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Abstract—Covid-19 is primarily spread through contact with
the virus, which may survive on surfaces with a lifespan of hours
or even days if not sanitized. To curb its spread, it is hence of vital
importance to detect those who have been in contact with the
virus for a sustained period of time, the so-called close contacts.
Most of the existing digital approaches for contact tracing focus
only on direct face-to-face contacts. There has been little work on
detecting indirect environmental contact, which is to detect peo-
ple coming into a contaminated area with the live virus, i.e., an
area last visited by an infected person within the virus lifespan.
In this work, we study automatic Internet of Things (IoT) contact
tracing when the virus has a lifespan, which may depend on the
disinfection frequency at a location. Leveraging the ubiquity of
WiFi signals, we propose vContact, a novel, private, pervasive,
and fully distributed WiFi-based IoT contact tracing approach.
Users carrying an IoT device (phone, wearable, dongle, etc.) con-
tinuously scan WiFi access points (APs) and store their hashed
IDs. Given a confirmed case, the signals are then uploaded to a
server for other users to match in their local IoT devices for virus
exposure notification. vContact is not based on device pairing,
and no information of other users is stored locally. The confirmed
case does not need to have the device for it to work properly. As
WiFi data are sampled sporadically and asynchronously, vCon-
tact uses novel and effective signal processing approaches and
a similarity metric to align and match signals at any time. We
conduct extensive indoor and outdoor experiments to validate
vContact performance. Our results demonstrate that vContact is
effective and accurate for contact detection. The precision, recall,
and F1-score of contact detection are high (up to 90%) for close
contact proximity (2 m). Its performance is robust against AP
numbers, AP changes, and phone heterogeneity. Having imple-
mented vContact as an Android software development kit and
installed it on phones and smart watches, we present a case study
to demonstrate the validity and implementability of our design
in notifying its users about their exposure to the virus with a
specific lifespan.

Index Terms—Contact tracing, COVID-19, data management
and analytics, exposure notification, social impacts.

I. INTRODUCTION

THE OUTBREAK of COVID-19 has had a profound
impact on our lives and global economy. COVID-19, like

many other infectious diseases, is primarily spread through
viral contact. Recent studies have shown that the virus has
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a lifespan: in airborne droplets, it can last more than 10
min, and on surfaces, it can survive for hours to days if not
properly disinfected (in low temperatures, it may last even
longer) [1], [2]. The health of any person coming into con-
tact with the live virus for a sustained period of time, say
15–30 min, may be at risk [3]. In order to effectively contain
the spread of the disease, tracing and quarantining these close
contacts as soon as possible is of paramount importance.

Close contacts could be manually traced based on per-
sonal interviews with infected people by medical officers.
However, such an approach is labor intensive and slow. Due
to mismemory, the contact information may be incomplete
or error prone. To address the issues, automatic digital con-
tact tracing approaches have been proposed in recent works.
Some use GPS [4] and cellular signals [5]. While effective,
these approaches do not work well in indoor environments
due to signal blockage. Because they are also based on
explicit user geolocations, and such locations may be com-
puted or stored in other’s networks, the systems raise concerns
regarding location privacy. Due to these reasons, they have
not become mainstream. Some privacy-preserving approaches
based on phone-to-phone pairing using Bluetooth low energy
(BLE) have attracted much attention and been implemented
recently [3], [6], [7]. However, they work for only direct face-
to-face contact tracing, and are not applicable for infection
through environmental contact, i.e., the case with nonzero
virus lifespan.

To overcome the above limitations, we propose vContact,
a novel, private, and digital contact tracing solution using
Internet of Things (IoT) with possibly location-dependent
virus lifespan. Anyone in contact with the living virus is con-
sidered at risk. This includes those simultaneously located with
the patient, and those sharing the same environment which the
patient has left. vContact leverages ubiquitous WiFi signals
to achieve pervasive, fully distributed, and automated contact
tracing. Note that although for concreteness our discussion
will focus on WiFi signals, vContact can be straightfor-
wardly extended to other radio-frequency (RF) signals, such
as Bluetooth and their combinations. To the best of our knowl-
edge, this is the first decentralized work using RF signals for
both direct and indirect private IoT contact tracing with a virus
lifespan.

We illustrate the process of vContact in Fig. 1. A user car-
ries a WiFi-enabled IoT device (phone, wearable, dongle, etc.).
For concreteness and ease of illustration, we use a phone
as the example in the figure. With an installed app, it peri-
odically scans for WiFi, with each scan collecting a signal
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Fig. 1. Process of vContact contact tracing using WiFi.

vector consisting of two elements: 1) the signal IDs, which
are the hashed (and optionally encrypted) values of the MAC
addresses of the WiFi access points (APs) and 2) the corre-
sponding received signal strength indicators (RSSIs) of the
signal IDs. Each signal vector is associated with a timestamp,
which is the scanning/collection time of the signals. Over time,
the device collects and stores a time series of the signal vec-
tors, termed the signal profile. The signal profile may be kept
for a certain duration corresponding to the virus incubation
period, usually 14–28 days for Covid-19.

Upon positive confirmation in hospital, the patient has the
following two possibilities.

1) With the Installed App: With the consent of the patient,
the health officer may access his/her signal profile.
(Before sharing with the officer, the patient may blank
out some time spans of the signal profile for per-
sonal reasons.) Because the signal IDs are hashed (and
possibly encrypted) from AP MACs, the officer does
not know the patient’s geolocations, but only clusters
of anonymized IDs and their collection times. Based
on that, the officer works with the patient to identify
the physical venues presenting potential health risks
to the public. The corresponding anonymized IDs are
extracted and labeled with their projected virus lifespan
at the location at that time (depending on disinfection
frequency). The resultant signal profile is then uploaded
to a secure server for other IoT users to download and
match with their own local profile in a distributed man-
ner. Upon detecting a close contact, the user is alerted at
once in private to check their health condition and seek
medical advice.

2) Without the App: In this case, the confirmed case has
to rely on his/her memory to recall the major venues
and visit time as in the manual case. Then, some staff
will go to these venues (the infected areas) to collect
offline their WiFi information and label them with the
visit time and viral lifespan at that time. These manually
labeled data are then uploaded after being processed, and
matched by the other IoT users the same way as in the
previous case.

vContact complements the existing approaches for auto-
matic digital contact tracing and may be integrated with them

(such as [3] and [7]). Compared with prior arts, vContact has
the following strengths and unique features.

1) Contact Detection With Virus Lifespan: vContact cap-
tures the realistic scenario of virus lifespan, which may
be location dependent and temporally varied depending
on the disinfection operation. It comprehensively cov-
ers, in a single framework, those in direct face-to-face
contact and indirect environmental exposure in the areas
previously visited by an infected person. The lifespan of
the virus, set at the time of signal upload, may be het-
erogeneous and customized depending on the frequency
of disinfection operation in the venue.

