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Abstract. Modeling context information is critical for crowd counting
and desntiy estimation. Current prevailing fully-convolutional network
(FCN) based crowd counting methods cannot effectively capture long-
range dependencies with limited receptive fields. Although recent efforts
on inserting dilated convolutions and attention modules have been taken
to enlarge the receptive fields, the FCN architecture remains unchanged
and retains the fundamental limitation on learning long-range relation-
ships. To tackle the problem, we introduce CounTr, a novel end-to-end
transformer approach for crowd counting and density estimation, which
enables capture global context in every layer of the Transformer. To be
specific, CounTr is composed of a powerful transformer-based hierar-
chical encoder-decoder architecture. The transformer-based encoder is
directly applied to sequences of image patches and outputs multi-scale
features. The proposed hierarchical self-attention decoder fuses the fea-
tures from different layers and aggregates both local and global con-
text features representations. Experimental results show that CounTr
achieves state-of-the-art performance on both person and vehicle crowd
counting datasets. Particularly, we achieve the first position (159.8 MAE)
in the highly crowded UCF CC 50 benchmark and achieve new SOTA
performance (2.0 MAE) in the super large and diverse FDST open
dataset. This demonstrates CounTr’s promising performance and prac-
ticality for real applications.

Keywords: Single image crowd counting · Transformer-based
approach · Hierarchical architecture

1 Introduction

Crowd counting and density estimation has received increasing attention in com-
puter vision, which is to estimate the number of objects (e.g., people, vehicle) in
unconstrained congested scenes. The crowd scenes are often taken by a surveil-
lance camera or drone sensor. Crowd counting enables a myriad of applications
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Fig. 1. Visualization of attention maps: (a) Original image, (b) CNN-based meth-
ods, (c) Transformer-based methods, which extract global context information. Our
observation is that a single layer of transformer can capture a larger range of context
information than CNN-based methods.

Fig. 2. Visualization of density maps: (a) Ground truth, (b) CNN-based methods,
(c) Transformer-based methods. Our observation is that transformer-based methods
achieves better visual quality on the generated density maps.

in the real world, such as public safety, video surveillance, and traffic man-
agement [14], [24], [26]. Benefiting from the rapid development of deep learn-
ing [13,25,29], fully convolutional network-based models have been the prevailing
methods in crowd counting [39], [21,22].

Since extracting context feature representation is one of the major concerns
in crowd estimation, building FCN-based models with multi-column architec-
ture [12,34], dilated convolution [7,43] and attention mechanisms [10,28,44]
has become a predominant design choice to enlarge the receptive fields and
achieves significant advances in the field of crowd counting. However, the con-
ventional fully convolutional network-based framework remains unchanged and
retains the fundamental problem of convolutional neural network (CNN), which
mainly focuses on small discriminate regions and cannot effectively capture the
global context information. Estimating objects in crowded environments is still
challenging to the community.

Recently, Transformer has achieved superior performance in image recog-
nition [8,23], detection [6] and re-identification [11], due to its effective archi-
tecture on extracting the long-range context information. Thus, Transformer
has the potential to address the aforementioned issues in crowd counting. The
ability to model the long-range dependencies is suitable for better feature extrac-
tion and to make connections of target objects in crowded areas, as shown in
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Fig. 1 and Fig. 2. This observation encourages us to build an end-to-end crowd
counting model with a pure transformer. However, Transformer still needs to be
specifically designed for crowd counting to tackle the unique challenges. (1) The
object scales are varied and unevenly distributed in crowd images. Substantial
efforts are needed to address this challenge by modeling both local and global
context feature representations in the transformer-based crowd counting model.
(2) Crowd counting not only relies on extracting strong multi-level features but
also requires evaluating the generated density maps in terms of resolution and
visual quality, which contains relative location information. Thus, a specifically
designed decoder that effectively aggregates multi-level feature representations is
essential for accurate crowd counting and high-quality density map generation.

