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Abstract—In applications such as elderly care, dementia anti-
wandering and pandemic control, it is important to ensure that
people are within a predefined area for their safety and well-
being. We propose GEM, a practical, semi-supervised Geofencing
system with network EMbedding, which is based only on ambient
radio frequency (RF) signals. GEM models measured RF signal
records as a weighted bipartite graph. With access points on
one side and signal records on the other, it is able to precisely
capture the relationships between signal records. GEM then
learns node embeddings from the graph via a novel bipar-
tite network embedding algorithm called BiSAGE, based on a
Bipartite graph neural network with a novel bi-level SAmple and
aggreGatE mechanism and non-uniform neighborhood sampling.
Using the learned embeddings, GEM finally builds a one-class
classification model via an enhanced histogram-based algorithm
for in-out detection, i.e., to detect whether the user is inside
the area or not. This model also keeps on improving with
newly collected signal records. We demonstrate through extensive
experiments in diverse environments that GEM shows state-of-
the-art performance with up to 34% improvement in F -score.
BiSAGE in GEM leads to a 54% improvement in F -score, as
compared to the one without BiSAGE.

I. INTRODUCTION

Many applications have been enabled by digital geofencing
technology. For instance, in nursing homes for the elderly and
patients [1] and medical observation for pandemic control [2],
a user with an IoT device that can sense radio frequency (RF)
signals stays within a designated area for a certain period of
time. The user or the user’s caregiver gets informed when
the user gets out of the area. In constrained navigation of
unmanned aerial vehicles (UAVs) [3] and logistics manage-
ment [4], a UAV or a freight is restricted to move within
a specific region. Otherwise, an alert will be issued. In these
cases, exact locations of the user within the area are irrelevant.

A traditional approach for geofencing is to localize a
user with GPS or cell tower triangulation [5]–[9]. However,
it is ineffective in indoor environments or highly complex
metropolitan environments like New York due to non-line-of-
sight radio propagation or signal fading. Another approach is
to exploit a network-based localization [2], [10], which relies
on the IP address of a user’s network device. This approach
may work for relatively large space but does not work well for
indoor premises requiring house-level or room-level accuracy.
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Furthermore, indoor localization systems [11]–[16] may be
leveraged for geofencing. However, they usually require maps
and collections of fingerprints, i.e., pairs of RF signals and
corresponding location labels, in the localization area, which
are often infeasible or labor-intensive to obtain. In other words,
they would introduce privacy concerns and extra overhead in
deployment, when they are used for geofencing.

To design a non-obtrusive yet highly accurate geofencing
system, it is desirable to use ambient RF signals available in
the region. Recent advances in machine learning can also be
leveraged to that end. However, there are non-trivial technical
challenges. While each RF signal record is often represented
as a vector of pairs of sensed access points (APs) and received
signal strength (RSS) values from them, the records need
to be of identical length to be used for building a learning
model [17]–[23]. In other words, the RF environment needs to
be fairly static, which is far from reality. The APs and recorded
RSS values can vary spatially and temporally. Even on the
same spot, they can differ due to environmental changes. APs
could also be added or removed.

With the challenges in mind, we propose GEM (Geofencing
with network EMbedding), a semi-supervised learning system
for automated IoT geofencing. As shown in Figure 1, in this
system, a limited set of RF signal records, each having RSS
values from ambient APs, are initially collected inside the
geofencing area to build a one-class classification model for
‘in-out’ detection, which is to detect whether the user is inside
the area (normal) or outside (abnormal). A new RF signal
record is then obtained on a regular basis and fed into the
one-class classification model for the in-out detection. This
model is built through the following three steps in GEM.

From the initial signal records, GEM first constructs a
weighted bipartite graph, reflecting the observation in each
record while being dynamic to include future incoming signal
records. We represent an AP as a node of one type and a record
itself as a node of another type. Considering the inherent
structure of each signal record having a list of sensed APs
and their corresponding RSS values, we create edges between
a node corresponding to each record and nodes corresponding
to the APs detected in the record. We then assign weight
values to the edges based on the RSS values. The connectivity
structure in the bipartite graph not only reflects the information
in each record but also captures the relevance between records.
This graph representation quickly scales up to support a large
number of incoming signal records over time. It is also flexible
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Fig. 1. A system overview of GEM.

to reflect the arrivals (or departures) of new (or old) APs.
GEM next extracts a low-dimensional vector representation

(node embedding) of each node from the weighted bipartite
graph. It naturally avoids the issue with the signal records of
variable size since the node embeddings are of equal length
and they are used on behalf of the signal records. To this end,
we propose BiSAGE, a novel Bipartite network embedding
algorithm with SAmple and aggreGatE. It adopts a graph
neural network architecture inspired by GraphSAGE [24],
while having its own algorithmic innovations tailor-made for
weighted bipartite graphs. Note that GraphSAGE was designed
for homogeneous graphs where all nodes are of the same type.
As shall be shown in Section V, we empirically demonstrate
that GEM (with BiSAGE) outperforms its version with Graph-
SAGE. We also discuss how BiSAGE is different from other
bipartite network embedding algorithms in Section II.

Specifically, in BiSAGE, we first propose a novel bi-level
aggregation mechanism to differentiate embeddings for the
nodes of different types and update the node embeddings
based only on the ones from the nodes of the same type.
To be precise, we introduce an auxiliary embedding for each
node in addition to its primary node embedding. This auxiliary
embedding is used as a ‘carrier’ for information propagation in
a way that carries an aggregation of primary node embeddings
from the nodes of a different type than the current node and
bypasses the current one. For example, when updating the
primary embeddings of the ‘signal-record’ nodes, the auxiliary
embeddings of the ‘AP’ nodes are passed to their neighboring
signal-record nodes, but the AP nodes’ primary embeddings
are left untouched, and vice versa. As shown in Figure 2,
the primary embeddings of signal-record nodes 1 and 2 can
communicate with each other through the auxiliary embedding
of AP node 2, without affecting the primary embedding of
AP node 2. Second, since the graph is a weighted graph, we
employ non-uniform neighborhood sampling based on edge
weights. Thus, a form of ‘attention’ is naturally introduced in
the neighborhood aggregation due to the edge weights. Third,
we introduce a new loss function to obtain both the primary
and auxiliary embeddings per node.

Once the embeddings of initial RF signal records are ob-
tained via the weighted bipartite graph modeling and BiSAGE,
they form a training set of ‘in-premises’ (normal) data samples
for an enhanced histogram-based one-class classification algo-
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Fig. 2. In BiSAGE, the auxiliary embedding of a node serves as a carrier for
information propagation of the primary embeddings of its neighbors (that are
of the other node type) in the bipartite graph. The primary embeddings are
the ones used for classification.

rithm for in-out detection. The rationale behind the histogram-
based detection algorithm is to better capture the (potentially
multimodal) distribution of ‘normal’ data samples since the
data samples, i.e., RF signal records, can exhibit quite different
characteristics depending on where they are collected within
the area. Furthermore, the training data samples are relatively
small, so their representation of the geofencing area, especially
its boundary, may be coarse. To cope with this, every incoming
signal record (in its embedding) is used not only for in-
out detection but also to augment the in-premises data for
the histogram-based detection algorithm, if it is predicted to
be highly confident as an ‘in-boundary’ data sample. This
(unsupervised) data augmentation continues over time and
leads to better in-out detection performance.