2) No Device-to-Device Pairing and Communication: Prior
contact tracing proposals based on Bluetooth require
device pairing, which means both devices, including
the infected one, have to be installed with the app or
software in order to work properly. To achieve tracing
effectiveness, they hence demand a high adoption rate
(in the range of reportedly 40%–70%). Moreover, such
a device pairing approach may suffer from replay/relay
attack [8] and raise privacy and security concerns [9]. In
contrast to such pairing, each vContact device operates
independently without any pairing or communication,
and does not require the confirmed case to have already
had the IoT device. This greatly relaxes the adoption bar-
rier and provides a graceful adoption path. Furthermore,
users do not store any information of or exchange any
messages with other users; it hence offers much better
protection of user anonymity, privacy, and attacks.

3) Privacy by Design: vContact is privacy by design. First,
it does not require a user registration process, and hence,
accesses no personal information such as names, phone
numbers, IDs, contact lists, images/videos, etc. Second,
the collected data never leave the local storage with-
out the explicit consent of the owner, and even so (i.e.,
the case of a confirmed case) no personally identifiable
data are uploaded, and the data remain anonymous at the
server. Finally, vContact is fully decentralized. The col-
lected data are exclusively stored in one’s own device,
and the contact is computed and detected locally on the
device in a scalable manner without any other central-
ized entity (party or server) having full information. As
no user data are stored anywhere beyond one’s device, a
user may exit the system at any time by device removal
or app uninstallation without leaving his/her data behind.
Upon detection of close contact, vContact conveys the
message to its users in private. It is clear that such
data fragmentation and minimization protect data pri-
vacy, and prevent data repurposing, abuse, and misuse.
Due to its distributed and, hence, scalable nature, it is
deployable from small local communities to across a
country.

4) No GPS-Based Geolocation: vContact is not based on
GPS. It is based on the hashed values of WiFi MAC
addresses (namely, signal IDs) without storing the user’s
physical geolocation. This leads to much stronger loca-
tion confidentiality than other GPS-based approaches,
because the association of signal IDs to their physical
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Fig. 2. Overview of contact detection using WiFi in vContact.

locations takes an enormously and prohibitively large
amount of manual work (that is, to visit every indoor and
outdoor spot of the city and logging down the locations
of all the MAC addresses encountered). Furthermore,
unlike other GPS approaches, vContact can detect indoor
contacts and hence, is more pervasive.

Detecting close contact using WiFi data is a challenging
problem. It is because signal vectors are sampled sporadically
at random discrete times. Such independence and asynchrony
among IoT devices result in difficulties detecting contact at
any arbitrary time. Furthermore, signals may be sparsely sam-
pled in the space (once every minute or so) Therefore, the
scanned IDs and their RSSIs at a location at a distinct time
may be different because of the change in the environment.
Moreover, due to the device heterogeneity on antenna design
and sensitivity, the collected signal IDs may also differ for
different users.

vContact overcomes these problems by employing an effi-
cient approach to represent the values between consecutive
signal vectors and a novel similarity metric to match signal
values for contact tracing. We present in Fig. 2 an overview
of vContact. It first processes the discrete signal profile from a
confirmed case or infected area by transforming it into a con-
tinuous profile (the processed profile). Using that given the
signal vector of a user at time t, if t falls in the time range
of the virus lifespan of a processed vector, vContact compares
their level of matching using a novel signal similarity metric.
If the similarity is larger than a given threshold, the user is
said to be in contact with the virus at t. A user is identified as
a close contact if the contact time exceeds a certain sustained
period of time as specified by health officials.

vContact is simple, and we have implemented it as a soft-
ware development kit (SDK) and Android app. We conduct
extensive indoor and outdoor experiments with a diverse and
representative set of IoT devices, such as smart watches and
phone brands in the market (Samsung, Honor, Huawei Nova,
Huawei Mate30, Xiaomi, and OPPO). Our results show that
it achieves high precision, recall, and F1-score (up to 90% for
the contact proximity of 2 m), and its performance is robust
against AP numbers, AP changes, and devices of different
brands. vContact can achieve good accuracy even when the
AP number is low (as few as five APs in our experiments),
meaning that it is widely applicable to city or suburban areas.

TABLE I
MAJOR SYMBOLS EMPLOYED IN THIS ARTICLE

TABLE II
MAJOR ACRONYMS USED IN THIS ARTICLE

We summarize some major symbols employed in this arti-
cle in Table I, and some major acronyms in Table II. The
remainder of this article is organized as follows. We intro-
duce related works in Section II. In Section III we present
the approach of vContact. We have implemented vContact as
an SDK, and discuss the experiment setting and illustrative
results in Section IV. With the SDK, we have installed it in
IoT smart watches and built an app, and present its implemen-
tation details and measurement in Section V-A. We conclude
with future works in Section VI.

II. RELATED WORKS

Automatic contact tracing has attracted much attention in
both academia and industry due to its importance in containing
the spread of the Covid-19 pandemic [8], [10], [11]. In this
section, we present the prior arts in the area.

Some studies have used signals, which reveal user geoloca-
tion, such as GPS, cellular data, and radio-frequency identifi-
cation (RFID). GPS signal provides a user’s exact location
for contact tracing [12]–[15], but it is usually weak and
noisy in indoor environments, limiting its contact coverage.
Cellular data can be used to infer a user’s public transporta-
tion trips [16], [17], which is crucial for contact tracing. Given
the data, one can detect users taking the same bus, train,
or subway with a confirmed case. However, this approach
often has high location errors, because the coverage of the
cell tower is large, and close proximity is difficult to detect.
Some researchers have also proposed using RFID to under-
stand contact [18], [19]. Nevertheless, special devices have to
be deployed for data collection. When using WiFi service,
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user devices would be associated with an AP. Based on the
AP association log message of user devices in the server,
WiFiTrace [20] and WiFiMon [21] reconstruct the locations
visited by a user for contact detection. In these works, WiFi
data are collected by passive sensing (i.e., association log), in
which user devices are required to associate with APs and the
data are stored and analyzed in a third-party server. Instead,
our proposed solution uses active WiFi sensing for data col-
lection. User devices scan surrounding APs once the devices
are WiFi-on, without the requirement of WiFi association.
Moreover, all user data are stored and analyzed locally in our
solution.

