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Abstract—We consider pervasive localization for a roaming
user who may sample widely varying signal modes (GPS, WiFi,
geomagnetism, Bluetooth low energy, etc.) and values over time
and space. Previous works can only apply to specific (two or
three) modes and environment, and cannot accommodate arbi-
trary signal modes and environmental changes due to signal
noise, device heterogeneity, phone carriage states, etc. We pro-
pose SiFu, a simple, accurate, and generic multimodal signal
fusion platform robust against environmental deviation from its
design point. As a generic framework, SiFu treats a single-modal
localization algorithm as a black box to embrace any existing,
emerging or future signals with only incremental training. It
employs Bayesian deep learning and data augmentation to miti-
gate the location bias of the single-modal localization algorithm
and run-time deviation from the training data, respectively. Using
a unified multimodal likelihood formulation and particle filter, it
fuses with inertial sensor measurements for localization. We con-
duct extensive experiments in different venues (campus, mall, and
subway station), and show that SiFu achieves significantly higher
localization accuracy as compared to state-of-the-art (cutting the
error by more than 20%). It is also robust against environmental
variations (reducing error by 30%), even when the signal values
deviate greatly from their original design settings.

Index Terms—Bayesian neural network and model averaging,
data augmentation, fusion framework, generic platform, robust
localization.

I. INTRODUCTION

THE LOCALIZATION technology has wide and important
applications in navigation, location-based marketing, geo-

fencing, etc. [1], [2], [3]. In this work, we consider the case of
pervasive localization, where location is to be estimated online
continuously and seamlessly when the user roams across
diverse indoor and outdoor environments. This indicates that
we need to locate not only indoor environments, but also out-
door and semi-indoor environments. We illustrate an example
in Fig. 1, where a user roams from one building to another. As
he/she moves, the signals the user samples change markedly
over space and time, due to drastically different available sig-
nal modes (GPS, WiFi, Bluetooth, geomagnetic field, etc.),
fluctuating signal values, and dynamic collected set of signal
modes.

Numerous localization algorithms have been proposed and
studied for individual signal mode, such as GPS, WiFi,
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Fig. 1. Case of pervasive localization, where a user is to be localized as
he/she roams in dynamic and diverse signal environment.

Bluetooth low energy (BLE), magnetic field, video, image,
UWB, Lidar, etc. [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20]. These works
in general estimate user location from the spatial likelihood,
which is the probability of the user at different points in the
area of interest. While impressive, they confirm that every
mode has its own limitations, as evident from its strong
performance under some conditions and weak in another. For
example, GPS is effective in outdoor open environments and
not so indoor, while WiFi works well indoors but not so away
from city. To support pervasive localization, fusion localization
has recently been explored to leverage the signal strength while
mitigating the limitations, where multimodal signals sampled
by sensors of modern mobile phones are combined to estimate
locations.

We consider, for the first time, designing a multimodal
fusion platform for pervasive localization achieving the fol-
lowing design goals.

1) Generosity Toward Signal Modes: As a user roams, the
sampled signals are spatially and temporally varying.
Spatial variation is due to signal coverage and infras-
tructure in different areas. For instance, WiFi may be
widely available indoors, but GPS would be more acces-
sible outdoors. Temporal variation means that a user,
even standing at a location, may sample a dynamic set
of signal modes over time, mainly due to the hetero-
geneous sampling rates of the sensors and nonuniform
beaconing intervals of the asynchronous signal emit-
ters. Our fusion platform hence must be a “generic”
framework independent of specific signal modes, being
able to accommodate flexibly not only existing, but also
emerging and future, signal modes.

2) High Robustness and Accuracy to Signal Value Changes:
Needless to say, our fusion algorithm should achieve
high localization accuracy by combining different
position estimations of the sampled signals. Note that the
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environment, such as partitions, objects, human activ-
ities, phone carriage states, and device heterogeneity,
could affect the measured value of a signal mode at a
location, leading to received signal noise or bias, miss-
ing values of some (WiFi) access points (APs), distortion
of magnetic field signals, etc. The impacts of such sig-
nal perturbations should be accounted for to maintain
high localization accuracy, i.e., “robustness” against sig-
nal value fluctuation. Note that while genericity refers to
the availability (presence or absence) of signal modes,
robustness refers to maintaining the system accuracy
against value changes of the sampled signal modes.