In this work, we propose CounTr, a novel end-to-end transformer approach
that can serve as a better substitute for FCN-based crowd counting methods,
which is formed by a transformer-based hierarchical encoder-decoder architec-
ture. The input image is split into fixed-size patches and is directly fed to the
model with a linear embedding layer applied to obtain the feature embedding vec-
tors for discriminative feature representation learning. In order to effectively cap-
ture contextual information and learn powerful representations, the transformer-
based encoder is presented to enable multi-scale feature extraction. Secondly,
we introduce a hierarchical self-attention decoder to effectively aggregates the
extracted multi-level self-attention features. This self-attention decoder module
is densely connected to the transformer-based encoder with skip connections.
The whole framework can be integrated into an end-to-end learning paradigm.

Our main contributions can be summarized as follows:

(1) We propose CounTr, a novel end-to-end Transformer approach for single
image crowd counting, which effectively captures the global context infor-
mation and consistently outperforms the CNN-based baselines.

(2) We introduce a transformer-based encoder to enhance multi-scale and robust
feature extraction, and we further propose a hierarchical self-attention
decoder for better leveraging local and long-range relationships and gen-
erating high-quality density maps.

(3) Extensive experiments show the superiority of our proposed method. Our
CounTr achieves new state-of-the-art performance on both person and vehi-
cle crowd counting benchmarks.

2 Related Works

2.1 Crowd Counting and Density Estimation

Various CNN-based methods have been proposed over the years for single image
crowd counting [2]. MCNN [46] is a pioneering work that utilizes the multi-column
convolutional neural networks with different filter sizes to address the scale vari-
ation problem. Switching-CNN [32] introduces a patch-based switching module
on the multi-column architecture to effectively enlarge the scale range. SANet [5]
stacks several multi-column blocks with densely up-sample layers to generate
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high-quality density maps. In order to enlarge the receptive fields, CSRNet [15]
utilizes dilated convolutional operations and model larger context information.
CAN [20] introduces a multi-column architecture that extracts features with mul-
tiple receptive fields and learns the importance of each feature at every image loca-
tion to accommodate varied scales. SASNet [35] proposes a scale-adaptive selec-
tion network for automatically learning the internal correspondence between the
scales and the feature levels. DSSINet [19] designs a deep structured scale inte-
gration network and a dilated multi-scale structural similarity loss for extract-
ing structured feature representations and generating high-quality density maps.
DENet [18] proposes a detection network and an encoder-decoder estimation net-
work for accurately and efficiently counting crowds with varied densities. AMR-
Net [21] designs an adaptive mixture regression to effectively capture the con-
text and multi-scale features from different convolutional layers and achieves more
accurate counting performance. However, CNN-based approaches cannot effec-
tively model the long-range dependencies, due to the fundamental problem of the
limited receptive fields. Our CounTr is able to naturally model the global context
and effectively extract multi-scale features with Transformers.

2.2 Transformers in Vision

Transformers [38] were first proposed for the sequence-to-sequence machine trans-
lation task. Recently, Transformers has achieved promising performance in the
field of image classification, detection, and segmentation. Vision Transformer [8]
directly applies to sequences of image patches for image classification and achieves
excellent results compared to convolutional neural network-based baselines. Swin
Transformer [23] introduces an accurate and efficient hierarchical Transformer
with shifted windows to allow for cross-window connection. BEiT [4] introduces
a self-supervised vision representation model, which learns bidirectional encoder
representation from image transformers. DETR [6] utilizes a Transformer-based
backbone and a set-based loss for object detection. SegFormer [41] unifies hierar-
chically structured Transformers with lightweight MLP decoders to build a sim-
ple, efficient yet powerful semantic segmentation framework. VoTr [27] introduces
a voxel-based Transformer backbone to capture long-range relationships between
voxels for 3D object detection. SwinIR [16] proposes a strong baseline model for
image restoration based on the Swin Transformer. TransReID [11] proposes a pure
transformer-based with jigsaw patch module to further enhance the robust feature
learning for the object ReID framework. VisTR [40] presents a new Transformer-
based video instance segmentation framework. The work in [36] introduces a
token-attention module and a regression-token module to extract global context.
Our CounTr extends the idea of Transformers on images and proposes an end-
to-end method to apply Transformer to crowd counting. Compared with tradi-
tional vision transformers, CounTr benefits from the efficiency of capturing local
and global context information via the transformer-based encoder and hierarchi-
cal self-attention decoder. CounTr achieves superior counting accuracy and is able
to generate high-quality density maps.
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3 Methodology