Meanwhile, some geolocation-based contact tracing systems
have been deployed around the world, such as Corowarner
in Turkey [22], Aarogya Setu in India [23], and Cotrack
in Argentina [24]. Corowarner and Aarogya Setu use GPS
data, while Cotrack fuses signals of RFID, GPRS, GPS,
and telecommunication technologies. To motivate users to
contribute their sensitive data (e.g., location information),
CovidCrowd [25] treats the process of collecting contact trac-
ing data from a crowdsourcing perspective, in which users are
offered rewards if they upload their contact tracing data. To
this end, it computes the optimal reward value, which could
maximize the utility of the system. All the above works may be
extended to contact tracing with the virus lifespan. However,
they may raise privacy concerns as they are based on user’s
physical geolocation and a third-party server for data analytics.
In contrast, vContact offers much better location confidential-
ity, achieves better location accuracy, and is pervasive and easy
to use.

Location privacy is a major concern for contact trac-
ing [26]. To better protect it, some works propose using
a magnetometer [27]. However, geomagnetism suffers from
location ambiguity, which may lead to unsatisfactory prox-
imity detection in practice. There has also been much
work based on device-to-device message exchange using
Bluetooth [6], [28]–[30]. User devices broadcast their ID using
Bluetooth and scan the nearby IDs. Based on the scanned IDs,
one can know if he/she has had close contact with an infected
case [31]. Among the Bluetooth approaches, centralized solu-
tions rely on a third-party server for contact tracing. Among
these works, BlueTrace [32] and ROBERT [33] are the two most
representative protocols. They use a decentralized framework
to collect data, but a centralized system to analyze the expo-
sure risks. Bluetooth data are collected via device-to-device
communication and are stored locally. Once a user is infected,
he/she can upload his/her scanned data to a security server for
analysis. Users who are at risk will then be identified by the
centralized system. The major difference of the two protocols
is the way that people know their risks. In BlueTrace, the health
authority would proactively contact the individuals who have a
high likelihood of virus exposure, while users of ROBERT have
to periodically probe the server for their risk score of exposure.
Based on the BlueTrace protocol, the automatic contact trac-
ing app TraceTogether [34] has been deployed in Singapore,
which is the first national deployment of the Bluetooth-based
contact tracing system. Based on a similar concept to that of
TraceTogether, another system called COVIDSafe has been

deployed in Australia to slow the spread of COVID-19 [35].
Furthermore, DESIRE [36] is an extension of the ROBERT
protocol, which is based on the same architecture of ROBERT
with some major privacy improvements. BeepTrace [37] also
uses a decentralized framework to store user data and a cen-
tralized approach to detect close contact. In the BeepTrace,
user devices upload collected GPS/WiFi/cellular tower data to
the blockchain network, and a third-party solver is responsible
for contact detection.

Since a third-party server may raise the concern of pos-
sible data abuse, other works advocate a fully distributed
approach, where the exposure detection and notifications
are processed on an individual device. Representative works
include PACT-UW [7], DP-3T [3], PACT-MIT [38], and
Pronto-C2 [39] (Note that both PACT-UW and PACT-MIT are
termed as PACT in their origin papers.). In these decentral-
ized systems, users collect the encrypted IDs of their nearby
users and store them locally. When someone is confirmed
as being infected, he/she can upload his/her encrypted ID
for other users to download for contact tracing. Compared
with centralized solutions, only the encrypted IDs of infected
cases are uploaded for the decentralized solutions, and contact
information is distributed on user devices for storage.

Based on the concept of decentralized systems, Google
and Apple provide a toolkit for privacy-preserving contact
tracing using Bluetooth [40]. Some Bluetooth-based decen-
tralized systems have also been deployed in some countries,
such Covid Watch in the U.S. [41] and SwissCovid [42]
in the Switzerland. All these schemes are independently
designed and very similar, apart from some minor variations
in implementation and efficiency. All the above works focus
on detecting face-to-face close contact, and they cannot be
extended to the case with virus lifespan. We propose a pri-
vate WiFi-based approach to detect close contacts with virus
lifespan. To the best of our knowledge, this is the first decen-
tralized work considering a virus lifespan for both direct and
indirect private contact tracing using WiFi. Moreover, no IoT
device pairing or communication are needed in our proposed
scheme, and hence, no minimal adoption rate.

In summary, we categorize the above representative works
according to their main distinctive features in Table III. These
works are categorized in terms of signals, data collection
method, detection method, virus lifespan consideration, and
geolocation privacy. Compared with existing works, vContact
uses WiFi data for contact detection. It employs decentralized
frameworks for both data collection and contact detection, i.e.,
it stores all user data in one’s own device exclusively (in case
someone is confirmed infection and is consent to share her/his
data), and the data matching process is completed locally.
Furthermore, vContact does not rely on the user’s physical
geolocation, leading to much stronger location privacy than
other geolocation-based approaches.

III. VCONTACT DETAILS

We present the details of vContact in this section. We
first discuss its data processing approaches to construct the
processed profile from the raw signal profile, for the patient
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TABLE III
COMPARISON OF RELATED WORKS

with and without the installed app on their IoT devices in
Sections III-A and III-B, respectively. We then introduce in
Section III-C an efficient and novel signal similarity metric
to measure signal similarity, given a user’s signal vector and
a processed vector. We summarize vContact and outline its
contact detection algorithm in Section III-D.

We define signal vector and signal profile as follows.
Definition 1 (Signal Vector): A signal vector A is repre-

sented as {(a1, s1), (a2, s2), . . . , (ai, si), . . . , (an, sn)}, where
ai is the signal ID (hashed and possibly encrypted AP MAC
address) and si is its RSSI.

Definition 2 (Signal Profile): A user’s signal profile is
defined as a sequence of signal vectors over time: W =
{(A1, t1), (A2, t2), . . . , (Ai, ti), . . . , (An, tn)}, where Ai is the
signal vector scanned at time ti.

In other words, a signal vector represents the signals and
RSSIs scanned by an IoT device at a certain time, while a sig-
nal profile is a collection of the signal vectors over time. The
contact tracing is then stated as follows. Given a user’s sig-
nal profile W = {(A1, t1), (A2, t2), . . . , (Ai, ti), . . . , (An, tn)},
detect if the user has contact with the virus at each ti by com-
paring the similarity of the signal vector at that time with the
signal profile of a confirmed case or an infected area.

A. Profile Processing for Patient With the App

Signals are not sampled continuously but at sporadic and
random intervals. Consequently, signal data are not contin-
uously observable, leading to difficulty in comparing signal
similarity at any arbitrary time. We propose here a data pro-
cessing approach to construct continuous profiles from raw
signal profiles for patients with our installed software.