In summary, we have the following contributions:

• GEM effectively learns a vector representation of each RF
record via our novel embedding algorithm BiSAGE. Since
each node in the weighted bipartite graph is transformed into
a low-dimensional vector space via BiSAGE, the RF records
of variable length are now mapped onto the same space, so
their similarities and differences can be better identified. The
node embeddings generated by BiSAGE also lead to better
in-out detection performance, as compared to the ones by
GraphSAGE.

• GEM is self-evolving with new RF signal records. Upon
the arrival of a new RF signal record, our histogram-based
detection algorithm is used not only for in-out detection
but also to augment the ‘in-premises’ data, if the new
record is predicted to be a highly confident in-premise data
sample. This self-enhancement makes the in-out detection
performance keep on improving.
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• GEM significantly outperforms state-of-the-art algorithms.
We implement GEM in Android phones and evaluate its
performance under various housing and RF environments.
Experiment results show that GEM achieves state-of-the-art
detection performance, thanks to its adaptivity to dynamic
RF environments and its self-enhancement over time. With
the bipartite graph modeling and BiSAGE, GEM improves
by 54% in F -score over the case without them. GEM
outperforms state-of-the-art algorithms by up to 34% in F -
score. Furthermore, GEM remains effective for a wide range
of densities of ambient APs.

II. RELATED WORK

Geofencing: There are few recent studies that are closely
relevant to this work. SignatureHome [2] learns a geofencing
area using network connectivity, such as association with a
certain AP, and building a database of RF signal readings from
surrounding APs. The RF signal records are converted into
fixed-length vectors where missing entries are padded with
arbitrarily small values to indicate nonavailability. In a similar
vein, INOA [25] leverages the RF signal readings from a set of
APs for area classification. It changes each variable-size record
into a set of records in which each record contains RSS values
for each pair of sensed APs. INOA then builds a machine
learning model based on the new records. However, our system
GEM does not require such a conversion of RF signal records
but is able to use all the records regardless of how many RSS
values are in each record, thanks to representing them in a
bipartite graph and learning their (fixed-length) embeddings
via BiSAGE. Furthermore, we empirically demonstrate that
GEM is superior to SignatureHome and INOA.

Geofencing can also be considered as an indoor localiza-
tion problem [11]–[16], [26]–[29]. For example, Fidora [16]
collects channel state information for each location in the
geofencing area and trains a classifier to predict the location
of a user. SIABR [15] builds a database of fingerprints, i.e.,
pairs of RF signals and corresponding location labels, to train
bi-directional LSTM models for location inference. However,
construction of such a database is labor-intensive and time-
consuming. They also require indoor floorplans to obtain
exact locations of users, which may raise privacy concerns.
LOCATER [29] first obtains a rough estimate of the location
of the user, i.e., a predefined region covered by an AP, by
recognizing the user’s associated AP. It then detects which
room the user is in by using the user’s past behavior patterns
and her potential companions (i.e., the appearance of their
devices) recorded in the database. However, the user behavior
analysis requires substantial logs from the past user activities,
which are not available in our case. Moreover, since these
indoor-localization methods merely provide an estimate of
the user’s location, the map of the geofencing area should
be available for the location estimate to be usable for in-out
detection. In contrast, our proposed system GEM only requires
RF signals collected inside the area, which is light-weight and
privacy-preserving. It is also efficient in detecting outliers once
an out-of-boundary event happens.

Learning on heterogeneous graphs: In GEM, BiSAGE learns
the embeddings of the nodes of a bipartite graph, which is a
kind of heterogeneous graph. We here review recent network
embedding and graph neural network algorithms for hetero-
geneous graphs. BiNE [30] and E-LINE [31] are network
embedding algorithms for bipartite graphs, but are transductive
learning algorithms to learn node embeddings from a bipartite
yet static graph. However, BiSAGE is an inductive learning al-
gorithm, so it can be readily used for obtaining the embeddings
of new nodes (e.g., new RF signal records) that are streamed
and added into the bipartite graph. In addition, GRAPE [32]
is a novel algorithm for representation learning on bipartite
graphs. Its main focus is to deal with missing values in the
features associated with nodes for representation learning, and
it merely treats the bipartite graph as a homogeneous one.
However, BiSAGE uses the underlying bipartite graph as is
to learn node embeddings from the graph without any prior
node features.

For learning on heterogeneous graphs (beyond the bipartite
graphs), the concepts of ‘metapaths’ have been used to guide
the aggregation of information, e.g., features and embeddings,
from the nodes of different types [33]–[40]. A metapath is
an abstraction of a network path across the nodes of different
types. For example, based on the metapath-based aggregation,
HybridGNN [40] explores the importance of inter-relationship
between different nodes through a randomized exploration to
learn better node embeddings. However, when it comes to
bipartite graphs, it is deemed unnecessary since there are
only two types of nodes. In addition, attention mechanisms
have been used to implicitly specify weights to edges into the
nodes of different types [41]–[43]. For example, HIVEN [43]
is developed for a heterogeneous graph where each node may
have multiple types of relationship with others. It learns type-
wise embeddings of each node, which are then combined to
obtain the final node embedding per node using an attention
mechanism where the attention weights are learned through
training. In contrast, by definition, our underlying graph is a
weighted graph, which does not necessarily require learning
the attention weights. Furthermore, BiSAGE enables GEM to
achieve (almost) ideal performance without such an additional
mechanism.
Outlier detection: The in-out detection from the geofenc-
ing area can be cast as an outlier detection [20], [44]–
[46] problem where any RF signal records obtained outside
the area are to be detected as outliers. DBSCOUT [45],
which is built on DBSCAN, treats a point as an outlier if
it is detected outside the hypersphere (dense region) with a
predefined radius. It is, however, tested only on two- and
three-dimensional data. RDAE [46] leverages two layers of
autoencoders and decomposes input data into normal and
outlier data samples for training. In contrast, GEM, especially
our enhanced histogram-based detection algorithm, does not
require any labeled outliers as input data samples, but is
able to detect outliers using the training dataset that consists
of only normal data samples. Furthermore, its performance
is extensively evaluated in comparison with several popular
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outlier detection algorithms, such as feature bagging, isolation
forest, and local outlier factor.

III. GEM: INITIAL TRAINING

In this section, we explain the details of the three integral
components of GEM to build a one-class classification model.

A. Weighted Bipartite Graph Model
It has been a common practice to represent the RF signal

data in a matrix form (or vectors of equal length), when
they are leveraged for various applications such as indoor
localization [47], [48] and floor identification [49]. Each signal
record (sample) is a vector of RSS values from surrounding
APs that are indicated by their medium access control (MAC)
addresses and becomes a column of the matrix. In other words,
each RSS value associated with a different MAC address is
for a row of the matrix, so each row index corresponds to a
different MAC address. In the matrix representation, however,
there is a ‘missing-value’ problem in that some entries in the
matrix lack RSS values, as the samples are of variable length
(i.e., the number of detected MAC addresses can be different
per sample). While the missing entries are generally filled with
arbitrarily small values, this ad-hoc data imputation potentially
leads to incorrect representation.

On the other hand, as recently used in [31] for a floor
classification application, the variable-length RF signal records
can be modeled as a weighted bipartite graph, where the
measured signal information is preserved without any ad-hoc
data imputation. Specifically, for each RF signal record, this
record itself becomes a node of one type and the sensed MAC
addresses in the record become nodes of the other type, with
undirected edges connecting the ‘record’ node and the ‘MAC’
nodes. Each edge is assigned a weight that is determined as
a function of the RSS value from its corresponding MAC
address in the record.