In this section, we present CounTr, a Transformer-based end-to-end crowd count-
ing and density estimation framework. CounTr can extract multi-scale feature
representation and enhance robustness through the transformer-based encoder
and pixel shuffle operations [1]. We further propose a hierarchical self-attention
decoder to facilitate the fusion of both local and long-range context information.
The whole framework can be jointly trained in an end-to-end manner.

Fig. 3. A strong transformer-based crowd counting baseline. The input crowd image
is split into fixed-size patches, linearly embedded, added with positional embeddings,
fed to a standard Transformer encoder. The feature extracted by the Transformer
encoder is rearranged and upsampled to the original input size, and the pixel value
is summed up to predict the total counting number. The Transformer encoder for the
image process was inspired by [8]

3.1 Preliminaries on Transformers for Crowd Counting

We introduce a transformer-based strong baseline for crowd counting and density
estimation, as shown in Fig. 3. Our method has two main components: feature
extraction, density estimation. We split and reshape the initial crowd image
x ∈ R

H×W×C (H, W and C are the height, width and the number of channel,
respectively) into M fixed-sized flattened image patches{xi

p|i = 1, 2, ...,M}. The
standard Transformer encoder architecture consists of a multi-head self-attention
module and a feed-forward network. All the transformer layers have a global
receptive field, thus this addresses the CNN-based crowd counting methods’
limited receptive field problem. The positional embedding is added with each
image patch to provide position information, and the positional embedding is
learnable. We linearly embed the patch sequences, add positional embedding,
and feed to the standard transformer encoder.

The feature generated by the standard transformer encoder is rearranged and
up-sampled to the original input size and generates high-quality density maps,
which present the number of objects of each pixel. Finally, the total counting
number is predicted by summing up all the pixel values within an image. We
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Fig. 4. The architecture of CounTr. CounTr split the original image into patches and
added with a positional encoding before fed it into a transformer encoder. The encoder
is a stack of swin transformer blocks [23] with different shifted windows and output
feature pyramid embedding. We pass each output feature pyramid embedding of the
encoder to a hierarchical self-attention decoder with a skip connection that predicts
density map and total count number.

optimize the counting network by MSE loss and counting loss for global features.
The MSE loss is the pixel-wise loss function, and the counting loss is the L1
constrain of the total object count. The widely used Euclidean loss is shown as
follows: LE = 1

N ||F (xi; θ) − yi| |22, where θ indicates the model parameters, N
means the number of pixels, xi denotes the input image, and yi is ground truth
and F (xi; θ) is the generated density map.

Though promising, pure transformer-based encoder has much less image-
specific inductive bias than CNNs, traditional transformers (including ViT)
have tokens with fixed scale. However, visual elements can be different in scale,
whereas the object scales are diversified and the objects are usually unevenly
distributed especially for crowd images. Thus, substantial efforts are needed to
address this challenge by extracting both local and long-range features, and a
specifically designed decoder is needed to effectively leverage multi-scale features
for accurate crowd estimation.

3.2 The CounTr Model

We introduce the overall architecture of CounTr in Fig. 4, which consists of two
main modules: shifted transformer-based encoder and hierarchical self-attention
decoder. We split the original image into patches, embed the positional encod-
ing, and fed the sequence into the shifted transformer encoder. The encoder is
a stack of shifted transformer blocks with different shifted windows and patch
shuffle operations. The generated feature pyramid embedding from the trans-
former encoder is fed into the hierarchical self-attention decoder by skip con-
nections [31]. Finally, the density map estimation step predicts the density map
and the total count number.