We show an example to illustrate the signal profile
processing in Fig. 3. A confirmed case’s signal profile
{(A1, t1), (A2, t2), (A3, t3), (A4, t4)} consists of some signal
vectors at discrete times. However, the signal vectors of loca-
tions where the confirmed case was located between two
consecutive timestamps are not observable due to the sporadic

Fig. 3. Signal profile processing for a confirmed case with app.

data sampling. To address this issue, we generate a processed
vector Âi from any two consecutive signal vectors Ai and Ai+1
to denote the signals of the area where the confirmed case
visited between ti and ti+1. Furthermore, we use (ti, ti+1 + τi)

to indicate that anyone coming into the area between ti and
ti+1 + τi would be at risk. Note that the virus lifespan τi may
vary with time.

The formal definition of the processed vector is defined as
follows.

Definition 3 (Processed Vector): A processed vector Â
is denoted as {(a1, smin

1 , smax
1 ), (a2, smin

2 , smax
2 ), . . . , (ai, smin

i ,

smax
i ), . . . , (an, smin

n , smax
n )}, where (ai, smin

i , smax
i ) denotes

that the RSSI range of a signal ai is from smin
i to smax

i .
The signal strength in a processed vector is represented as

a range instead of an exact value in a signal vector. Given two
consecutive signal vectors Ai = {(ai

1, si
1), . . . , (ai

j, si
j), . . . ,

(ai
n, si

n)} at ti and Ai+1 = {(ai+1
1 , si+1

1 ), . . . , (ai+1
k , si+1

k ), . . . ,

(ai+1
m , si+1

m )} at ti+1, the processed vector in the time range
from ti to ti+1 is denoted as Âi = {(a�, smin

� , smax
� )|� =

1, 2, . . . , |Ai.a ∪ Ai+1.a|}, where a� ∈ Ai.a ∪ Ai+1.a and
(smin

� , smax
� ) is the signal strength range. There are three cases

for a� ∈ Ai.a ∪ Ai+1.a: 1) a� ∈ Ai.a ∩ Ai+1.a; 2) a� ∈ Ai.a
but a� /∈ Ai+1.a; and 3) a� ∈ Ai+1.a but a� /∈ Ai.a. Therefore,
(smin

� , smax
� ) is calculated as

⎧
⎨

⎩

(min(si
�, si+1

� ), max(si
�, si+1

� )), for a� ∈ Ai.a ∩ Ai+1.a
(γ, si

�), for a� ∈ Ai.a, a� /∈ Ai+1.a
(γ, si+1

� ), for a� ∈ Ai+1.a, a� /∈ Ai.a.

(1)
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Fig. 4. Signal profile processing for an infected area.

Here, γ is a value indicating a weak signal strength. The signal
strength of WiFi received in mobile devices usually ranges
from −30 (strong) to −100 dBm (weak) [43], [44]. Thus, we
set γ = −100 as a weak signal strength in our experiments.

Then, we construct a continuous processed profile from a
confirmed case’s signal profile considering the virus lifespan.
We present a formal definition of a processed profile.

Definition 4 (Processed Profile): A processed profile
contains a sequence of processed vectors over time:
Ŵ = {(Â1, tstart

1 , tend
1 ), (Â2, tstart

2 , tend
2 ), . . . , (Âi, tstart

i , tend
i ), . . . ,

(Âm, tstart
m , tend

m )}, where Âi is a processed vector for the time
slot from tstart

i to tend
i , and (tstart

i , tend
i ) indicates the time slot

of the virus lifespan.
Given a confirmed case’s signal profile W =

{(A1, t1), (A2, t2), . . . , (Ai, ti), . . . , (An, tn)}, the processed
profile is represented as Ŵ = {(Â1, t1, t2 + τ1), (Â2, t2, t3 +
τ2), . . . , (Âi, ti, ti+1 + τi), . . . , (Ân−1, tn−1, tn + τn−1)}, where
Âi is constructed from Ai and Ai+1 and τi is the virus lifespan
for the time slot from ti to ti+1. Note that τi is given by
the health officer, and it can vary for different time slots
depending on the frequency of disinfection operation in the
venues.

B. Signal Profile Processing for Infected Areas

For the case where the patient has not installed the app, we
need to extract the signals in the infected areas through a sur-
vey (signal collection process). We can evaluate if a user has
been in contact with an infected area by measuring the similar-
ity of her/his signal vector and signal vectors of each position
in the area. However, collecting WiFi data for every posi-
tion in the infected area is inefficient. We propose an efficient
approach to construct the processed profile for an infected area
using just some sampled signal data in the area.

Instead of collecting signal data at every position, staff walk
around the area with a WiFi-on device such as a phone or a
Raspberry Pi. The collected signal profile is some signal vec-
tors over time. To generate a representative processed profile
for the area, we aggregate all signals and their RSSIs in the
signal profile. As shown in Fig. 4, we merge the signal vec-
tors in the signal profile {(A1, t1), (A2, t2), (A3, t3), (A4, t4)},
which are collected in the infected area. We also consider the
time range [t, t′] when a confirmed case stays in the area and
the virus lifespan τ to construct the processed profile for the
infected area.

The processed profile of an area is represented as
Ŵ = (Â, tstart, tend), where Â is a processed vector and
[tstart, tend] is the time range of the virus lifespan. Given
the signal profile collected in the infected area W =
{(A1, t1), (A2, t2), . . . , (Ai, ti), . . . , (An, tn)}, the time range of

TABLE IV
AVERAGE NUMBER OF SIGNALS IN A SIGNAL VECTOR FOR VARIOUS

MOBILE PHONES

a confirmed case staying in the area [t, t′], and the virus lifes-
pan τ , the processed profile Ŵ = (Â, tstart, tend) is constructed
as follows: Â = {(aj, smin

j , smax
j )|j = 1, 2, . . . , |∪n

i Ai.a|} where
aj is a scanned signal in W (i.e., aj ∈ ∪n

i Ai.a), and smin
j is the

minimum signal strength of aj in W while smax
j is the max-

imum signal strength of aj in W; the surviving time of the
virus in the infected area is from t to t + τ .

C. Signal Similarity Metric

We propose a signal similarity metric to compare the simi-
larity of a signal vector with a processed vector for exposure
detection. The metric considers the signal IDs overlap ratio
and the RSSI difference.

Intuitively, the closer a user is to the location of the virus,
the more signal IDs are shared between the user’s signal vec-
tors and the vectors in the processed profile. Thus, we could
use the overlap ratio of two vectors’ signal IDs to indicate
their proximity. Given a user signal vector A at time t and a
processed vector Â, the overlap ratio is calculated as

O =
∣
∣
∣A.a ∩ Â.a

∣
∣
∣

min
(
|A.a|,

∣
∣
∣Â.a

∣
∣
∣

) (2)

where A.a is the Signal IDs in A, Â.a is the signal IDs in Â,
and | · | denotes the number of signal IDs.

