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ABSTRACT
Image-to-markup generation aims at translating an image into
markup (structured language) that represents both the contents
and the structural semantics corresponding to the image. Recent
encoder-decoder based approaches typically employ string decoders
to model the string representation of the target markup, which can-
not effectively capture the rich embedded structural information.
In this paper, we propose TSDNet, a novel Tree-based Structure-
aware Transformer Decoder Network to directly generate the tree
representation of the target markup in a structure-aware manner.
Specifically, our model learns to sequentially predict the node at-
tributes, edge attributes, and node connectivities by multi-task
learning. Meanwhile, we introduce a novel tree-structured atten-
tion to our decoder such that it can directly operate on the partial
tree generated in each step to fully exploit the structural informa-
tion. TSDNet doesn’t rely on any prior assumptions on the target
tree structure, and can be jointly optimized with encoders in an
end-to-end fashion. We evaluate the performance of our model on
public image-to-markup generation datasets, and demonstrate its
ability to learn the complicated correlation from the structural in-
formation in the target markup with significant improvement over
state-of-the-art methods by up to 5.6% in mathematical expression
recognition and up to 35.34% in chemical formula recognition.
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1 INTRODUCTION
Image-to-markup generation is to translate an image into markup
(structured language) that represents both the contents and the
structural semantics corresponding to the image [9]. Typical image-
to-markup generation tasks include mathematical expression recog-
nition [24] that translates images into LATEX [15], chemical formula
recognition [28] that translate images into the chemical language
SMILES [38]. It may even be extended to automatically generate
programming code from images of graphical user interfaces [4, 6].
Research on image-to-markup generation dates back to as early
as 1960s [2], and is gaining increasing attention due to its impor-
tance in education, office automation, and multimedia data mining.
Markup languages are naturally tree-structured to express not only
the contents but also the hierarchies and relationships between
the contents [46], such as sub- and super-scripts in mathematical
expressions, as well as bonds and branches in chemical formulas
(Figure 1). It is hence essential to consider both the contents and
their structural semantics in image-to-markup generation.

Traditional approaches process structural analysis separately
from the content recognition by handcrafted grammar rules, which
is labor-intensive and inflexible [1, 3, 12, 17, 23]. Recent approaches
instead employ deep learning models to process the image-to-
markup generation in an end-to-end manner [18, 39, 40]. Specifi-
cally, they rely on string decoders such as recurrent neural networks
(RNNs) and Transformer [34] to learn to predict the markup lan-
guage strings as output. However, in markup language strings, the
structural information is usually described by additional formatting
tokens (e.g., "_", "^", "{", "}" in LATEX strings, and "(", ")", "=" in SMILES,
as shown in Figure 1). So, it is hard for those string decoders, which
are originally designed for linear sequences, to consider the rich
structural relationships embedded in the markup. Because of this,
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Figure 1: Examples of image-to-markup generation.

those string-based methods struggle to generalize when the struc-
tural complexity of markup increases [46]. In order to consider the
structural information, Zhang et al. [46] propose a tree-structured
decoder to directly generate the tree representation of the markup.
While impressive, their method only considers parent-child corre-
lation, while other structural correlations between the tree nodes,
such as siblings, grandparent-grandchild remain unexploited.

In this work, based on the insight of modeling the target markup
as tree, we propose to fully exploit the structural semantics by build-
ing a tree-based and structure-aware decoder model to generate
the target tree. This task is challenging because of the following.
Firstly, we need to predict three types of essential attributes for
the tree-based generation, namely node attributes, edge attributes,
and node connectivities. These attributes are highly coupled, and
how to integrate them into the model is non-trivial. Secondly, we
want our model to be structure-aware such that it can fully leverage
the partial tree generated by previous steps to generate the next
step. However, off-the-shelf structure-aware models such as Graph
Attention Networks (GATs) [35] are generally designed for the en-
coding scenario, thus not readily extensible to our tree decoding
scenario where the partial tree needs to be incrementally modeled
during the decoding process.