Shifted Transformer-Based Encoder. The Shifted transformer-based
encoder aims to extract long-range contextual information and naturally enlarge
the receptive field. CounTr incorporates swin transformer blocks [23] with patch
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Fig. 5. The illustration of the global self-attention module. Global self-attention focuses
on the whole space with masks on the channel-wise dimension.

shuffle operation as the encoder backbone. Using self-attention and encoder-
decoder framework on this patches embeddings, the model globally captures
all objects in a crowd scene using pair-wise relations between them, which can
extract long-range context information and even use the whole image as context.

Standard transformer-based models split images into non-overlapping
patches, losing local neighboring structures around the patches. We use shifted
windows to generate patches with overlapping pixels. Patch shuffle operations
further enhance local and long-range feature extraction. With the shift and shuf-
fle operation, CounTr captures the local feature between short-range objects and
increases the global discriminative capability of the local range object parts. In
this way, CounTr can effectively capture local and long-range context feature
representation.

The encoder part generates multi-level features. The final receptive field is
1/8 of the original resolution, and outputs multi-level feature pyramid embed-
ding from different levels of the stacked shifted transformer blocks. The pyramid
feature embedding includes both low-level (e.g., texture, color...) and high-level
semantic representation, which can be used to facilitate the downstream hierar-
chical information congregation step.

Hierarchical Self-attention Decoder. The hierarchical self-attention module
takes the pyramid feature embedding [17] as input, which leverages multi-level
self-attention features to achieve accurate crowd estimation. It makes use of the
feature pyramid to integrates both local and global relationships. We require
short-range contextual information for neighboring pixels and also need long-
range context information from the deeper layer of the transformer encoder
with a large receptive field and high-level semantic information. Thus, our hier-
archical self-attention module can cater to varied object scales with multi-level
representation and effectively model the isolated small clusters in unconstrained
crowd scenes.

The global self-attention mechanism in the hierarchical self-attention module
further enhance autofocusing context information. This module consists of N
layers with different level feature embedding as the input vector. we also add
a separate convolution layer with filter size 1 × 1 at the beginning of each self-
attention module to reduce computation complexity, which benefits reducing the
computation consumption without sacrificing performance.
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Table 1. Statistics of different datasets in our experiment. Min, Max and Avg denote
the minimum, maximum, and average counting numbers per image, respectively.

Dataset Year Average
resolution

Image
number

Total Min
count

Max
count

Avg
count

UCF CC 50 [12] 2013 2101 × 2888 50 63,974 94 4,543 1,280

SmartCity [45] 2018 1080×1920 50 369 1 14 7.4

Fudan-ShanghaiTech [9] 2019 1080 × 1920 15,000 394,081 9 57 27

Drone People [3] 2019 969 × 1482 3347 108,464 10 289 32.4

Drone Vehicle [3] 2019 991 × 1511 5303 198,984 10 349 37.5

Directly concatenate pyramid features in the decoder part may contain
redundant information. Thus, we utilize the global self-attention module to cap-
ture short and long-range relationships, which calculate the weighted sum of
values and assign weights to measure the importance of the multi-level pyramid
features. Directly combining and up-sample operation only assigns the same
weight for each input feature vector, an inappropriate level of features may have
bad effects on the crowd estimation. Our hierarchical self-attention module elim-
inates the drawbacks of the fixed word token problem in the traditional vision
transformer model and is suitable for adaptively varied scales.

The details are shown in Fig. 5. The global self-attention module first trans-
fers input x to query Qx, key Kx and value Vx:

Qx = f(x),Kx = g(x), Vx = h(x). (1)

The output weighted density map Y is computed by two kinds of matrix
multiplications:

Y = softmax
(
QxKT

x

)
Vx. (2)

Our proposed hierarchical self-attention module can automatically focus on
the most suitable feature scales and enlarge the receptive field with limited extra
network parameters.

4 Experiments

In this section, we conduct numerical experiments to evaluate the effectiveness of
our proposed CounTr. To provide a comprehensive comparison with baselines, we
compare our proposed CounTr with SOTA algorithms on various crowd counting
datasets.

