachside. In our implementation, CuMix achieved 76.78%
(animal) and 74.74% (vehicle) accuracy on NICO, indicat-
ing that mixing up (interpolating) data may not able to cor-
rect the spurious correlation between irrelevant features such

6710

Model Animal Vehicle
ERM" 75.87 74.52
IRM (Ahuja et al. 2020)" 59.17 62.00
Rex (Krueger et al. 2020)" 74.31 66.20
Cumix (Mancini et al. 2020)" 76.78 74.74
DANN (Ganin et al. 2016)" 75.59 72.23
JiGen (Carlucci et al. 2019)" 84.95 79.45
CNBB (He, Shen, and Cui 2020)" 78.16 77.39
DecAug 85.23 80.12

* Implemented by ourselves.

Table 3: Results of our method compared with different
models on the NICO dataset.

as the background to the predicted category. In addition,
DANN achieved 64.77% (animal) and 58.16% (vehicle) ac-
curacy, which is similar to IRM. The poor performance of
DANN and IRM on NICO may probably due to the diver-
sity shift. As Table 3 shows, the proposed DecAug achieved
the best generalization performances on two sets, followed
by JiGen. This further demonstrates the superiority of the
proposed algorithmic framework. Our method has achieved
the SOTA performance simultaneously on various OoD gen-
eralization tasks, indicating a new promising direction for
OoD learning algorithm research.

Ablation Studies and Sensitivity Analysis

For ablation studies and sensitivity analysis, we take the
PACS dataset for example.

Effectiveness of orthogonal loss. We test the effects of the
proposed orthogonal loss. The results are shown in Table 4.
It can be seen that without the orthogonal loss, our method
achieves an average accuracy of 80.77% that is higher than
most of the methods in Table 1. This is because the cate-
gory and context losses also play the role of feature decom-
position. The additional orthogonal loss enforces the gradi-
ents of the category and context losses to be orthogonal to
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Figure 6: The gradient visualization of the decomposed category-related and context-related high-dimensional features. The
first row is the original input images, the second row is its corresponding back propagation of the category branch and the last

row is the back propagation of the context branch.

PACS Art Painting  Cartoon ~ Sketch  Photo | Average
DecAug without orth loss 78.42 78.32 72.13  94.19 80.77
DecAug (orth 0.0005) 77.49 77.43 7432 94.07 | 80.76
DecAug (orth 0.001) 78.12 77.34 76.97 9491 81.83
DecAug (orth 0.01) 79.00 79.61 75.64 9533 | 82.39

Table 4: Ablation study on PACS with ResNet-18.

Model Average
DecAug (DANN loss) 81.00
DecAug (orth between features) 79.90
DecAug (gradient-based orth) 82.39

Table 5: Results of DecAug variants on the PACS dataset.

each other, which helps to further decompose the features.
As expected, with the increase of the orthogonal regulariza-
tion coefficient A\ the performance of DecAug can be im-
proved. The experimental results confirm the effectiveness
of the proposed orthogonal loss.

DecAug variants. We changed current orth regularization
to orth constraints between features, refer to Table 5, which
reaches 79.90% on PACS, lower than the original DecAug.
We also tried confusion regularization, as discussed in re-
cent literature Open Compound Domain Adaptation (Liu
et al. 2020b). It seems natural to incorporate confusion reg-
ularization into our method for better decomposition. How-
ever, after many trials, no improvements were observed. We
tried DecAug with DANN adversarial loss "orth” on PACS.
As shown in Table 5, the result is around 81%, lower than
the original. This shows both gradient orthogonalization and
semantic augmentation are indispensable parts of the algo-
rithm. We tried “adversarial augmentation” to Jigsaw, the
result is much lower than Jigsaw. This shows that the two
branch architecture is needed and adversarial augmentation
is better performed on the context predicting branch to im-
prove OoD generalization via challenging neural networks
to unseen context information.
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Interpretability analysis. We also use deep neural network
interpretability methods in (Adebayo et al. 2018) to explain
the neural network’s classification decisions as shown in
Figure 6. It can be seen that the saliency maps of the cat-
egory branch focus more on foreground objects, while the
saliency maps of the context branch are also sensitive to
background contexts that contain domain information. This
shows that our method well decomposes the high-level rep-
resentations into two features that contain category and con-
text information respectively. Later, by performing semantic
augmentation on context-related features, our model breaks
the inherent relationship between contexts and category la-
bels and generalizes to unseen combinations of foregrounds
and backgrounds.

Conclusions

In this paper, we propose DecAug, a novel decomposed
feature representation and semantic augmentation method
for various OoD generalization tasks. High-level represen-
tations for the input data are decomposed into category-
related and context-related features to deal with the diversity
shift between training and test data. Gradient-based seman-
tic augmentation is then performed on the context-related
features to break the spurious correlation between context
features and image categories. To the best of our knowl-
edge, this is the first method that can simultaneously achieve
the SOTA performance on various OoD generalization tasks
from different research areas, indicating a new research di-
rection for OoD generalization research. For future work,
we will construct a large OoD dataset from the industry to
further improve the algorithm and put it into real practice.
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