Observe that each RF signal record has a set of pairs of
sensed MAC addresses and their corresponding RSS values.
For each record (sample) u, we denote by RSSuv the RSS
value from a MAC address, say MACv , which appears in the
record. Let U be a set of nodes for the signal records and
V be a set of nodes for the sensed MAC addresses. We then
define a weighted bipartite graph G=(U, V, E ,w), where E is
a set of edges with edge euv ∈ E denoting the edge between
u∈U and v∈V , and w is a set of edge weights with weight
wuv∈w of edge euv , which is defined as

wuv := f(RSSuv), (1)

where f is a function of RSSuv such that f(RSSuv)>0 for all
RSSuv . Note that edge euv indicates the presence of MACv

in record u. In other words, two nodes u and v are connected
if there exists a measured value of RSSuv between them, with
edge weight wuv . In the example illustrated in Figure 3, RF
signal record u1 is only connected to MACs 1–3, while u2 is
connected to MACs 3–5.

In GEM, we also use the following weight function:

f(RSSuv) := RSSuv + c, (2)
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Fig. 3. An illustrating example for two sensing events with five ambient APs.

where c is a constant such that c>max{|RSSuv|,∀u, v} [31].
It is also worth noting that this bipartite graph representation
can be easily extended to include the arrivals of new RF
signal records and the changes in ambient APs (or their MAC
addresses).

B. BiSAGE

From the weighted bipartite graph G, we next learn node
embeddings of equal length to be used to build a one-
class classification model for in-out detection. To this end,
we propose BiSAGE, which is a non-trivial extension to
GraphSAGE [24] with a novel bi-level aggregation and a non-
uniform neighborhood sampling.

Given a target node whose embedding is to be learned,
there are two steps in the aggregation of embeddings from
its (possibly multi-hop) neighbors. We sample nodes from
the neighborhood of the target node according to a given
probability distribution. Then, we aggregate the information
(embeddings) from sampled neighboring nodes towards the
target node (to update its embedding).

In the bipartite graph, edges are assigned weights that are
a function of sensed RSS values. Thus, to determine which
neighbors to sample, intuitively, the higher the sensed RSS
value between the node and its neighbor, the more likely the
neighbor should be chosen for the information aggregation.
Thus, we design a non-uniform neighbor sampling based on
edge weights. Without loss of generality, suppose that u∈U
is the target node to learn its embedding. Let N(u) be the set
of neighbors of u in the bipartite graph. The probability that
v∈N(u) is chosen for the aggregator function is defined as

Pr(v) =
wuv∑

v′∈N(u) wuv′
.

After sampling the neighbors of the target node, we need to
aggregate the information from the sampled neighbors to the
target node. If the underlying graph is a homogeneous graph,
the information aggregation can be done for each node in the
same way [24]. However, in the bipartite graph (a heteroge-
neous graph), nodes of different types should be processed
differently. Thus, we propose a novel bi-level aggregation
mechanism for bipartite graphs.

In the bi-level aggregation, we introduce a new ‘auxiliary’
embedding for each node. We consider the original embedding
of each node as its ‘primary’ embedding. In other words,
each node has two embeddings, namely primary embedding
and auxiliary embedding. The auxiliary embedding at each
node now serves as a ‘carrier’ for the information propagation
when the target node is of different type. For example, if the
target node is a ‘signal-record’ node, its neighbors – ‘sensed
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Fig. 4. To learn a node’s embedding, BiSAGE first samples its neighbors and then aggregates the information from them via their auxiliary embeddings.

MAC’ nodes – use their auxiliary embeddings to propagate
the information.

As shown in Figure 4, for the target node, we sample its
neighbors based on their edge weights for the information
aggregation. The target node’s primary embedding is then
updated based on its sampled neighbors’ auxiliary embeddings
that carry the information (embeddings) from the nodes of
the same type. On the other hand, the target node’s auxil-
iary embedding is updated based on its sampled neighbors’
primary embeddings to carry the information. Note that the
auxiliary embedding at each node constrains the influence of
the information within the nodes of the same type, while the
information can still flow over the graph.

For node i ∈ U ∪V , let hi and li be its d-dimensional
primary and auxiliary embeddings, respectively. We denote by
Ns(i) the sampled neighborhood of i. Let k be the current
aggregation step and K be the total number of steps. In the
k-th round of the aggregation, we need to update both primary
and auxiliary embeddings for each node. To update the primary
embedding of i, we need to aggregate the information through
its neighbors’ auxiliary embeddings. Thus, we have

hk
Ns(i)

←− AGGREGATE(lk−1
j ,∀j ∈ Ns(i)), (3)

hk
i ←− σ(W k

h · CONCAT(hk−1
i ,hk

Ns(i)
)), (4)

where AGGREGATE(·) is an aggregator function, e.g.,
MEAN(·) or MAX(·), hNs(i) is a d-dimensional temporary
vector to store the aggregation result from the sampled neigh-
borhood of i, CONCAT(·) is a concatenation function, W k

h

is a learnable weight matrix for primary embedding, and σ
is a nonlinear function. Here we introduce the superscript k
to indicate the k-th round of the aggregation. Similarly, to
update the auxiliary embedding of i, we need to aggregate the
information from its neighbors’ primary embeddings. Thus,
we have

lkNs(i)
←− AGGREGATE(hk−1

j ,∀j ∈ Ns(i)), (5)

lki ←− σ(W k
l · CONCAT(lk−1

i , lkNs(i)
)), (6)

where lNs(i) is another temporary vector to store the aggre-
gation result from the sampled neighborhood of i, and W k

l is
another learnable weight matrix for the auxiliary embedding.

After completing the k-th round of the aggregation, hk
i and

lki are then normalized by their ℓ2 norms, respectively, as
follows:

hk
i =

hk
i

||hk
i ||2

, and lki =
lki
||lki ||2

, (7)

which are the embeddings to be used for (k+1)-th iteration.
After K iterations, the final primary and auxiliary embeddings
of node i are hK

i and lKi , respectively. Initially, h0
i and l0i are

chosen randomly.

For our choice of the aggregator function, we observe that
the higher the edge weight (based on the RSS value), the closer
the two nodes having the edge should be. In other words, the
information propagating through edges with higher weights
should be considered more important during the aggregation.
Thus, we use the following weighted aggregator function for
hk
Ns(i)

in Equation (3):

hk
Ns(i)

:=
∑

j∈Ns(i)

(
wji∑

j′∈Ns(i)
wj′i

lk−1
j

)
. (8)

Similarly for lkNs(i)
in Equation (5).

Next, we explain the details of the training process. A
standard approach to training a model for network embedding
and representation learning on a graph is to leverage random
walks. They are used to learn embeddings such that the nodes
that appear in the sequence of nodes visited by the same walk
should be close to each other in the embedding space [24],
[50]. Let {Xk}nk=0 be a finite sequence of nodes visited by
a random walk when it starts from node x0 ∈ U ∪ V , i.e.,
X0 = x0. Given the current node of the random walk, say
Xk=xk, the next node xk+1 is chosen from the neighbors of
xk according to a certain distribution. As in GraphSAGE [24],
a popular example is to use a uniform distribution for choosing
the next node, i.e., the next node is chosen from the neighbors
of the current node uniformly at random. However, our graph
is a weighted (bipartite) graph, where each edge weight is pro-
portional to its corresponding measured RSS value, implying
that a higher RSS value generally indicates a closer distance
between the IoT device and the AP. Thus, in BiSAGE, we
use a weighted random walk, whose transition probabilities
are given by

Pr (Xk+1 = xk+1|Xk = xk) =
wxkxk+1∑

x′∈N(xk)
wxkx′

.