4.1 Implementation Details and Datasets

We evaluate our CounTr on five challenging crowd counting datasets with dif-
ferent crowd levels: UCF CC 50 [12], SmartCity [45], Fudan-ShanghaiTech [9],
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Fig. 6. Typical examples of crowd counting data from different datasets. (a) SmartCity.
(b) UCF CC 50. (c) FDST. (d) Drone People. (e) Drone Vehicle.

Drone People [3] and Drone Vehicle [3]. As shown in Table 1, the statistics of
the five datasets are listed with the information of publication year, image reso-
lution, the number of dataset images, the total instance number of the datasets,
the minimal count, the maximum count, and its average annotation number
for the whole dataset. These datasets are commonly used in the field of crowd
counting (see Fig. 6).

UCF CC 50. [12] has 50 black and white crowd images and 63974 annotations,
with the object counts ranging from 94 to 4543 and an average of 1280 persons
per image. The original average resolution of the dataset is 2101×2888. This chal-
lenging dataset is crawled from the Internet. For experiments, UCF CC 50 were
divided into 5 subsets and we performed 5-fold cross-validation. This dataset is
used to test the proposed method on highly crowded scenes.

SmartCity. [45] contains 50 images captured from 10 city scenes including
sidewalk, shopping mall, office entrance, etc. This dataset consists of images
from both outdoor and indoor scenes. As shown in Table 1, the average number
of people in SmartCity is 7.4 per image. The maximum count is 14 and the
minimum count is 1. This dataset can be used to test the generalization ability
of crowd counting methods on very sparse crowd scenes.

Fudan-ShanghaiTech. [9] is a large-scale crowd counting dataset, which con-
tains 100 videos captured from 13 different scenes. FDST includes 150,000 frames
and 394,081 annotated heads, which is larger than previous video crowd count-
ing datasets in terms of frames. The training set of the FDST dataset consists
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of 60 videos, 9000 frames, and the testing set contains the remaining 40 videos,
6000 frames. Some examples are shown in Fig. 6. The maximum count number
is 57, and the minimum count number is 9. The number of frames per second
(FPS) for FDST is 30. The statistics of FDST is shown in 1

Table 2. Performance comparison on
UCF CC 50 dataset.

Algorithm UCF CC 50

MAE MSE

MCNN [46] 377.6 509.1

CP-CNN [33] 298.8 320.9

ConvLSTM [42] 284.5 297.1

CSRNet [15] 266.1 397.5

DSSINet [19] 216.9 302.4

CAN [20] 212.2 243.7

PaDNet [37] 185.8 278.3

SASNet [35] 161.4 234.5

CounTr (ours) 159.8 173.3

Table 3. Performance comparison on
SmartCity dataset.

Algorithm SmartCity

MAE MSE

SaCNN [45] 8.60 11.60

YOLO9000 [30] 3.50 4.70

MCNN [46] 3.47 3.78

CSRNet [15] 3.38 3.89

DSSINet [19] 3.50 4.32

AMRNet [21] 3.87 4.91

DENet [18] 3.73 4.21

CounTr (ours) 3.09 3.63

Drone People. [3] is modified from the original VisDrone2019 object detec-
tion dataset with bounding boxes of targets to crowd counting annotations. The
original category pedestrian and people are combined into one dataset for people
counting. The new people annotation location is the head point of the original
people bounding box. This dataset consists of 2392 training samples, 329 vali-
dation samples, and 626 test samples. Some examples are shown in Fig. 6. The
average count number for the drone people dataset is 32.4 per image (Table 3).

For crowd counting, two metrics are used for evaluation, Mean Absolute
Error (MAE) and Mean Squared Error (MSE), which are defined as: MAE =
1
N

∑N
i=1 |Ci − Ĉi|, MSE =

√
1
N

∑N
i=1 |Ci − Ĉi|2, where N is the total number

of test images, Ci means the ground truth count of the i-th image, and Ĉi

represents the estimated count. To evaluate the visual quality of the generated
density maps, Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity in
Images (SSIM) are often used [33].