To overcome the challenges mentioned above, we propose TS-
DNet, a novel Tree-based Structure-aware Transformer Decoder
Network. TSDNet is well-designed to fully exploit the tree structure
in the target markup that: (i) it learns to explicitly generate the tree
representation of the target markup, without any prior assumptions
on the tree structure (e.g. maximum tree depth or branching factor),
(ii) it directly operates on the target tree structure, to inherently
leverage the structural information during the decoding process.
Specifically, TSDNet is designed based on the Transformer decoder
to model the tree generation process in the depth-first search (DFS)
order. It relies on multi-task learning to jointly model and predict
the node attributes, edge attributes, and node connectivities. Mean-
while, we introduce a novel tree-structured attention to replace
the feed-forward sublayer in the original Transformer decoder, en-
abling it to directly operate on the partial tree and adaptively learn

to capture complicated correlations in the tree such as parent-child,
grandparent-grandchild and siblings. Furthermore, TSDNet takes
the advantages of the attention mechanism that the sequential pro-
cess can be parallelly computed during training. Besides, it can be
jointly optimized with the encoder in the end-to-end fashion.

To summarize, we make the following contributions in this pa-
per:

• A tree-structured attention mechanism: We propose a novel
tree-structured attention mechanism to inherently leverage
the structural correlations in partial trees under the sequen-
tial tree decoding scenario. It can directly operate on the
partial tree during the decoding process, and can adaptively
learn to capture complicated correlations in the tree such
as parent-child, grandparent-grandchild and siblings within
each layer.

• A tree-based structure-aware Transformer decoder network:
Based on our tree-structured attention mecheanism, we pro-
pose TSDNet, a novel tree-based structure-aware Trans-
former decoder network to directly generate the tree repre-
sentation of the target markup. TSDNet doesn’t rely on any
prior assumptions on the structure of the target tree, and can
be jointly and efficiently optimized with general encoders
by end-to-end training.

• Extensive experiments to validate the effectiveness of TSDNet:
We conduct extensive experiments to evaluate the perfor-
mance of TSDNet on public image-to-markup generation
datasets, and demonstrate significant improvements over
state-of-the-art methods (by up to 5.6% in mathematical ex-
pression recognition tasks and up to 35.34% in the chemical
formula recognition task in terms of ExpRate). We also con-
duct experiments to show the effectiveness of TSDNet to
learn the complicated correlation from the structural infor-
mation in the target markup.

The remainder of this paper is organized as follows. We present
related works in Secion 2, followed by preliminaries in Section 3.
We then introduce our tree-structured attention mechanism in Sec-
tion 4, and the TSDNet in Section 5. We illustrate the experimental
settings and results in Section 6, and conclude in Section 7.

2 RELATEDWORKS
2.1 Image-to-Markup Generation
Unlike typical object recognition problem that recognizes con-
tents from images, image-to-markup generation requires to further
analyze the structural relationships between the recognized con-
tents. Early approaches for image-to-markup generation process the
recognition and structural analysis separately and use handcrafted
grammars to handle the structural analysis [1, 3, 12, 17, 23], which
requires a large amount of manual work to develop the grammar
rules.

Inspired by the neural encoder-decoder model developed for
image captioning [13, 42], recent studies essentially formulate
image-to-markup generation as an image-to-sequence problem.
These models generally employ convolutional neural networks
(CNNs) as encoder and use string decoders like RNN or Trans-
former [34] to generate the markup strings in an end-to-end man-
ner [9, 18, 39, 40, 47]. However, these string decoders are originally
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designed for linear sequences and have no inductive bias to leverage
the rich structural semantics embedded in the markup strings. As
a result, these string-based methods fail to generalize as the struc-
tural complexity of the target markup increases [46]. To alleviate
this problem, Zhang et al. [46] propose to directly model the tree
representation of the markup, by decomposing it into a sequence
of parent-child pairs and generating it with an RNN-based model.
While impressive, their method is still not fully structure-aware
that it only considers parent-child correlation, other structural
correlations between tree nodes, such as siblings and grandparent-
grandchild remain unexploited.

Compared with existing string-based methods, our proposed
TSDNet is tree-based that it directly models the target tree markup.
Compared with the tree-based method by Zhang et al. [46], TSDNet
is fully structure-aware that it relies on a novel tree-structured atten-
tion to directly operate on the tree structure, and inherently lever-
age the structural correlations including parent-child, grandparent-
grandchild, and siblings.