The proposed metric (2) has the same numerator as the
well-known Jaccard’s index but different denominator. The
reason of using min(|A.a|, |Â.a|) instead of |A.a ∪ Â.a| as the
denominator is to mitigate the impact of the dynamic envi-
ronment and device heterogeneity. An IoT device such as a
phone or smart watch may scan different numbers of WiFi
APs at a location at different times. Moreover, different IoT
devices may have different abilities to scan signals, resulting
in two co-located devices possibly scanning different numbers
of signals. Table IV shows the average numbers of signals in a
signal vector of various co-located phones in a shopping mall.
The average number of signals is heterogeneous for different
phones. The difference could be significant for some phones.
Therefore, using |A.a ∪ Â.a| as the denominator will intro-
duce more variance while min(|A.a|, |Â.a|) is a more proper
measure.

A signal could cover a large area, so it is possible that
two vectors with a large proportion of common signals are
not in close proximity. Thus, we also consider the RSSI dif-
ference to denote the proximity. If a user stays close with
the virus, the RSSI difference of the same signal in two
vectors should be small. Given a user signal vector A =
{(a1, t1), (a2, t2), . . . , (ai, ti), . . . , (an, tn)} and a processed

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 16,2022 at 06:41:43 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: vContact: PRIVATE WiFi-BASED IoT CONTACT TRACING WITH VIRUS LIFESPAN 3471

Algorithm 1: Contact Detection

1 Input: A user’s signal profile W1 ;
A confirmed case’s or an infected area’s signal

profile W2;
Virus lifespan {τi|i = 1, 2, ..., |W2| − 1};
A proximity threshold α.

2 Output: results of contact detection at different
timestamps.

3 Initialize S to empty;
4 Construct the processed profile Ŵ from W2 and

{τi|i = 1, 2, ..., |W2| − 1};
5 foreach (Ai, ti) ∈ W1 do
6 contact = False;
7 foreach (Âj, tstart

j , tend
j ) ∈ Ŵ do

8 if tstart
j ≤ ti ≤ tend

j then
9 s = P(Ai, Âj);

10 if s ≥ α then
11 contact = True;
12 break;
13 end
14 end
15 end
16 if contact == True then
17 Add (True, ti) to S;
18 else
19 Add (False, ti) to S;
20

21 end
22 return S

vector Â = {(a1, smin
1 , smax

2 ), (a2, smin
2 , smax

2 ), . . . , (aj, smin
j ,

smax
j ), . . . , (am, smin

m , smax
m )}, for ak ∈ A.a ∩ Â.a, its RSSI

difference is calculated as

d(ak) =
⎧
⎨

⎩

smin
j − si, si < smin

j
si − smax

j , si > smax
j

0, otherwise.
(3)

The average RSSI difference at a timestamp is defined as

D =
∑

ak∈
(

A.a∩Â.a
) d(ak)

∣
∣
∣A.a ∩ Â.a

∣
∣
∣

(4)

where | · | denotes the number of signal IDs.
When a user has contact with the virus, the overlap score

O [(2)] should be large, while the RSSI difference D [(4)]
should be small. Therefore, we define the signal similarity of
A and Â as

P
(

A, Â
)

= O

D + 1
(5)

where 0 ≤ P(A, Â) ≤ 1. A larger P(A, Â) indicates closer
proximity.

D. vContact Algorithm and Computational Complexity

Anyone having contact with the surviving virus may be at
risk. Given a user’s signal vector Ai at ti, if the timestamp

ti is within the virus lifespan, and the similarity of Ai and
the processed profile of a confirmed case or an infected area
are larger than a threshold, the user will be detected as hav-
ing contact with the virus at ti. The algorithm is presented in
Algorithm 1.

Given a user’s signal profile W1, the signal profile of
a confirmed case or an infected area W2, the virus lifes-
pan {τi|i = 1, 2, . . . , |W2| − 1}, and a proximity threshold
α, we first construct the processed profile from W2 and
{τi|i = 1, 2, . . . , |W2| − 1} (line 4). Then, for each signal vec-
tor Ai at time ti in W1, if ti falls in the time slot of a processed
vector in the processed profile, we calculate the signal similar-
ity [using (5)] at ti (lines 7–9). If the similarity at ti is larger
than the given threshold α, the user is identified as having
contact with the virus at ti (line 11). The algorithm evalu-
ates the similarity of each signal vector in W1 and Ŵ, and
returns a list of detection results. The threshold α depends on
how we define the contact proximity for close contact. We
will discuss the relationship between the signal similarity and
physical proximity, and the determination for the proximity
threshold α in the following section.

As presented in Algorithm 1, given a user’s signal profile
W1, and the signal profile of a confirmed case or an infected
area W2, the computational complexity of detecting contact is
O(|W1|×|W2|), where |W1| and |W2| are the number of signal
vectors in W1 and W2, respectively.

IV. ILLUSTRATIVE EXPERIMENTAL RESULTS

We have implemented and packaged vContact as an SDK.
In this section, we present illustrative experimental results on
the SDK, using phones as IoT devices. We first introduce the
experiment settings in Section IV-A. Then, we study how to set
the threshold α in Section IV-B. We present the performance
of vContact for patients with app and infected areas in dif-
ferent sites in Sections IV-C and IV-D, respectively. Then,
we compare vContact with other state-of-the-art approaches
in Section IV-E. The studies on the impacts of different AP
numbers, dynamic environment, and heterogeneous devices
are covered in Sections IV-F–IV-H, respectively. Finally, we
discuss the impact of data sampling rate in Section IV-I.

A. Experimental Settings

We collect WiFi data using five mobile phones in three dif-
ferent sites. The brands and models of phones are different,
and include Honor, Huawei Nova, Huawei Mate30, Xiaomi,
and OPPO. According to some latest reports, these brands are
representative in the market. The three experimental sites are
an office, a bus station, and a store in a shopping mall. The
size of the office is around 10 m ×12 m. The bus station is
an outdoor area, the size of which is around 2 m ×15 m. The
area in the shopping mall for experiments is a large store with
a size of 20 m ×25 m. The total signal numbers are 32 in the
office, 109 in the bus station, and 301 in the shopping mall.
The average number of signals (i.e., scanned APs) in signal
vectors of the office, bus station, and shopping mall is 19.02,
24.0, and 46.29, respectively.
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To evaluate the detection performance for the case where
the signal profiles of confirmed cases are available, we first
put the five mobile devices at a location �0 for 10 min to
collect the WiFi data in each site. The WiFi signals with RSSIs
scanned by a device are collected. Then, we put the devices
at a location �i for 10 min for data collection, where i =
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and the distance between �0 and �i

is i meters. The data sampling rate is set as 5 s per record,
so we have around 120 records of data for a device in each
distance setting for each site.