In addition, we need to specify a loss function to minimize
in learning the two sets of weight matrices {W k

h }Kk=1 and
{W k

l }Kk=1 for primary and auxiliary embeddings, respectively.
The rationale behind our loss function is that the primary
embedding of one node should be close to the auxiliary
embedding of its neighbor visited by the random walk, as they
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Fig. 5. A visualization of our learned embeddings.

encode the information of nodes of the same type, and vice
versa. Let x and y be two neighboring nodes that appear as
the nodes consecutively visited by the random walk. Let hx,
lx, hy , and ly be their corresponding primary and auxiliary
embeddings, respectively. Specifically, we use the following
loss function to minimize in learning the weight matrices
{W k

h } and {W k
l } to be used to obtain the primary and

auxiliary embeddings of each node:

JG := − log [σ(hx · ly)σ(lx · hy)]

−KNEz∼Pr(z) [log [σ(−hx · lz)σ(−lx · hz)]] , (9)

where a · b is the inner product between a and b, σ(x) :=
1/(1 + exp(−x)), KN is the number of ‘negative’ samples,
and the expectation E is with respect to z drawn according to
Pr(z), z ∈ U ∪ V .

Our loss function in Equation (9) is based on the negative
sampling technique [24], [51], but defined in a way that is
suitable for our bi-level aggregation on a weighted bipartite
graph. The first term of the loss function encourages nodes
of the same type that co-occur in the same random walk to
stay close to each other in the embedding space. Recall that
the auxiliary embedding of node y encodes the information
of its neighbors, which have the same type as node x. On the
other hand, the second term uses KN (negative) sampled nodes
drawn from the graph and forces them to separate apart from
node x, since the sampled nodes are more likely far from the
current node x. We use KN = 4 and Pr(z) ∝ deg3/4z , where
degz is the degree of node z [24], [51] .

To show the effectiveness of our learned node embeddings,
we use t-SNE [52] to visualize the embeddings. We collect RF
signal records inside a room and process them with BiSAGE.
In general, signal records collected nearby would experience
similar fading conditions, including multipath fading effects,
though not exactly the same. Our BiSAGE is able to capture
such a similarity efficiently. As shown in Figure 5, nodes of
the same type generally stay together while being separated
from nodes of different types. In addition, as shall be validated
in Section V, the learned embeddings preserve the relevance
among the nodes of the same type, i.e., their distance in the
embedding space preserves their physical distance, which al-
lows us to detect outliers based on their proximity information.

The bi-level aggregation mechanism is summarized in Al-
gorithm 1. Its time complexity can also be analyzed as follows.
Let Ns be the number of sampled neighbors for each node,
i.e., Ns = |Ns(i)| for all i. Note that it is a hyperparameter,
whose value is normally chosen between 10 and 25. Lines 4
and 5 take O(dNs) operations each, where d is the embedding

ALGORITHM 1: BiSAGE: Bi-level Aggregation.
Input: Bipartite graph G; Total number of aggregation layers
K.

Output: Primary and auxiliary embeddings hi and li for all
i ∈ U ∪ V .

1 Initialize hi and li for all i ∈ U ∪ V .
2 for k = 1, 2, . . . ,K do
3 for i ∈ U ∪ V do

/* Neighborhood aggregation */
4 hk

Ns(i)
:= AGGREGATE(lk−1

j , ∀j ∈ Ns(i))

5 lkNs(i)
:= AGGREGATE(hk−1

j ,∀j ∈ Ns(i))
/* Embedding update */

6 hk
i := σ(W k

h · CONCAT(hk−1
i ,hk

Ns(i)
))

7 lki := σ(W k
l · CONCAT(lk−1

i , lkNs(i)
))

/* Normalization */

8 hk
i :=

hk
i

||hk
i ||2

9 lki :=
lki

||lki ||2
end

end
10 return hi, li, i ∈ U ∪ V .

dimension. Here we use the weighted average in Equation (8)
as an aggregate function. Each of Lines 6 and 7 involves
a matrix multiplication with W k ∈ Rd×2d, which has the
complexity of O(d2). Lines 8 and 9 perform normalization of
a d-dimensional embedding each, which has the complexity
of O(d). Therefore, the time complexity of Algorithm 1
is O

(
K(|U |+|V |)(dNs+d2)

)
. It is worth noting that the

matrix multiplication is often done in parallel on GPUs, and
we also use the minibatch training strategy as proposed in
GraphSAGE [24]. Thus, the complexity would be much lower
in practice.

C. In-Out Detection

We next explain our enhanced histogram-based outlier de-
tection model that is built on the primary embeddings of RF
signal records for in-out detection, to detect whether the user is
inside the area (normal) or outside (outlier). Specifically, we
adopt and enhance the histogram-based algorithm [17] due
to its simplicity (fast training) and effectiveness in capturing
a hidden distribution in the feature space.1 It leverages the
idea that the feature vectors from normal data exhibit similar
patterns in the feature space, as long as they well represent the
data. For each feature (each dimension of the feature vector),
it builds a histogram of frequencies obtained from the feature
vectors of training (normal) data.

We below explain the details of the histogram-based al-
gorithm when used with the primary embeddings of sig-
nal records (initial normal data), and then present our en-
hancement. Suppose that there are n d-dimensional primary
embeddings h1,h2, . . . ,hn. Let hi,j be the j-th element
(or dimension) of the i-th embedding. We first obtain the
maximum value, i.e., ∆u

j := maxi{hi,j}, and the minimum

1Recall that RF signal records can be quite different depending on where
they are collected within the area, thereby making the distribution potentially
multimodal. A histogram-based approach is suited for capturing the multi-
modality in the distribution.
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value, i.e., ∆l
j :=mini{hi,j}, from the j-th element values of

the n embeddings. We then create m bins, with each bin of
width (∆u

j − ∆l
j)/m. Since the j-th element value of each

embedding hi falls into one of the bins, we can construct a
histogram based on the frequency count of each bin. Note that
there is a separate histogram for each dimension j.

Given the d histograms, when a new (primary) embedding
is available, i.e., a new RF signal record is available and its
corresponding primary embedding is obtained (via BiSAGE),
we can compute its ‘outlier’ score and determine whether it is
an outlier by comparing the score with a threshold value. The
score function and the threshold value are given as follows. For
any given embedding, say h := [h1, h2, . . . , hd], its ‘outlier’
score is calculated by

H(h) =
d∑

j=1

log

(
1

histj(hj)

)
, (10)

where histj(hj) is the frequency count of the bin where hj

belongs for each dimension j. The higher the score, the
more likely it is an outlier. As for the threshold value, we
compute the outlier scores of the n primary embeddings of
the initial normal data using Equation (10). We then use the
min-max normalization to normalize the scores into the range
[0, 1], and sort them in decreasing order. To be precise, let
H̄(h1), H̄(h2), . . . , H̄(hn) denote the normalized scores, and
let H̄(h[1]), H̄(h[2]), . . . , H̄(h[n]) denote the sorted, normal-
ized scores, where the subscript [i] indicates the index of an
embedding that leads to the i-th highest score. With γ defined
as a ‘contamination’ factor and i∗ := n × γ, the threshold
value, denoted by τ , for outlier detection is originally set to
τ := H̄(h[i∗]) [17].