2.2 Tree-Structured Neural Networks
There have been a multitude of works that showed gains from in-
corporating tree structures into neural models in other research
strands such as natural language processing [8, 27, 30, 33, 36, 37] and
representation learning of programming code [10, 31, 32, 41, 45, 48].
However, the majority of them focus on incorporating structural
information into encoders to help generate more meaningful repre-
sentations, and much fewer works try to address the decoding of
structural information. Different from tree-structured encoders that
can take in the entire tree as input, tree-structured decoders must
dynamically model the already generated partial tree throughout
the generation process [31], which brings additional conceptual
and technical complexity into the problem [8]. Among existing
works on tree decoding, some rely on task-specific knowledge to
decode the target tree [8, 32, 45], which is non-trivial to be adapted
to other tasks. Others make prior assumptions on the target tree
structure, such as fixing the branching factor[7, 22, 36], and the
maximum tree depth [31] to simplify the generation process, which
also places restrictions on their applications. Compared with the
above mentioned tree-structured neural networks, our proposed
TSDNet works without any prior assumption on the target tree
structure.

3 PRELIMINARIES
Definition: Image-to-Markup Generation. The image-to-markup

generation problem is defined as converting a source image X into
the target markupM that fully describes both the contents and the
structural semantics in X. An image-to-markup system learns to
generate M by maximizing the conditional probability P(M|X).

Definition: Tree. A tree can be viewed as a special type of directed
acyclic graph, where each edge directs from the parent node to
the child node, and each node except for the root node has only
one incoming edge from its parent node (referred to as parent
edge). For a tree T with n nodes, we denote the tree nodes by
their order in the DFS traversal of the tree as {1, . . . ,n}. Then
the tree can be represented by three sequences with length n as:
T = (v1:n, e1:n,p1:n ), where for node i ,vi denotes its node attribute,

\int 0 1 \frac 1 x d x

GAT −∞ −∞ −∞ 𝑠1 −∞ −∞ −∞ −∞

TSA 𝑠2+𝛽2 −∞ −∞ 𝑠1+𝛽1 𝑠3+𝛽2 𝑠4 +𝛽2 −∞ −∞

\int

0 1 \frac

1 x d

x

𝑠1

𝑠2

𝑠3 𝑠4

Figure 2: Attention scores for node "d" under GAT and TSA
with Dmax=2.

ei denotes the attribute of its parent edge, and pi = j denotes that
its parent is node j. e1 and p1 are dummy here since the root node
1 has no parent. Meanwhile, under DFS, a parent node is always
traversed before its children so we always have 1 ≤ pi < i . We
further denote the attribute of node i’s parent node as vpi where
v
p
i = vpi .

Problem Formulation: Generating Markup as Tree. We assume the
target markupM can be represented as a tree T = (v1:n, e1:n,p1:n ).
Thus we can generate the target markup in tree representation T

by sequentially predicting the node attribute vi and edge attribute
ei , and identifying its parent node pi from the previously generated
nodes. The generation process can be factorized as:

max
T

P(T |X) =

n∏
i=1

max
vi ,ei ,pi

P(vi , ei ,pi |v<i , e<i ,p<i ,X) (1)

where (v<i , e<i ,p<i ) stands for the already generated partial tree.

4 TREE-STRUCTURED ATTENTION
We adopt the idea of the GAT [35] to introduce tree structure into
the canonical Transformer decoder. The vanilla GAT computes in
each layer the attention score of each node over all its direct graph
neighbor nodes, and relies on stacking multiple layers to increase
the receptive field of the network. However, as we generate the tree
nodes sequentially, each node should only be allowed to compute
attention with earlier positions in the sequence. But under the
DFS order, only the parent node appears in earlier positions in the
sequence, and child nodes always appear in later positions. Since a
non-root tree node has only one parent node, if we directly apply
GAT to our model, each node will only be able to depend on its one-
and-only parent node for feature extraction. This severely limits
the ability of the vanilla graph attention mechanism when applied
to our tree decoder. To cope with it, we revise the graph attention
computation by enabling attention between tree nodes that are not
neighbors, and update the attention score by adding a learnable
bias term according to the distance in the tree (Figure 2).
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Given a tree with t nodes, we first compute the pairwise attention
score S = {si j } ∈ R

t×t between nodes:

si j = LeakyReLU(aT · [Whi ∥Whj]), (2)

where a andW are learnable parameters, ∥ denotes the concatena-
tion operation, and H = {hi } ∈ R

t×d denotes the input represen-
tation vectors of tree nodes. Then, we consider the tree edges as
undirected and denote its adjacency matrix as A. Next, we define
the n-hop adjacency matrix as A(n) = {a