To evaluate the detection performance for the case where a
confirmed case’s signal profile is unavailable, we walk in the
experimental sites to collect WiFi data using a mobile phone to
construct the processed profiles for each site. Then, we wander
around and outside the area with five mobile phones collecting
WiFi data for testing. The time when we were in and outside
the area is recorded during the experiments.

Given the data D collected by a user’s device, we use Da

to denote the data that are collected when the user has con-
tact with the virus (i.e., within the contact proximity with a
confirmed case or in an infected area), and use Db to denote
the data that are detected as having contact with the virus.
Da is the ground-truth data while Db is the detection result.
Precision, recall, and F1-score are used as metrics to evaluate
the contact detection results. The precision is defined as

precision = |Da ∩ Db|
|Db| (6)

where | · | represents the data size. Similarly, recall is defined
as

recall = |Da ∩ Db|
|Da| . (7)

Based on the definition of precision and recall, F1-score is
defined as

F1 = 2 ∗ precision ∗ recall

precision + recall
. (8)

We compare vContact with some other state-of-the-art
approaches, which are introduced as follows.

1) Bluetooth: It is widely used for digital contact tracing,
such as schemes [3], [7], [38]. To collect Bluetooth data,
two mobile devices are put at a distance of k meters
for 10 min in the three experimental sites, where k is
set to be {1, 2, . . . , 10}. We use one device as the
broadcaster and another as the scanner. The scanner can
scan the Bluetooth signal from the broadcaster, and the
RSSI is recorded over time. For each contact proximity
k meters, a threshold is selected for contact detection.
If a received signal strength is larger than the threshold,
they are detected as having contact.

2) Jaccard Similarity: It is used to evaluate the similarity of
two sets, and it is defined as the size of the intersection
divided by the size of the union of two sets. If the
Jaccard similarity of two signal vectors is larger than a
threshold, they are identified as within the contact prox-
imity. It is also used in a relevant work for proximity
estimation [45].

3) Average Manhattan Distance (AMD): It is used in
previous works [9], [45], which is defined as

AMD =
∑

i

∣
∣RSSIA,i − RSSIB,i

∣
∣

N
(9)

where RSSIA,i is the received signal strength of AP i
measured by user A, and N is the total number of over-
lapping APs. If the AMD of two signal vectors is less
than a threshold, they are identified as within the contact
proximity.

4) Average Euclidean Distance (AED): It is also used in
the previous work [9], which is defined as

AED =
√

∑
i

(
RSSIA,i − RSSIB,i

)2

N
(10)

where RSSIA,i is the received signal strength of AP i
measured by user A, and N is the total number of over-
lapping APs. If the AED of two signal vectors is less
than a threshold, they are identified as within the contact
proximity.

For the baseline approaches AMD and AED, given two sig-
nal vectors A and B, if a signal is scanned in A but not in B,
the signal strength is set as −100 in B for calculation, and
vice versa.

B. Threshold α

As mentioned in Section III, the contact detection algorithm
relies on a threshold α to identify contacts. In this section,
we discuss the selection of α. Given the contact proximity
km, if the distance of a user and the virus is less than km,
she/he should be detected as having contact with the virus.
Intuitively, α is relevant to the contact proximity and it should
be different for different contact proximities. We use the data
collected at �0 in a site as the data from confirmed cases, and
detect contacts for data, which are collected at �i (i > 0) in
the same site. When k meters is set as the contact proximity,
Da contains the data collected at �i where i ≤ k.

Precision and recall are used as metrics, and the results
of α versus precision and recall for k = 1 m, k = 2 m,
and k = 4 m are presented in Fig. 5. As the threshold α

increases, the precision increases while the recall declines. The
reason is that a larger threshold indicates closer proximity.
Thus, increasing the threshold would lead to high precision.
However, if the threshold is set to be too large, some of the
data distance of which is less than km will not be detected,
resulting in a drop in recall.

The threshold can be selected according to the requirements
of precision and recall for close contact detection. To balance
the precision and recall, we select the intersection points, the
precision and recall of which are equal for our following dis-
cussion. In Fig. 5(a), the precision and recall for k = 1 m
are low when α is set as 0.25, which indicates that identify-
ing contact within 1 m is difficult. As shown in Fig. 5(b), the
precision and recall for k = 2 m have a significant improve-
ment when the threshold is around 0.20. The precision and
recall in Fig. 5(c) for k = 4 m are high (around 70%) if the
threshold is around 0.17. We use the same strategy to select
thresholds for other contact proximities.
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(a) (b) (c)

Fig. 5. Precision and recall for different contact proximity K. (a) k = 1 m. (b) k = 2 m. (c) k = 4 m.

Fig. 6. ROC curve.

Furthermore, we use ROC to evaluate the performance of
vContact for k = 1 m, k = 2 m, and k = 4 m. The ROC curves
are created by plotting the true positive rate (TPR) against the
false positive rate (FPR) at various threshold α. We present
the results in Fig. 6. The results demonstrate the effective-
ness of vContact. Moreover, as k increases, the performance of
vContact becomes better because the signal difference is more
significant when the distance between locations increases. The
threshold α can also be selected based on the ROC curve to
balance the TPR and FPR.

C. Site Study

We present the performance of contact detection in different
sites in this section. We use different distances (k = 1, 2, 3,
4, 5) m to denote the contact proximity, and the threshold is
set according to the discussion in Section IV-B. The results
of precision, recall, and F1-score versus contact proximity are
shown in Fig. 7.

In Fig. 7(a), as the contact proximity increases, the precision
in the three sites increases, indicating that it is easier to detect
contacts within a greater proximity. The precision for k = 1 m
is low in all sites. The result shows the difficulties of identi-
fying whether the contact happens in 1 m because the WiFi
signals within a 1-m range are usually similar. However, the
precision has significant improvements for larger contact prox-
imity. The precision is high (50%–70%) when the proximity is
2 m. The precision indoors (office and shopping mall) is better
than the precision outdoors because WiFi signals are more sta-
ble indoors. The improvement is more significant in the office

scenario compared with the shopping mall scenario. The recall
shown in Fig. 7(b) indicates the good performance of vCon-
tact to detect those who have close contact. We present the
F1-score result in Fig. 7(c), indicating the satisfactory overall
performance of vContact.

D. In–Out Detection of Infected Areas

Contact detection for confirmed cases without the app is to
detect whether a user has been in or outside an infected area.
We construct processed profiles for the office, bus station, and
a store in a shopping mall using the collected WiFi data. Then,
we compare the similarity between the processed profile of
the area and the data collected in and outside the area. If the
similarity is larger than the threshold α, the data are identified
as being collected in the area and having contact with the virus.
α is set as 0.2 in the experiment. Precision and recall are used
as the metrics for evaluation. The results are shown in Fig. 8.
The detection in all the sites achieves good performances. The
precision and recall are high for the three sites, illustrating that
vContact is very efficient for in–out detection of infected areas.