While the contamination factor γ can be used to control
the level of the sensitivity in detecting outliers, the threshold
value τ is highly dependent on the (initial) data size n and the
choice of γ. In our geofencing system, we aim to augment the
normal data with newly measured RF records. Since the data
size keeps on increasing, however, it can lead to changes in
the threshold value τ and negatively affect the performance of
outlier detection. For example, if the scores of recent records
are somehow relatively much higher than the old ones, then
they may boost up the threshold value τ , which would lead
to misclassifications of outlier (outside) records as normal (in-
premises) ones, and vice versa. Thus, there is a need for an
enhanced algorithm to make this outlier detection adaptive in
incorporating new records.

We first reduce the dependence of choosing the threshold
value τ on the data size. We also observe that if the outlier
scores for normal and abnormal records can be smoothed and
separated further apart, it would be easier to set the threshold
value. Thus, we adopt to use the softmax function with a
scaling factor T . For any given embedding h, its outlier score
is now obtained by

ST (h) :=
exp(H̄(h)/T )

exp(H̄(h)/T ) + exp((1− H̄(h))/T )
. (11)

Note that ST is in the form of a Boltzmann distribution

(or Gibbs distribution) in statistical physics, where T is the
thermodynamic temperature.

The intuition behind the transformation with the softmax
function is that the outlier scores of normal samples (i.e., the
embeddings of RF signal records obtained inside the geofenc-
ing area) get quite close to each other. Similarly for abnormal
samples, which are the embeddings of the ones measured
outside the area, including those collected just outside the
boundary. In addition, the scaling factor T further separates the
former apart from the latter. Therefore, we use the new score
function ST in Equation (11) to compute the outlier score of
a new sample h, i.e., the (primary) embedding of a new RF
signal record, and determine it is an outlier if

ST (h) > τu, (12)

where τu is our new threshold value. The scaling parameter
T and the new threshold value τu are considered as hyper-
parameters to be optimized in the learning process. As shall
be shown in Section V, we empirically demonstrate that the
rescaling method with the softmax function in Equation (11)
for the histogram-based outlier detection indeed improves the
in-out detection performance.

IV. GEM: ONLINE INFERENCE AND UPDATE

Once our outlier detection model is built on the primary
embeddings of normal RF signal records (initial training data),
GEM performs in-out detection (or outlier detection) whenever
a new RF signal record is available. The IoT device of the user
periodically records RSS values from ambient APs, and they
are fed into GEM for the in-out detection. In what follows,
we first explain how to obtain the primary embeddings of the
new RF signal records in an online manner, and then present
how to use the new records to perform in-out prediction and
further update our outlier detection model over time.

A. Embedding Prediction

The primary and auxiliary embeddings of every node in the
weighted bipartite graph are learned in the training process.
When a new RF signal record becomes available, it is added
into the graph as a new ‘signal-record’ node, say r, and its
edges are created with the ‘MAC’ nodes that appear in the
record. Some MAC nodes may also be newly added, if they
are new ones to the graph. Then, edge weights are determined
based on recorded RSS values according to Equations (1)
and (2). Once node r is added into the graph, its primary
embedding hr and auxiliary embedding lr are obtained ac-
cording to Equations (3)–(7), along with the learned weight
matrices {W k

h } and {W k
l }. In other words, node r aggregates

the information (embeddings) from its sampled neighbors, and
this aggregation process is repeated K times. That is, node r
is able to attain the knowledge from all nodes within the K-
hop neighborhood, and thus its embeddings are determined by
their embeddings.

B. In-out Prediction
Given the learned primary embedding hr of the new signal

record r, we need to decide whether it is an outlier or not.
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To this end, we first calculate its raw outlier score H(hr)
as in Equation (10) and normalize it through the min-max
normalization to obtain the normalized score H̄(hr) (see
Section III-C for more details). We then obtain its final outlier
score ST (hr) as in Equation (11) and decide whether it is an
outlier or not according to Equation (12).

C. Online Model Update
As illustrated in Figure 1, if a new signal record is predicted

to be an outlier by our outlier detection model, it triggers an
alert. On the other hand, if it is predicted to be a normal
one – the record measured inside the geofencing area, we
further check how confident the prediction is. Then, if it can be
considered as a highly confident normal (in-premises) sample,
we update our outlier detection model.

To this end, we introduce another yet more strict threshold
value τl (< τu) to filter out the ‘normal’ predictions with low
confidence. Specifically, when the score of a new sample hr

– the primary embedding of a new record – is less than the
threshold value τu (see Equation (12)), we say that it is a
highly confident normal sample if it also satisfies ST (hr) <
τl. Then, we use the new embedding hr to recalculate the d
histograms used in Equation (10), thereby updating our outlier
detection model. The threshold value τl is again considered
as a hyperparameter. As shall be shown in the next section,
we empirically confirm that this online model update scheme
indeed improves the in-out detection performance.

It is worth noting that the concept of leveraging the ‘pre-
dicted’ labels of originally unlabeled samples to enhance a
model has been around in the literature [53], [54]. Such pre-
dicted labels are often called pseudo labels. It was first shown
in [53] that for the data samples naturally belonging to dif-
ferent clusters, the pseudo labels of the (originally unlabeled)
samples can improve the model performance substantially.

D. Summary and Complexity Analysis
We summarize the entire inference process in Algorithm 2

and provide its complexity analysis as follows. Observe that
Line 1 is a O(1) operation since a new signal record contains
a limited number of MACs (normally less than 100 MACs).
Also, Line 2 has the complexity of O

(
K(dNs+d2)

)
as

can be seen from the complexity analysis of Algorithm 1,
where d is the embedding dimension. Line 3 requires O(d)
operations as the outlier score ST (hr) is computed along each
embedding dimension. In addition, the complexity of Lines 4–
8 is dominated by the model-update operation in Line 7 which
has the complexity of O(d|U |). It is because d histograms are
recalculated based on all in-boundary signal records, including
the new highly confident signal record, and the record size is
bounded by |U |. Note that only a small portion of new records
would be used to update the model in practice. Therefore, the
time complexity of Algorithm 2 is O

(
K(dNs+d2)+d|U |

)
.

V. PERFORMANCE EVALUATION

In this section, we present extensive experiment results to
demonstrate the efficacy of GEM. We evaluate its system-level
performance by comparing it with state-of-the-art algorithms.

ALGORITHM 2: GEM: Online Inference.
Input: New signal record r; Bipartite graph G.
Output: IN or OUT for r.

1 Connect r into G.
2 Obtain r’s primary embedding hr according to

Equations (3)–(7).
3 Calculate outlier score ST (hr) as in Equation (11).
4 if ST (hr) > τu then
5 return OUT

else
6 if ST (hr) < τl then
7 Update d histograms.

end
8 return IN

end

We also empirically demonstrate the effectiveness of each
system component.
Experiment setup: We developed an Android application to
collect RSS values from ambient APs and notify if the user
is out of the area. The application continuously collects RF
signal records and uploads them to a server that performs in-
out detection based on the gathered data.

We recruited 10 volunteers in the experiments. A user
carries a smartphone such as Samsung S7, Huawei Nova 6
or Xiaomi Mix 3, or a smartwatch, i.e., alps DM20, in a
typical home setting, e.g., a single-room dorm, a small or
large apartment, or a two-story house. The housing area ranges
from 10 m2 to 200 m2. Each user is asked to walk around
the inner perimeter of the house for just a few minutes (i.e.,
5-10 minutes) for initial training. Then, the user can behave
as he/she wishes, i.e., staying inside or moving outside of the
house for testing. The whole process lasts for about three hours
for each user.