We adopt the geometry-adaptive kernels to address the highly congested
scenes. We follow the same method of generating density maps in [46], i.e., the
ground truth is generated by blurring each head annotation with a Gaussian
kernel. The geometry-adaptive kernel is defined as follows:

F (x) =
N∑

i=1

δ(x − xi) × Gσi
(x),with σi = βd̄i, (3)

where x denotes the pixel position in an image. For each target object, xi in the
ground truth, which is presented with a delta function δ(x − xi). The ground
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Table 4. Performance comparison on the Fudan-ShanghaiTech dataset.

Algorithm FDST

MAE MSE

MCNN [46] 3.77 4.88

ConvLSTM [42] 4.48 5.82

LSTN [9] 3.35 4.45

DENet [18] 2.26 3.29

CounTr (ours) 2.00 2.50

Table 5. Performance comparison on drone-based datasets.

Algorithm Drone people Drone vehicle

MAE MSE MAE MSE

MCNN [46] 16.4 39.1 14.9 21.6

CSRNet [15] 12.1 36.7 10.9 16.6

SACANet [3] 10.5 35.1 8.6 12.9

DSSINet [19] 13.4 19.3 10.3 15.5

AMRNet [21] 14.3 22.2 10.5 14.7

DENet [18] 10.3 16.1 6.0 10.3

CounTr (ours) 7.6 12.5 5.1 8.9

truth density map F (x) is generated by convolving δ(x − xi) with a normalized
Gaussian kernel based on parameter σi. And d̄i shows the average distance of
the k nearest neighbors.

We compare our proposed CounTr with the state-of-the-art crowd counting
algorithms, including MCNN [46], CSRNet [15], SACANet [3], CAN [20], PaD-
Net [37], SASNet [35], DSSINet [19], DENet [18], and AMRNet [21], etc. In our
implementation, the input image is batched together, we apply 0-padding ade-
quately to ensure that they all have the same dimensions. Our framework was
implemented with PyTorch 1.7.1 and CUDA 11.3. We conducted experiments on
GeForce RTX 3090. More implementation details can be found in the Appendix.

4.2 Results and Discussion

In this section, we evaluate and analyze the results of CounTr on five datasets:
FDST, UCF CC 50, SmartCity, Drone People, and Vehicle. These datasets are
taken by a surveillance camera or drone sensor, which represents a different level
of scale variation and isolated small clusters [3].

Illustrative Results on UCF CC 50 Dataset. As shown in Table 2, CounTr
achieves the best MAE and MSE performance on UCF CC 50, followed by CNN-
based methods, such as MCNN, DSSINet, etc. The traditional convolutional
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Fig. 7. Visualization of the generated density maps. The first row shows the original
image, the second row presents ground truth density maps, the third row visualizes the
density maps generated by CNN-based method MCNN [46]. The last row shows the
density maps of our proposed CounTr. (Better viewed in the zoom-in mode)

crowd counting approaches are constrained by the limited receptive field in
the CNN-based backbone. This dataset is highly crowded, and CounTr further
improves the performance in UCF CC 50 by capturing both local and global
context information, which is crucial to address the large-scale variations in
surveillance-based crowd datasets.

Illustrative Results on SmartCity Dataset. The results for the SmartCity
dataset are shown in Table 4. We can see that the proposed CounTr framework
achieves the SOTA performance compared with the various crowd counting base-
lines. The superior performance of CounTr confirms the possibility of improving
the crowd estimation accuracy via better extracting the multi-scale feature rep-
resentations and enlarge the receptive field by introducing transformer-based
architecture into the crowd counting task.

Illustrative Results on the Fudan-Shanghaitech Dataset. CounTr
achieves the state-of-the-art performance following the convolutional baselines
such as MCNN and DSSINet. The results are shown in Table 4. Notice that
CounTr achieves better performance, even compared with advanced ConvLSTM
and LSTN, which incorporate extra temporal information. This may be because
the LSTM-based methods cannot effectively extract the context information
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Table 6. The visual quality comparison on different datasets. The baselines are imple-
mented by ourselves.