E. Comparison With Other Approaches

As the baseline approaches rely on a selected thresh-
old to detect contact, for a given contact proximity, we
use the same strategy to select thresholds as discussed in
Section IV-B. Precision, recall, and F1-score are used as
metrics for performance comparison.

The results of precision, recall, and F1-score versus prox-
imity on the three data sets are presented in Figs. 9 (the
office), 10 (the bus station), and 11 (the shopping mall).
In Fig. 9, the precision, recall, and F-1 score of different
approaches increase as the contact proximity increases. vCon-
tact always outperforms other baseline approaches on the
metrics of precision and F-1 score. vContact has higher recall
than others when contact proximity is less than 5 m and has
similar performance to Bluetooth when the contact proximity
is 5 m. The curves of precision, recall, and F1-score on the
other data sets have a similar trend to that on the office data set.
As shown in Fig. 10(a), the precision of Bluetooth is slightly
higher than vContact on the bus station data set. But vContact
has better performance than Bluetooth and other approaches
with respect to recall and F1-score. As for the performance
on the shopping mall data set, vContact has similar precision
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(a) (b) (c)

Fig. 7. Performance in different sites. (a) Precision. (b) Recall. (c) F1-score.

Fig. 8. Precision and recall of in–out detection.

to Bluetooth when contact proximity is 1 and 2 m, but has
a significant improvement on precision when contact proxim-
ity is 3 and 4 m. In Fig. 11(b), vContact has similar recall
to Bluetooth and AMD. vContact always outperforms other
approaches, which use WiFi data for detection. Overall, vCon-
tact has a higher F-1 score than other approaches in all data
sets, indicating that it is more efficient for contact detection.
We can also learn from the figures that vContact and other
approaches have better performance in the indoor scenario,
and the improvement of vContact is more significant compared
with the outdoor site.

F. AP Number

In this part, we evaluate the impact of AP number on the
performance when the contact proximity is set as k = 2 m.
. We randomly filter σ% signals from the signal vectors for
each site, and compare the signal similarity of two devices for
contact detection. The filtering rate σ% is set to be 10%–90%.
The precision and recall versus the average signal number are
presented in Fig. 12.

In Fig. 12, as the average signal number increases, the
precision increases slightly. The precision is still acceptable
when the average signal number is small. Even removing 90%
of the signals, the precision does not drop significantly for the
office and shopping mall sites. The precision outdoors (the
bus station) are more stable than others. The recall shown in
Fig. 12 does not have obvious change as the signal number
changes, demonstrating the robustness of our approach.

G. Environmental Dynamicity

APs in a site may change at different times, for example,
some APs may shut down or the RSSIs may be different. We
study the impact of the difference of APs and RSSIs on the
performance of vContact. Following the previous experiments,
two phones are put at a distance of 2 m for data collection.

To study the impact of the difference of APs, we filter out
σ% signal IDs from the signal profile of a phone while another
remain the same. The filtering rate σ% is set to be 10%–90%.
The precision, recall, and F1 score versus the filtering rates
are presented in Fig. 13. As shown in Fig. 13(a), when more
signals are filtered (i.e., σ% becomes larger), the precision,
recall, and F1 score all decline. However, even with 50% of
the signals filtered, vContact still achieves good performance
in the three sites, which illustrates the robustness of vContact
w.r.t the difference of APs.

Furthermore, to evaluate the impact of the difference of
RSSIs, we add a Gaussian noise to the RSSIs in one phone’s
signal profile as follows:

si = si + d, d ∼ Gaussian(0, η) (11)

where si is the raw RSSI and d is the Gaussian noise. η is
set to be 1–8. The precision, recall, and F1 score versus the
filtering rates are presented in Fig. 14. The precision of vCon-
tact at the bus stop and shopping mall increases slightly when
the noise becomes larger. The reason is that when the noise
becomes large, the signal similarity becomes smaller and false
positive declines. However, the recall and F1 score drop with
the increase in the noise. Overall, the performance of vCon-
tact remains good when the noise is small (less than 3) but it
drops significantly when the noise is large.

H. Heterogeneous Devices

Different devices have different abilities to scan WiFi sig-
nals. Two co-located devices may scan different signals and
RSSIs. We evaluate the performance of different devices. For
each device, we compare its data at �0 with other devices’
data at �i (i > 0) in the same site. We set the contact proxim-
ity as 1–5 m, and set the threshold following the discussion
in Section IV-B. Precision, recall, and F1-score are used as
metrics.

The precision versus contact proximity for different devices
in the office site is presented in Fig. 15(a). Given the contact
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(a) (b) (c)

Fig. 9. Comparison with baseline approaches on the office data set. (a) Precision. (b) Recall. (c) F-1 score.

(a) (b) (c)

Fig. 10. Comparison with baseline approaches on the bus station data set. (a) Precision. (b) Recall. (c) F-1 score.

(a) (b) (c)

Fig. 11. Comparison with baseline approaches on the shopping mall data set. (a) Precision. (b) Recall. (c) F-1 score.

(a) (b) (c)

Fig. 12. Impact of signal numbers (AP numbers) on the performance of contact detection. (a) Office. (b) Bus station. (c) Shopping mall.

proximity, the precision is different for distinct devices, which
is consistent with our discussion. As the contact proximity
increases, the precision of all devices increases. The precision
of all devices significantly increases when k ≥ 2 m. The recall

versus contact proximity for different devices in the office is
presented in Fig. 15(b). Similar to the result of precision, the
performance of all devices has a large improvement in recall
when k = 2 m. All devices achieve high recall when k ≥ 2 m,
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(a) (b) (c)

Fig. 13. Impact of different filtering rates on the performance of contact detection. (a) Precision. (b) Recall. (c) F1-score.

(a) (b) (c)

Fig. 14. Impact of different noise levels on the performance of contact detection. (a) Precision. (b) Recall. (c) F1-score.

(a) (b) (c)

Fig. 15. Performance of different devices. (a) Precision. (b) Recall. (c) F1-score.

indicating the good performance of our approach on recall.
The F1-score result is shown in Fig. 15(c), which demonstrates
the good overall performance of all tested devices. The results
demonstrate that our approach is effective and can be applied
to phones of different brands.

I. Data Sampling Rate

Since the APs and their RSSIs of a site do not change in
a short time, the impact of data sampling rates is not obvious
when users are stationary. Consequently, we discuss its impact
for the scenario when users are moving.