We use the following baseline parameters for GEM, which
were obtained through hyperparameter tuning. The learning
rate is 0.003, the embedding dimension is 32, the offset c is
120 dBm, the scaling factor T is 0.06, the in-out threshold τu is
0.005, and the updating threshold τl is 0.001. All experiments
were conducted on a server that operates on Ubuntu 18.04 and
has an Intel Core i9-9900X with 10 cores at 3.5 GHz, 64-GB
memory, and an Nvidia 2080Ti GPU.
Geofencing algorithms for performance comparison: We
consider the following state-of-the-art algorithms for perfor-
mance evaluation. By noting that GEM consists of BiSAGE
and our outlier detection algorithm (dubbed ‘OD’), we also
consider other network embedding and outlier detection algo-
rithms, each of which is used together with OD or BiSAGE.
• SignatureHome [2]: It builds a ‘home signature’ database

for the geofencing area, containing the union of the detected
MACs from all RF signal records collected inside the area
and the IP address of the user’s associated AP. When
it comes to online inference, for each newly collected
signal record, it checks whether the connected IP exists in
the home signature (assigned a weight) and calculates the
overlap ratio of MACs between the new record and the home
signature (assigned another weight). If the total weight is
higher than a threshold, the record is inside the area.

2711



• INOA [25]: It trains an ensemble of base learners where
each base learner learns a hypersphere based on RF signal
records from each pair of APs. For inference, a new RF
signal record is decomposed into corresponding pairs of
APs, which are then fed into the base learners to obtain
an outlier score. If it is higher than a threshold, the record
is outside the area.

• GraphSAGE [24] + OD: GraphSAGE replaces BiSAGE
in GEM to obtain node embeddings from our weighted
bipartite graph by treating the graph as a homogeneous
graph. We then use the learned embeddings to build an
outlier detection model as illustrated in Section III-C. For
inference, upon the arrival of a new RF signal record,
we first obtain its embedding via GraphSAGE and then
perform outlier detection and model update as explained
in Section IV-B and Section IV-C, respectively.

• Autoencoder [55] + OD: Autoencoder uses an encoding and
decoding process to learn (low-dimensional) embeddings
from a matrix of signal records, where the missing entries
are filled with small values. The embeddings generated by
the autoencoder replace those generated by BiSAGE and
the rest follows as in GraphSAGE + OD.

• Multidimensional scaling (MDS) [56] + OD: MDS learns
the embeddings from a matrix of pairwise distances calcu-
lated from signal records, where missing entries are padded
with small values. The embeddings generated by MDS
replace those generated by BiSAGE and the rest follows
as in GraphSAGE + OD.

• BiSAGE + feature bagging [57]: Feature bagging designs a
framework to fuse the results from different outlier detection
algorithms based on different subsets of features, which are
the embeddings generated by BiSAGE. When a new RF
signal record is available for inference, its embedding is
first learned by BiSAGE and then goes through the feature
bagging framework to decide whether it is an outlier.

• BiSAGE + isolation forest (iForest) [58]: iForest finds
outliers with the rationale that outliers are easier to ‘iso-
late’ from normal (in-premises) samples. It also uses the
embeddings generated by BiSAGE. The rest follows as in
BiSAGE + feature bagging.

• BiSAGE + local outlier factor (LOF) [59]: LOF finds
outliers by observing that the distance from an outlier to
a neighbor group is larger than the distance inside the
neighbor group. It also uses the embeddings generated by
BiSAGE. The rest follows as in BiSAGE + feature bagging.

The algorithms with BiSAGE use the embeddings gen-
erated by BiSAGE as input and perform in-out detection.
The algorithms with OD first generate the embeddings on
their own and carry out in-out detection with our outlier
detection algorithm. For SignatureHome and INOA, we set
their parameters as described in [2], [25]. For autoencoder,
its best results, which are obtained using four layers of 1-D
convolution with the ReLU activation function, are used for
performance comparison. For MDS, we follow the convention
with 1−cosine similarity as pairwise distance.

Performance metrics: We use precision P , recall R, and
F -score to evaluate classification results in our experiments.
Let TP , FP , and FN be the number of true positives, the
number of false positives, and the number of false negatives,
respectively. Then, we have P = TP

TP+FP , R= TP
TP+FN , and

F = 2PR
P+R . To better understand the system performance, we

use Pin, Rin and Fin for in-premises detection in which case
in-premises samples are treated as positive samples, and Pout,
Rout and Fout for outlier detection in which case outside
samples are considered positive.

A. Overall Performance

We show overall comparison results of GEM against other
state-of-the-art algorithms in Table I. GEM achieves the best
performance in all the metrics. This is because the bipartite
graph modeling of RF signal records and BiSAGE have
well-learned similarities among signal records. Moreover, our
outlier detection algorithm is also more robust to statistical
fluctuations in outlier score prediction. Thus, outliers can be
easily identified. SignatureHome has relatively low precision
and recall in outside detection, indicating that it may have
problems in separating signals observed near the boundary
of the house since its network-based approach is not able
to capture any perimeter information. INOA suffers from
low precision in outside detection, which means that the
support vectors generated from subsets of MACs do not
represent ‘inside’ signals well and in turn lead to lower
recall for in-premises detection. Furthermore, as mentioned
in Section III-A, both SignatureHome and INOA have the
missing-value problem, where a matrix representation of RF
signals requires missing entries to be filled with some small
values (i.e., −120 dBm), thereby degrading their performance.
Effectiveness of BiSAGE: To study the effectiveness of our
bipartite graph modeling and BiSAGE in GEM, we show the
performance comparison of GEM, GraphSAGE, autoencoder,
and MDS in Table I. For autoencoder and MDS, we construct
a matrix of RF signal records, with missing entries filled with
−120 dBm. As shown in Table I, GEM exhibits superior per-
formance over the other algorithms (24%–67% in Fout). This
verifies that the embeddings learned from BiSAGE are much
more accurate in preserving the similarities and differences
among signal records. On the other hand, GraphSAGE treats
the bipartite graph as a homogeneous graph. It does not take
into account node heterogeneity in the aggregation process,
and its resulting embeddings are less accurate in representing
the observed samples and their relationships. Autoencoder
has low recall for in-premises detection, indicating that quite
a few in-premises records are misclassified as outliers, i.e.,
Pout is low. This implies that the missing-value problem that
arises when using a matrix for RF signals results in inaccurate
inference of the similarities among signal records. A similar
issue happens with MDS.

To see the gains in GEM owing to the bipartite graph
modeling and BiSAGE, we show the performance comparison
results of GEM with and without using the embeddings by
BiSAGE in Figure 6(a). For GEM without the embeddings, we
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TABLE I
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART ALGORITHMS. THE ENTRY IS IN THE FORM OF MEAN (MIN, MAX). OD INDICATES OUR

HISTOGRAM-BASED OUTLIER DETECTION ALGORITHM, AND BISAGE INDICATES OUR NETWORK EMBEDDING ALGORITHM.