(n)
i j } ∈ {0, 1}t×t , where

a
(n)
i j = 1 means node i and j are n-hop neighbor in the tree. It is
obvious that A(1) = A. We can further compute A(n) for n ≥ 2
according to the graph diffusion process:

A(n) = A(n−1)A(1). (3)

Next, the attention bias is computed as the weighted sum of all
n-hop adjacency matrices:

B = {bi j } =
n∑
i=1

βi ∗A
(i), (4)

where βi are learnable parameters. We update the attention scores
S by adding B to it, and mask out those node pairs that are not
connected within n-hops to obtain the new attention scores S ′ =
{s ′i j } where

s ′i j =

{
si j + bi j , node i , j are connected within n-hops,
−∞, otherwise. (5)

The new attention scores are further normalized by softmax and
used as weights to generate the new node representations H ′ fol-
lowing the operations in the original GAT [35]:

H ′ = σ (Softmax(S ′)WH ). (6)

We treat the max hop number considered in each TSA layer Dmax
as a hyper parameter. It should be noted that when Dmax = 1,
TSA works similarly to the vanilla GAT. But when Dmax>1 , our
TSA allows information aggregation based on distances in the tree,
which enables the model to adaptively learn different correlations
on the tree such as parent-child, grandparent-grandchild, and sib-
lings. We summarize the computation from Equations 2 to 6 as
Tree-Structured Attention (TSA) and denote it as:

H ′ = TSA(H ,A). (7)

5 TSDNET
Figure 3 shows the overall architecture of the proposed TSDNet.
TSDNet works with an encoder to extract visual features from the
input image. In each generation step, the partial tree generated
in previous steps is embedded by the Tree Embedding Block, and
then TSDNet relies on the Child Prediction Block and the Parent
Prediction Block to operate on the partial tree and incorporate
visual features to generate the vector representations of the next
child node and its parent node. These vector representations are
later used to predict node attribute, and further fused in the Edge
Prediction Block and the Position Prediction Block to predict edge
attribute and node connectivity. In this section, we elaborate the
functionality and design of each block, and give the training and
inference details of the TSDNet.

5.1 Encoder
In this work we employ CNN as the encoder. The CNN encoder
takes the raw image as input and produces a feature map X ∈

Rh×w×d , where h andw are the spatial dimensions, and d is the fea-
ture dimension of the resulted feature map. We follow Carion et al.
[5] to obtain the 2d sinusoidal positional encoding by computing
and concatenating sine and cosine functions with different fre-
quencies for height and width coordinates respectively. We add the
positional encoding to the feature map, and then flatten the spatial
dimensions to get a sequence of vectors, denoted as X in ∈ Rhw×d .

5.2 Tree Embedding Block
Given a partial tree with t nodes specified as (v1:t , e1:t ,p1:t ), we use
look-up tables to embed node and edge attributes as real-valued
vectors respectively, denoted as {v1, . . . ,vt } and {e1, . . . ,et }. We
then concatenate the vector embedding of each node and their par-
ent edge, and use a linear transformation to fuse these information
into one vector space:

hi =Wve [vi ∥ ei ]. (8)

Sinusoidal positional encoding [34] is computed and added to hi .
Meanwhile, we treat the tree edges as undirected and compute the
adjacency matrix of the tree At = {ai j } ∈ {0, 1}t×t from {pi } by:

ai j =

{1, pi = j or pj = i,
0, otherwise. (9)

By doing this, the partial tree is represented as a sequence of feature
vector H in

t = {hi } ∈ R
t×d and its adjacency matrix At .

5.3 Child Prediction Block
The Child Prediction Block takes as input the image feature se-
quence X in from the encoder as well as the partial tree feature
sequenceH in

t and its adjacency matrixAt from the tree embedding
block. Based on these inputs, the Child Prediction Block learns to
operate on the partial tree structure specified by At and extract
features from X in and H in

t to generate the hidden representation
of the next child node. The Child Prediction Block is composed
of a stack of Nc tree decoder layers. Inspired by Li et al. [19] and
Yang et al. [44], we build each tree decoder layer by replacing the
fully-connected sublayer in the vanilla Transformer decoder with
TSA (Figure 4). The advantage of this design is that it enjoys the
capabilities of both self-attention to capture global pairwise de-
pendencies and tree-structured attention to capture tree structure
information. We denote the scaled dot-product attention in the tree
decoder layer as:

Attention(Q,K,V ) = Softmax

(
QKT√
dk

)
V , (10)

where 1√
dk

is the scaling factor. Within each tree decoder layer l ,

the first sublayer is a multi-head self-attention that operates over
the hidden representations from previous decoder layer H (l−1):

H
(l )
1 = LayerNorm(Attention(QH ,KH ,VH ) +H (l−1)), (11)

where QH , KH , VH are the query, key, and value vectors trans-
formed from H (l−1). The second sublayer performs attention over
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the output of the encoder representation:

H
(l )
2 = LayerNorm(Attention(QH1 ,KX ,VX ) +H

(l )
1 ), (12)

whereQH1 is transformed fromH
(l )
1 , KX andVX are transformed

from the encoder representation X in . The last sub-layer performs
tree-structured attention over the hidden representations from pre-
vious sublayer:

H (l ) = LayerNorm(TSA(H (l )
2 ,At ) +H

(l )
2 ). (13)

We denote the output of the last tree decoder layer in the Child
Prediction Block as Hc

t = {hci }. We predict the next node attribute
vt+1 from hct :

P(v̂t+1 |v1:t , e1:t ,p1:t ,X) = Softmax(Wch
c
t ), (14)

whereWc is learnable parameter.

5.4 Parent Prediction Block
The Parent Prediction Block is another stack of Np tree decoder
layers. It takes as input the image feature sequence X in , the out-
put feature sequence from the Child Prediction Block Hc

t and the
adjacency matrix At . Based on these inputs, the Parent Prediction
Block learns to operate on the partial tree structure specified by
At and extract features from X in and Hc

t to generate the hidden
representations of the next child node’s parent node. We denote
the output of the last tree decoder layer in the Parent Prediction
Block as Hp

t = {h
p
i }. We predict the next parent node’s attribute

v
p
t+1 from h

p
t :

P(v̂
p
t+1 |v1:t , e1:t ,p1:t ,X) = Softmax(Wph

p
t ), (15)

whereWp is learnable parameter.

5.5 Edge Prediction Block
In the Edge Prediction Block we combine the output of the Child
and Parent Prediction Block to predict the attribute of the next
node’s parent edge:

P(êt+1 |v1:t , e1:t ,p1:t ,X) = Softmax(We [h
c
t ∥ h

p
t ]), (16)

whereWe is learnable parameter.

5.6 Position Prediction Block
In the Position Prediction Block we try to identify which previous
generated node in the partial tree is the parent node of the next node.
As we have the representation vector of the previous generated
nodes as well as the next parent node, we adopt the idea of the
pointer network [29] and use scaled dot-product attention [34] to
compute the probability of previous generated nodes being the next
parent node. Specifically, we use hpt as the query and Hc

t as keys,
and the attention scores are normalized by softmax to compute the
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probability:
qt =Wqh

p
t ,K =WKHc

t , (17)

P(p̂t+1 |v1:t , e1:t ,p1:t ,X) = Softmax(
qTt K
√
d
), (18)

whereWq andWK are learnable parameters, and 1√
d
is the scaling

factor.

5.7 Training and Inference
We train TSDNet by simultaneously optimizing multiple training
losses from the prediction tasks. The loss function is:

L = λ1Lv + λ2Lvp + λ3Le + λ4Lp , (19)

where Lv , Lvp , Le , Lp are cross-entropy losses computed from the
child, parent, edge, and position predictions, respectively. During
training we add special nodes before the root node and after the last
child node of each tree to mark the start and end of the decoding.We
follow the training process of the Transformer that we feed TSDNet
with the right shifted sequences at once and let it predict the original
sequences and compute the training loss. Subsequent masks are
used to avoid information leakage from the future positions in
attention computation in TSDNet.

During inference, we feed TSDNet with the start node, and let it
loop until the end node is generated. Greedy search is employed
for the generation. The node attributes, edge attributes, and node
connectivities generated in the intermediate steps are added to the
partial tree for future generation steps.