Algorithm Drone people Drone vehicle

PSNR SSIM PSNR SSIM

AMRNet [21] 16.40 0.31 18.50 0.62

DSSINet [19] 30.10 0.96 34.30 0.98

DENet [18] 35.80 0.98 36.00 0.99

CounTr (ours) 38.03 0.99 37.14 0.99

Table 7. Compared with other transformer-based methods on drone people. baselines
are implemented by ourselves.

Algorithm MAE MSE

Vision Transformer [8] 8.9 18.4

Swin Transformer [23] 8.5 17.9

CounTr (ours) 7.6 12.5

and introduce redundant information. The superior performance further demon-
strates the effectiveness of CounTr.

Illustrative Results on the Drone People Dataset. We also compare
our CounTr with the different crowd counting algorithms on the Drone People
dataset. We observe that our method achieves SOTA performance. The detailed
experimental results for Drone People are shown in Table 5. From Table 5, the
proposed CounTr method achieves much better counting accuracy than other
CNN-based methods in terms of MAE (7.6) and MSE (12.5) for Drone People.
This demonstrates the superiority of CounTr.

Illustrative Results on Drone Vehicle Dataset. To test the generalization
ability of CounTr on other object counting tasks except for people counting, we
compare CounTr with the different crowd counting methods on the Drone Vehicle
dataset. The results are shown in Table 5. Our method consistently achieves
good performance in terms of MAE and MSE with the non-trivial improvement
compared with other counting methods. Specifically, CounTr achieves 5.1 MAE
and 8.9 MSE, which is much better than previous crowd counting algorithms,
such as MCNN (14.9 MAE) and DSSINet (10.3 MAE). This demonstrates the
superiority of CounTr and its potential to be practically useful.

4.3 Ablation Study

In this section, we first compare CounTr with advanced transformer-based meth-
ods, such as ViT [8], and Swin Transformer [23]. This is to test whether directly
applying Transformer-based methods to crowd counting tasks can improve the
counting accuracy. We conduct experiments on the Drone People dataset. The
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Table 8. Ablation study on drone people.

Algorithm MAE MSE

CounTr w/o pixel shuffle 8.17 15.31

CounTr w/o self-attention 8.15 14.11

CounTr (ours) 7.60 12.50

detailed results are shown in Table 7. We observe that naively using ViT can
achieve only 8.9 MAE average accuracy, significantly lower than our CounTr
method. This may be due to the lack of capturing local context features between
the non-overlapping patches, and inappropriate decoder layers. This confirms
that the hierarchical self-attention decoder is needed for accurate crowd estima-
tion.

As shown in Table 8, the results of CounTr without pixel shuffle operations
are 8.17 MAE and 15.31 MSE, which is lower than our final framework CounTr.
We also conduct an ablation study on the self-attention module. The accuracy
without self-attention is 8.15 MAE, which is much lower than our proposed
CounTr (7.6 MAE). This also shows the effectiveness of the self-attention module
and pixel shuffle operations to facilitate accurate crowd estimation.

4.4 Visualization on Density Maps

As shown in Fig. 7, we also visualize the crowd images and their corresponding
density maps with different crowd levels. The first row is the original images, the
second row is the corresponding ground truth, and the last row is the generated
density maps. Besides, the visual quality results in terms of PSNR and SSIM
are shown in Table 6. It can be seen that CounTr achieves consistently better
performance on various crowd counting datasets. Both the qualitative and the
quantitative results demonstrate the effectiveness of our proposed method to
generate high-quality density maps.

5 Conclusion

In this paper, we propose CounTr, a novel Transformer-based end-to-end frame-
work for crowd counting and density estimation. CounTr consists of two main
modules: a shifted transformer-based encoder and a hierarchical self-attention
decoder for better capturing short and long-range context information. Exper-
imental results show that the final CounTr framework outperforms the CNN-
based baselines and achieves new state-of-the-art performance on both person
and vehicle crowd counting datasets.
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