Algorithms In-premises detection Outside detection
Pin Rin Fin Pout Rout Fout

GEM (BiSAGE + OD) 0.98 (0.94, 1.00) 0.99 (0.94, 1.00) 0.98 (0.97, 1.00) 0.98 (0.88, 1.00) 0.97 (0.88, 1.00) 0.97 (0.94, 1.00)
SignatureHome 0.98 (0.86, 1.00) 0.97 (0.92, 1.00) 0.97 (0.88, 0.98) 0.80 (0.62, 0.90) 0.86 (0.76, 0.95) 0.83 (0.70, 0.93)
INOA 0.95 (0.75, 0.98) 0.82 (0.57, 0.88) 0.88 (0.65, 0.93) 0.69 (0.50, 0.85) 0.91 (0.67, 0.98) 0.78 (0.56, 0.90)

Other algorithms when integrated with BiSAGE or OD

GraphSAGE + OD 0.82 (0.70, 0.94) 0.97 (0.78, 0.99) 0.88 (0.75, 0.95) 0.85 (0.65, 0.92) 0.70 (0.61, 0.85) 0.78 (0.64, 0.88)
Autoencoder + OD 0.97 (0.79, 1.00) 0.88 (0.67, 0.92) 0.92 (0.72, 0.95) 0.52 (0.27, 0.70) 0.82 (0.61, 0.91) 0.64 (0.41, 0.78)
MDS + OD 0.98 (0.82, 1.00) 0.83 (0.63, 0.94) 0.90 (0.73, 0.93) 0.43 (0.15, 0.68) 0.87 (0.62, 0.96) 0.58 (0.32, 0.72)
BiSAGE + Feature bagging 0.91 (0.78, 0.95) 0.85 (0.78, 0.93) 0.87 (0.80, 0.93) 0.85 (0.72, 0.90) 0.93 (0.84, 0.98) 0.89 (0.79, 0.94)
BiSAGE + iForeast 0.86 (0.70, 0.91) 0.97 (0.89, 1.00) 0.90 (0.79, 0.93) 0.94 (0.86, 1.00) 0.80 (0.68, 0.87) 0.86 (0.78, 0.91)
BiSAGE + LOF 0.89 (0.75, 0.95) 0.89 (0.76, 0.96) 0.89 (0.74, 0.95) 0.88 (0.72, 0.90) 0.83 (0.68, 0.92) 0.85 (0.72, 0.90)
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Fig. 6. (a) Performance comparison of GEM and GEM without the embed-
dings by BiSAGE; (b) Performance comparison of GEM with and without our
proposed enhancement in the histogram-based outlier detection algorithm.

construct a matrix of signal records and fill in empty entries
with −120 dBm. As seen from Figure 6(a), GEM improves
the performance significantly (around 14% in Fin and 54% in
Fout) when using embeddings as input, since BiSAGE is able
to effectively learn the similarities among RF signals.
Effectiveness of our outlier detection algorithm: We use
the same embeddings learned from BiSAGE as input for
different outlier detection algorithms, namely feature bagging,
iForest, and LOF, and compare their performance with GEM
in Table I. As can be seen from Table I, GEM has the highest
F -scores in both in-premises detection and outside detection,
with further improvements of up to 12% in Fin and 18% in
Fout. This is because our enhanced outlier detection algorithm
‘stabilizes’ statistical fluctuations and achieves better in-out
classification performance along with new samples over time.
iForest also has high recall for in-premises detection. However,
its precision is not as good as that of GEM, which indicates
that iForest is not able to filter out some outside signals
properly. LOF does not show satisfactory performance in
outside detection as it may not be able to classify the signals
around the house boundary. Feature bagging may encounter a
similar issue in outlier detection.

To see the effectiveness of our enhancement in the histo-
gram-based outlier detection, we plot the receiver operating
characteristic (ROC) curves [60] for GEM with and without
our enhancement in Figure 6(b). Here we focus on in-premises
detection. For the ROC curve of a model, the closer to the
upper left corner (a perfect classifier), i.e., the larger area
under the ROC curve, the better the model is. As shown in
Figure 6(b), with the same true positive rate, GEM achieves
a much lower false-positive rate, implying that it greatly
reduces the chance of missing the detection of outliers. We
also observe that recall of outlier detection can hardly be
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Fig. 7. (a) Performance vs. training ratio; (b) Performance vs. update ratio.

improved by the original histogram-based outlier detection
algorithm. This indicates that a non-trivial portion of the signal
records obtained outside the geofencing area are consistently
misclassified. On the contrary, our enhancement significantly
improves the outlier detection performance by clearly separat-
ing the two groups of normal and abnormal signal records.
Benefits of model training and its online update: To see
how many samples are needed for training our outlier detection
model, we divide the (initial) training samples into ten equal
sets and train GEM with one more set each time to perform
outlier detection. As shown in Figure 7(a), the performance
gradually improves with more training samples available, and
GEM can even work with only 10% of training samples (less
than 50 records on average), indicating its practicability in
real deployment. A key design of GEM is that it leverages
new incoming samples to improve the in-out classification
accuracy over time. To evaluate this self-enhancement, we
divide the ‘testing’ data into ten equal sets and present step-
wise model update results in Figure 7(b). The performance of
GEM improves with new samples streaming in, showing that
it leverages highly confident in-premises samples to improve
the detection accuracy.

B. Micro-benchmark Evaluation
Adaptation to the changes in APs: To test GEM’s adapt-
ability to AP dynamics, we intentionally remove a subset of
APs from the training and testing sets. Note that they are
all ambient APs sensed, and we do not install any additional
AP on site. In each experiment, we randomly remove up to
25% of MACs in total and repeat 30 runs to measure the
average performance. Figure 8(a) and Figure 8(b) show F -
scores by pruning MACs in the training set while leaving
the testing set untouched. While F -scores of GEM decrease
slowly as more MACs are removed, it remains significantly
better than the other algorithms. As shown in Figure 8(a)
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Fig. 8. (a) and (b) Performance vs. MAC removal ratio in training set; (c) and (d) Performance vs. MAC removal ratio in test set.
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Fig. 9. Impact of (a) embedding dimension d, (b) scaling factor T , (c) bin
size m, on the performance of GEM.

and Figure 8(b), the performance of GEM for in-premises
detection almost remains intact, while the performance for
outside detection decreases only slightly. It is because GEM
keeps updating the outlier detection model with the highly
confident in-premises samples. In other words, any newly
sensed MACs can naturally be added into our bipartite graph,
and they actually improve the in-out detection performance
over time. Therefore, the removal of MACs in the training set
does not significantly affect the performance. In addition, we
intentionally remove MACs in the testing set, while leaving
the training set unchanged. Similar results are observed, as
shown in Figure 8(c) and Figure 8(d).
Tolerance to parameter perturbation: From the bipartite
graph, GEM learns node embeddings via BiSAGE and uses
the embeddings for outlier detection. Thus, it is important to
check how the choice of embedding dimension would affect
the system performance. In Figure 9(a), we show the F -scores
when the embedding dimension varies. We can see that GEM
exhibits outstanding performance regardless of the choices of
the dimension, implying its robustness to such changes.

Similarly, in Figure 9(b), we present the overall system per-
formance of GEM when the scaling factor T in Equation (11)
changes. We can see that GEM is not sensitive to the choices of
T from 0.04 to 0.08 and achieves very high F scores overall.
Thus, we can easily tune the scaling factor T to achieve highly
accurate performance in practice. In addition, Figure 9(c)
presents the effect of the number of bins m on the performance
in outlier detection. Recall that our enhanced histogram-based
outlier detection algorithm divides the range of values along
each dimension into m bins and builds d histograms for outlier
detection. Our algorithm achieves excellent performance over
a wide range of values for m.
Inference time measurement: It is also important to see if
GEM is able to make the in-out decision in a prompt manner
upon arrival of a new RF signal record. To this end, we
measure how long the entire inference process takes and obtain
the breakdown of the inference time. Recall that the inference
process has three steps, namely (1) obtaining the embeddings

of the new RF record using BiSAGE, (2) in-out detection by
our outlier detection algorithm, and (3) online model update
with the new record. All results here are obtained by taking
the average from 2000 runs.