6 ILLUSTRATIVE EXPERIMENTAL RESULTS
In this section, we introduce the implementation details of TSD-
Net (Section 6.1), datasets for experiments (Section 6.2), baseline
methods and evaluation metrics (Section 6.3). Then we compare
the performance of TSDNet with state-of-the-art approaches (Sec-
tion 6.4), perform ablation studies (Section 6.5), and evaluate the
modeling ability and generalization ability in terms of the structural
complexity of the target markup (Section 6.6). Next, we study effect
of different Dmax in TSA on the performance (Section 6.7), and
finally study the effectiveness of TSDNet by visualization cases
(Section 6.8).

6.1 Implementation Details
In this work we instantiate CNN in the encoder with DenseNet [11]
following Zhang et al. [46] for fair comparison. For TSDNet, we
set Nc = Np = 3 and Dmax = 2. The dimension for each tree
decoder layer is set as 256, and 8 attention heads are computed. We
optimize the model parameters with AdamW [21], and applied a
cosine annealing learning rate scheduler [20], with the period to
be 300 epochs, and peak learning rate to be 3 × 10−4 to adjust the
learning rate during training. We further follow Vaswani et al. [34]
to use a warmup training stage of 20 epochs. For the loss function,
we use λ1 = λ3 = λ4 = 1 and λ2 = 0.1.

6.2 Datasets
We conduct experiments on two datasets, namely the CROHME
dataset for handwritten mathematical expression recognition, and
the ZINC dataset for chemical formula recognition:

The CROHME dataset is published by the Competition on Recog-
nition of Handwritten Mathematical Expressions [24]. CROHME
provides images containing handwritten mathematical expression
and the corresponding LATEXstrings as well as their tree representa-
tions as shown in Figure 1. We follow the experiment settings of
Zhang et al. [46] to train the models on the CROHME training set
and evaluate on the three test sets, namely CRHOME14, CROHME16,
and CROHME19.

We construct another dataset ZINC for chemical formula recog-
nition from the ZINC molecules dataset [14]. The ZINC molecules
dataset provides 250K drug molecules in the SMILES format [38].
We randomly sample 39000 molecules from the ZINC molecules
dataset, and use a widely-accepted software in chemistry named RD-
Kit [16] to render the SMILES strings into images. We then convert
the SMILES strings into trees as shown in Figure 1 according to the
SMILES grammar. Finally we split these data into train/valid/test
sets with 30000/3000/6000 samples for training and testing.

6.3 Baseline Methods and Evaluation Metrics
We compare the performance of our proposed TSDNet with state-of-
the-art methods. For the CROHME test sets, we also provide results
of competitive methods reported in the corresponding CROHME
competitions for comparison.

• UPV (for CROHME14 only) [25]: It is a competitive grammar-
based method reported in the CROHME 2014 competition.

• WYGIWYS (for CROHME14 only) [9]: It is a string-based
method that uses CNN as encoder and RNN as decoder with
a novel coarse-to-fine attention mechanism.

• Tokyo (for CROHME16 only) [26]: It is a competitive method
reported in the CROHME 2016 competition. It uses CNN for
symbol recognition and grammar-based method for struc-
tural analysis.

• Univ. Linz (for CROHME19 only) [24]: It is a competitive
method reported in the CROHME 2019 competition. It uses
Faster RCNN for symbol detection and Transformer to gen-
erate the target markup strings.

• Transformer [34]: It is a string-based method that employs
DenseNet [11] as encoder and the Transformer decoder in a
small configuration as decoder.

• DenseWAP-TD [46]: It is a tree-based method that employs
DenseNet [11] as encoder and an RNN based decoder to learn
to generate the tree representation of the target markup as
a sequence of parent-child node pairs.

• TSDNet-L: It is a variant of our proposed TSDNet that the
tree decoder layers are replaced with canonical Transformer
decoder layers. It don’t have TSA to operate on the tree and
hence is not structure-aware.

We compare the model output with the ground truth by comput-
ing the edit distance between them. Then we evaluate the model
performance using the following metrics:

• ExpRate, ED1, and ED2: Percentage of model outputs that
have edit distance no greater than 0 (exact match), 1, and 2
to the ground truths.

• StruRate (for tree-based model only): Percentage of model
outputs that have 0 edit distance to the ground truths when
only node connectivity is considered.
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Table 1: Comparison with state-of-the-art methods.