Some users are walking in groups in the campus with their
mobile phone to collect WiFi data. The time interval of data
is set as 10–80 s in the experiment. For the data of the same
group, we use recall as the metric to evaluate the performance
of contact detection. The result of recall is presented in Fig. 16.
As the time interval becomes larger, the recall of the detection

declines. The reason is that users may scan WiFi data at two
locations where the similarity of the WiFi is significantly dif-
ferent when users are moving and the time interval is larger.
As a result, contact is more difficult to detect.

V. IOT IMPLEMENTATION AS CASE STUDY

With the vContact SDK, we have installed it into Android
smart watches whose data are synced to one’s phone. Through
an app, the user is notified of his/her exposure duration to the
virus. We report the smart watch implementation details and
user interface in Section V-A. Besides smart watches, we have
also installed the SDK on Android phones. We validate its
design and performance in Section V-B.

A. Smart Watch Implementation

Our SDK can be run independently on Android phones
for data collection and exposure detection. It can also run
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TABLE V
RESULT OF EXPOSURE NOTIFICATION FOR A SEPARATION OF 2 M

Fig. 16. Impact of different time intervals.

Fig. 17. Data transition from smart watches to Android and iOS phones.

on Android IoT devices to collect data and transit the data
to an Android/iOS phone for exposure detection. We show
in Fig. 17 an IoT smart watch system we have built based
on vContact. The smart watches pair with phones through
an Android or iOS app, as illustrated here with an Android
phone and iPhone. Scanned data of the smart watches are
synced with their phone apps for exposure computation and
notification.

The user interface of the phone app is shown in Fig. 18.
As shown in Fig. 18(a), once a user turns on the button of
“Exposure data collection,” the app will start to scan nearby
WiFi and store the data locally every 1 min. Users may
turn off data collection anytime and anywhere for personal
reasons. The signal IDs (i.e., the AP MAC addresses) are
encrypted when the data are stored. If a user is confirmed
as being infected, she/he could upload her/his signal profile
to the server [Fig. 18(b)], so that others could download the

data for matching. If a user has close contact with a con-
firmed case, she/he will receive a notification, showing when
the close contact happened and how long the contact duration
was [Fig. 18(c)]. In the app, data are downloaded and matched
automatically every day. For the purpose of testing, we also
have a testing mode as shown in Fig. 18(d), by which we can
download the data, and trigger the detection manually during
the testing.

B. Testing and Validation for Phones

Besides smart watches, we have installed the SDK on
five Android phones, namely, Honor, Huawei Nova, Huawei
Mate30, Xiaomi, and OPPO. We present here a case study on
these phones. We set the contact proximity as 2 m for testing.
The app collects WiFi data every 1 min. Hence, the detec-
tion approach introduced in Section III will report a detection
result (i.e., true or false) for the data at each minute. In our
testing, if a user stays with the virus within 2 m for more than
5 min in a 10-min sliding time window, she/he will receive
a possible exposure notification. The virus lifespan is set to
be 30 min. Note that the contact duration, the length of the
sliding time window, and the virus lifespan are parameters for
the app, which can be changed according to the advice of the
health officer.

We test the app in an office using the five phones. The pro-
cedures are as follows. One of the phones is selected as the
confirmed case, and other phones are put at a location, which
is 2 m away from the confirmed case. The button exposure
data collection is turned on for 15 min. Then, the confirmed
case uploads its signal profile, and the other phones download
the signal profile for matching. After that, we put other phones
at a location, which is 4-m away from the confirmed case and
repeat the testing. Each phone is selected as the confirmed case
in turn. The ideal result is that a phone only receives a notifi-
cation when it is 2-m away from the confirmed case but there
is no notification for 4 m. The testing results are presented
in Tables V and VI.

√
represents that a phone receives a

notification, while × means it does not receive a notification.
Table V shows the results of exposure notification for 2 m.

It illustrates the good performance of our app for exposure
notification. The performance of the Honor phone is not as
good as that of other phones, indicating the different ability
of phones to scan WiFi signals.

We show the results of exposure notification for 4 m in
Table VI. Compared with the results in Table V, more phones
are detected as having nonclose contact, which is consis-
tent with our expectation. Performance is distinct for different
phones, but the overall performance is good.
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Fig. 18. User interface of an app to notify users of viral exposure duration. (a) Exposure data collection. (b) Share positive test result. (c) Possible exposure
notification. (d) Testing mode.

TABLE VI
RESULT OF EXPOSURE NOTIFICATION FOR A SEPARATION OF 4 M

VI. CONCLUSION AND FUTURE WORKS

We have proposed vContact, a novel WiFi-based private
IoT contact tracing scheme with virus lifespan, which may
be spatial-temporally different due to the sanitization process.
By detecting close contact based on the similarity of WiFi
data, vContact captures both direct face-to-face and indirect
environmental contact. To the best of our knowledge, this is
the first decentralized work to consider the virus lifespan for
both direct and indirect private contact tracing using WiFi. We
proposed and studied data processing approaches and a signal
similarity metric for close contact detection. Due to the ubiq-
uity of WiFi signals, vContact can be pervasively deployed for
contact tracing.

We conducted extensive experiments on vContact by imple-
menting it as an SDK. Our experimental results show that
vContact achieves high precision, recall, and F1-score (up
to 90% when the contact proximity is 2 m) for differ-
ent experimental sites, and its performance is robust against
AP numbers, and devices of different brands. Even with a
small number of signals (5), vContact still achieves good
performance. This mean it is widely applicable to city or sub-
urban areas. It is also robust against environmental changes to
detect indirect contact, even if a substantial fraction (50%) of
the APs has been changed. We have installed vContact SDK
into IoT devices of smart phones and watches, and validate
the simplicity, implementability, and efficiency of our design.

We discussed below the possible future directions of the
work. One is to extend vContact so that it can be integrated
with other non-RF signals, such as INS and geomagnetism
to strengthen its contact tracing capability, especially in areas
where WiFi or Bluetooth are not available. Moreover, the the-
oretical analysis of the proposed technique under hypothesis
testing context is crucial and useful, which has been used in
WSN-based data fusion [46], [47]. Another direction is to
identify those dynamic or ephemeral APs (e.g., hotspots of
smartphone) from their MAC address, so that they could be
filtered out in contact tracing. To this end, we can build a
dynamic, scalable, and crowdsourced reference database for
those permanent MACs to improve further the robustness of
vContact. Yet another direction is to strike a balance between
power conservation and WiFi scanning frequency. To preserve
battery without compromising on tracing accuracy, we may
use a lower data sampling rate when users are stationary and
a higher one when moving. To achieve this, we need to devise
a dynamic data sampling algorithm by estimating user activity
using INS or other signals.
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