We first show the impact of embedding dimension d on the
inference time in Figure 10(a). Since the embedding dimension
affects all three steps in the inference process, we provide
their running times. As shown in Figure 10(a), the embedding
dimension has little impact on the running times of BiSAGE
inference and in-out detection, while the running time of
model update increases with d. It is because the model update
involves updating d histograms. A higher dimension indicates
more histograms to update, thereby leading to a longer time
for the update. Nonetheless, the total inference time is still
less than 20 milliseconds even when d = 128. In addition,
we evaluate the impact of scaling factor T and the number
of bins m on the inference time. Since they only affect the
inference process (i.e., in-out detection and model update)
after the embeddings are learned by BiSAGE, we only report
the running times of in-out detection and model update in
Figure 10(b) and Figure 10(c). We see that T and m have
little impact on the inference time. This again confirms the
computationally inexpensive inference process of GEM, which
is suitable for real-time in-out detection.

We further discuss the impact of batch size on the inference
time when we update our outlier detection model in batch
mode. Recall that our model is updated only with highly
confident signal records. Since the batch update only affects
the model update in the inference process, we only report
its running time in Figure 10(d) and Figure 10(e). We first
evaluate how long it takes to update the model with one batch
of (highly confident) signal records. As shown in Figure 10(d),
the running time increases with the batch size since it takes
longer time to recompute histograms by including a larger
number of new records. We also evaluate the running time
of updating the model using a total of 2000 signal records
with different batch sizes. For example, we have ten batches
with the batch size of 200, while having two batches with the
batch size of 1000. As shown in Figure 10(e), the running
time of model update decreases with increasing batch size as
a reduction in the number of batches outweighs a saving in the
model-update time with a smaller batch size. Thus, in practice,
we can resort to the model update in batch mode.

C. Model Scalability
To validate the scalability of our model with large-scale

datasets, we conduct additional experiments in a five-story
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Fig. 10. Running time versus (a) embedding dimension, (b) scaling factor T , and (c) bin size m; (d) Running time of processing a batch with different sizes;
(e) Running time of processing 2000 samples with different batch sizes, e.g., 10 batches need to be processed for the batch size of 200.

TABLE II
PERFORMANCE COMPARISON IN THE SHOPPING MALL AND THE UJI

DATASET. THE ENTRIES ARE OF THE FORMAT (SHOPPING MALL) | (UJI).

Algorithms
In-premises detection Outside detection

Pin Rin Fin Pout Rout Fout

GEM 0.94 | 0.87 0.99 | 0.99 0.96 | 0.93 0.98 | 0.99 0.96 | 0.97 0.97 | 0.98
SignatureHome 0.68 | 0.56 0.85 | 0.84 0.75 | 0.67 0.76 | 0.82 0.72 | 0.79 0.74 | 0.80
INOA 0.75 | 0.64 0.89 | 0.87 0.81 | 0.73 0.80 | 0.86 0.78 | 0.83 0.79 | 0.84

shopping mall and based on the UJI open dataset [61] from
Kaggle competition, which covers three buildings and contains
21,048 RF signal records. For each building, we define the
middle floor as the geofencing area and the other floors as
outside. In the shopping-mall experiment, we walk around
the third floor (middle floor) to collect about 5,000 signal
records for initial training. We then walk randomly within the
five-story building to collect about 200,000 signal records for
testing. For the experiment on the UJI dataset (per building),
we uniformly sample half of the signal records from the middle
floor (i.e., around 800 records) for initial training and use the
rest of the records for testing. The testing data are streamed
in the same way as in the former experiments, meaning that
the datasets are treated as dynamic ones. In other words, our
model is again being updated during the testing process.

We compare GEM with SignatureHome and INOA and re-
port the results in Tables II. GEM outperforms SignatureHome
and INOA significantly. It is because the embeddings learned
by BiSAGE well preserve the relative proximity between sig-
nal records, and our enhanced outlier detection algorithm ac-
curately predicts outliers from normal data samples. However,
SignatureHome does not benefit from an associated IP within
the geofencing area as the experiments are done based only on
RF signals. Moreover, since signals from an AP/MAC can be
detected on multiple floors, a mere calculation of the overlap
ratio of MACs in SignatureHome can hardly differentiate the
signal records collected within the geofencing area form the
ones outside. In addition, although INOA performs better than
SignatureHome, it also suffers from the same problem. The
nature of RF signals from an AP/MAC that can reach different
floors makes the learning from the signal records for each pair
of APs/MACs insufficient for accurate in-out detection.

Due to the space limit, we provide additional experiment
results in our technical report [62].

VI. DISCUSSION

We discuss in this section the application scenarios of GEM
and further elaborate on how it is different from fingerprinting-

based indoor localization techniques.
Our data are collected using wireless devices with moderate

RF sensing frequencies (∼1Hz). In other words, a user is ex-
pected to move for one or two meters between two consecutive
sensing events. Hence, our proposed system GEM is intended
for geofencing applications requiring precision at the meter
level, such as elderly care and restricted UAV navigation.
The goal is to alert when the user gets out of the geofenced
area, which is enabled by our effective representation learning
on RF signals. Nonetheless, geofencing applications requiring
higher granularity would always be interesting. We consider
the more strict geofencing problems at the sub-meter level as
a future research direction.

One may consider fingerprinting-based indoor localization
techniques as a feasible solution to our geofencing problem.
They generally require the user to build fingerprints, i.e.,
RF signals at predetermined specific locations, to provide an
estimate of the user’s location within the area of interest.
However, their application to in-out detection is not straight-
forward. Since they merely provide an estimate of the user’s
location, the map of the geofencing area should be available
for the location estimate to be usable for in-out detection.
The fingerprints also need to be collected at carefully chosen
locations both inside and outside the geofencing area. In
contrast, GEM does not require any indoor maps or floor plans
but only needs RF signals collected inside the geofencing area.

VII. CONCLUSION

We have proposed GEM, a practical yet effective geofencing
system that only leverages ambient RF signals without any
extra hardware or continuous intervention from users. GEM is
built upon three integral components, i.e., a representation of
RF signals via a weighted bipartite graph, our novel bipartite
network embedding algorithm BiSAGE, and our enhanced
histogram-based detection algorithm. They enable GEM to
achieve highly accurate in-out detection performance while
being robust to dynamic RF environments. We have empiri-
cally demonstrated the robustness and superior performance
of GEM in various housing and RF scenarios.

We expect that the key enablers of GEM have broader
impacts. The bipartite graph modeling and BiSAGE could
be used as a viable solution to dealing with variable-length
feature vectors for building a learning model. BiSAGE could
also be applied for network embedding and representation
learning on general bipartite graphs with other applications.
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Arnau, M. Benedito-Bordonau, and J. Huerta, “UJIIndoorLoc: A new
multi-building and multi-floor database for WLAN fingerprint-based
indoor localization problems,” in 2014 International Conference on
Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2014.

[62] W. Zhuo, K. Chiu, J. Chen, J. Tan, E. Sumpena, S.-H. G. Chan, S. Ha,
and C.-H. Lee, “Semi-supervised learning with network embedding on
ambient RF signals for geofencing services,” Tech. Rep., 2023.

2717