Dataset Model Decoder Type ExpRate (%) ED1 (%) ED2 (%) StruRate (%)

CROHME14

UPV grammar-based 37.22 44.22 47.26 N/A
WYGIWYS string-based 40.40 56.10 59.90 N/A
Transformer string-based 48.17 59.63 63.29 N/A
DenseWAP-TD (baseline) tree-based 49.10 64.20 67.80 68.60
TSDNet-L (ours) tree-based 52.83 (3.73↑) 66.78 (2.58↑) 71.41 (3.61↑) 72.69 (4.09↑)
TSDNet (ours) tree-based 54.70 (5.60↑) 68.85 (4.65↑) 74.48 (6.68↑) 74.37 (5.77↑)

CROHME16

Tokyo grammar-based 43.94 50.91 53.70 N/A
Transformer string-based 44.55 55.88 60.59 N/A
DenseWAP-TD (baseline) tree-based 48.50 62.30 65.30 65.90
TSDNet-L (ours) tree-based 51.18 (2.68↑) 68.00 (5.70↑) 71.67 (6.37↑) 70.14 (4.24↑)
TSDNet (ours) tree-based 52.48 (3.98↑) 68.26 (5.96↑) 73.41 (8.11↑) 71.88 (5.98↑)

CROHME19

Univ. Linz string-based 41.49 54.13 58.88 N/A
Transformer string-based 44.95 56.13 60.47 N/A
DenseWAP-TD (baseline) tree-based 51.40 66.10 69.10 69.80
TSDNet-L (ours) tree-based 52.40 (1.00↑) 69.02 (2.92↑) 74.81 (5.71↑) 72.04 (2.24↑)
TSDNet (ours) tree-based 56.34 (4.94↑) 72.97 (6.87↑) 77.84 (8.74↑) 75.65 (5.85↑)

ZINC

Transformer tree-based 47.30 79.22 91.47 N/A
DenseWAP-TD (baseline) tree-based 58.23 86.32 93.62 92.57
TSDNet-L (ours) tree-based 89.03 (30.80↑) 91.45 (5.13↑) 91.95 91.70
TSDNet (ours) tree-based 93.57 (35.34↑) 94.77 (8.45↑) 95.28 (1.66↑) 95.01 (2.44↑)

6.4 Comparison with State-of-the-art Methods
Table 1 summurizes the evaluation results of our model on four
different test sets compared with baseline methods. As shown in
the table, our proposed TSDNet significantly outperforms all state-
of-the-art methods on all datasets in terms of all evaluation metrics,
which demonstrates the success of TSDNet in modeling the image-
to-markup generation process. In particular, all tree-based methods
yield better results than string-based methods, which proves that
tree-based decoders can better leverage the rich structural seman-
tics in the target markup than string-based decoders. Among the
tree-based methods, DenseWAP-TD only considers the parent-child
correlation, and models the generation process by the recurrent
mechanism, which has limited capability for long processes. Com-
pared with DenseWAP-TD, TSDNet relies on the tree structured
attention to learn different correlations on the tree, and models
the generation process by attention mechanism, which has better
capability for long and complex processes. These are the reasons
why TSDNet outperforms DenseWAP-TD.

6.5 Ablation Study
In order to validate the efficacy of the overall TSDNet framework
and the TSA mechanism we propose, we conduct experiments on
ZINC with several variants of the TSDNet, where TSDNet-GAT
replaces TSA in the TSDNet with vanilla GAT. The results are
summarized in Table 2. Even without the TSA mechanism, the
TSDNet-L shows a large ExpRate improvement by up to 41.77%
compared with the canonical string-based Transformer decoder,
which proves the efficacy of the overall TSDNet framework in
modeling the target tree. We also observe that by using vanilla
GAT with TSDNet, the ExpRate of TSDNet-GAT improves only
1.23% from TSDNet-L, but by extending vanilla GAT into TSA,

Table 2: Ablation study results on ZINC.

Model Decoder Type GAT TSA ExpRate (%)

Transformer String-based No No 47.30
TSDNet-L Tree-based No No 89.03
TSDNet-GAT Tree-based Yes - 90.26
TSDNet Tree-based - Yes 93.57

the ExpRate of TSDNet improves 4.54% from TSDNet-L, which
demonstrates the advantage of the proposed TSA mechanism over
the vanilla GAT to model the structural correlations in the tree
generation problem.

6.6 Structural Complexity
We conduct experiments on the ZINC dataset to evaluate the mod-
eling ability and generalization ability of TSDNet in terms of the
structural complexity of the target markup. To this end, we define
the structural complexity of a tree as the number of leaf nodes in
the tree, as a tree with only one leaf node can be viewed as a linear
sequence from the root to the leaf, and more leaf nodes indicates
the tree is less linear. Following this definition, we evenly split the
ZINC dataset into three subsets, namely Easy, Mid, Hard according
to the target tree complexity, each subset containing 13000 samples.
We further randomly split each subset into train/valid/test sets with
10000/1000/2000 samples. Then we train and test our model and
baseline models on these subsets as well as the Full ZINC dataset.
The ExpRate is shown in Table 3.

From the results, we can observe that the TSDNet trained on
Full performs more consistently on different structural complexity
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Table 3: ExpRate (%) on different structural complexities.

Training Model Test Set
Set Easy Mid Hard Full

Easy
Transformer 65.30 40.50 16.40 40.73
DenseWAP-TD 72.80 49.30 24.55 48.88
TSDNet (ours) 89.50 75.65 43.65 69.60

Mid
Transformer 53.85 47.30 30.55 43.90
DenseWAP-TD 79.45 71.00 53.10 67.85
TSDNet (ours) 86.75 85.15 72.65 81.52

Hard
Transformer 57.75 66.15 66.95 63.62
DenseWAP-TD 66.95 53.85 37.70 52.83
TSDNet (ours) 81.55 86.35 84.25 84.05

Full
Transformer 63.95 48.35 29.60 47.30
DenseWAP-TD 75.35 59.75 39.60 58.23
TSDNet (ours) 95.50 94.80 90.40 93.57

levels. Meanwhile, when tested on structural complexity levels
unseen in the training set, TSDNet always generalizes better than
other methods. It proves the effectiveness of our proposed TSDNet
to learn and generalize the complex structural correlation in the
target markup.

6.7 Hop Numbers in TSA
To further analyse how the TSA helps the model to be structure-
aware, we perform experiments on the ZINC dataset by varying
the max number of hops Dmax in the TSA layers of TSDNet. As
results shown in Figure 5, when Dmax = 1, the TSA works like the
vanilla GAT that suffers from very limited receptive field in each
layer, and has poorer performance. Then we observe significant
ExpRate improvement when Dmax increases from 1 to 2, since
information aggregation from multi-hop neighbors is enabled. The
ExpRate doesn’t change too much until Dmax goes larger than 10,
and then start to decrease slowly as Dmax increases to 16. The
reason is that we use the TSA together with self-attention to build
each Tree Decoder Layer of TSDNet (Figure 4), so as to leverage the
capability of self-attention to capture global pairwise dependencies.
In this way, TSA works by introducing the tree locality into TSDNet
for information exchange within a local connected region in the
tree. Nevertheless, as Dmax gets too large, TSA gradually loses
the ability to provide the tree locality, and becomes more similar
to self-attention that already exists in TSDNet, thus affecting the
performance of the model.

6.8 Visualization
We visualize the encoder-decoder attention scores from different
models for generation steps in CROHME test cases, and project
them back onto the input images, as shown in Figure 6. We can
observe from the figure that TSDNet always focuses on the image
area containing the target to be decoded, while the attentions of
Transformer and the TSDNet-L get more distracted to other image
areas. It demonstrates that our proposed TSA module can help the
model to better understand the structural correlation in the target
tree and guide the model’s attention on the image.
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Figure 5: Performance of TSDNet with different Dmax on
ZINC.

(a) (b)

Figure 6: Visualization of attention from Transformer (top),
TSDNet-L (middle) and TSDNet (bottom) while decoding: (a)
the secend square token, and (b) the "2" in the denominator,
in the corresponding mathematical expressions.

7 CONCLUSION
In this paper, we formulate image-to-markup generation as an
image-to-tree generation problem, and propose TSDNet, a novel
Tree-based Structure-aware transformerDecoderNetwork to solve
the problem. Different from the existing encoder-decoder based
approaches that cannot effectively capture the rich structural infor-
mation embedded in the target markup, TSDNet learns to generate
the target markup as tree in the DFS order, and relies on a novel
tree-structured attention to operate on tree structure to fully exploit
the structural information. TSDNet outperforms the state-of-the-art
methods by up to 5.6% in mathematical expression recognition and
up to 35.34% in the chemical formula recognition. Our experimental
results also prove the effectiveness of TSDNet and TSA to learn
the complicated correlation from the structural information in the
target markup.
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