Although many works have been done on fusion localiza-
tion, they are highly customized and specialized for only a
few (two or three) signal modes and require the modes to be
fully available at the time of location estimation [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30]. Therefore, they
cannot be applied in a highly varying signal environment for
pervasive localization. In addition, these algorithms are metic-
ulously designed and engineered, and hence cannot support
flexible addition and removal of signal modes, and extension
to other emerging or future signals. While some works can
handle dynamic signal combination, they are not robust against
environmental variations because they are tuned for a partic-
ular setting. This makes them difficult to cover more general,
wide range, and dynamic environments [31], [32].

Designing a generic multimodal fusion platform robust
against environmental changes is challenging, because the
platform must not exploit the particular characteristics and
bias/error of the signal mode. Moreover, because of environ-
mental dynamics in its running, exhaustively considering all
variations in the training data is not practical.

We propose SiFu, a novel, simple, generic, and robust
multimodal signal fusion platform for pervasive localization.
We illustrate in Fig. 2 a mobile phone running SiFu. With the
sensors on, SiFu fuses any set of signal modes sampled at that
time to estimate the location. Our work makes the following
contributions.

1) A Novel Generic Multimodal Platform for Multimodal
SignalsTo achieve genericity, SiFu does not devise any
localization algorithm specific to signal mode. Instead,
it is an original framework leveraging upon the existing
localization algorithm for each signal mode. Treating the
algorithm as a black box, it assumes the general case that
each of them outputs independently the spatial likelihood
of the user. Based on the sampled modes, SiFu processes
and fuses the spatial likelihoods of the modes to esti-
mate user location. The multimodal platform is flexible,
accommodating arbitrary combinations of signal modes
resulted from dynamic environments and heterogeneous
signal sampling rates. It hence enables seamless perva-
sive roaming over wide signal variation, achieving high
elasticity and scalability in signal modes. Thus, it can
be easily deployed in any new environments with new
signals.

2) High Accuracy With Bayesian Deep Learning: The spa-
tial likelihood outputted by the algorithm of each mode
may be noisy or biased. SiFu employs Bayesian deep

Fig. 2. SiFu, a generic fusion platform for highly accurate and robust
localization.

learning models to correct that, leading to a more accu-
rate predicted likelihood for each mode. The predicted
likelihoods are then combined by a simple but effective
weighted scheme, which seeks to optimize the weight of
each mode to minimize the localization error. Finally, a
particle filter is employed to integrate the result with user
movement as obtained from inertial navigation system
(INS) signals to further enhance the accuracy.

3) Robustness Using Data Augmentation Training: In train-
ing our Bayesian deep learning model, we apply data
augmentation to simulate signals that may be encoun-
tered in reality. Such augmentation approaches unavoid-
ably require the knowledge of the signal characteristics,
and we provide examples on how this is done for WiFi
and geomagnetic field. The augmentation factors in dif-
ferent environmental changes in the training process,
therefore greatly relieving our model from overfitting to
a specific environment. As such, this makes SiFu robust
to a wide range of run-time environments.

SiFu is easy to implement and deploy. It is training effi-
cient, without extra data collection process beyond those for
individual signal modes. Its genericity naturally extends to
any emerging or future modes with only incremental train-
ing on the newly introduced mode without the need for global
training.

We have implemented SiFu in Android phones and con-
ducted extensive experiments in the university campus, a
subway station, and a shopping mall, given WiFi, magnetic
field, Bluetooth, and GPS as our fusion signals. Our results
show that SiFu achieves substantially lower localization error
as compared to other state-of-the-art schemes (lower by more
than 20% in our experiments). Despite heterogeneous devices,
perturbed signals and missing APs, SiFu still maintains its
high accuracy with significantly lower localization error as
compared with other schemes (by around 30%).
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TABLE I
RELATED WORKS ON FUSION LOCALIZATION

The remainder of this article is organized as follows. We
discuss related works in Section II and overview SiFu in
Section III. Sections IV and V present the details of the offline
training and online prediction processes, respectively. We eval-
uate SiFu with illustrative experimental results in Section VI,
and conclude in Section VII.

II. RELATED WORKS

We introduce the related works in following two aspects:
Section II-A fusion localization and Section II-B mitigating
environmental variations.

A. Fusion Localization

As GPS signals cannot penetrate indoors, researchers have
been studying alternative signal modes for indoor localiza-
tion. Among them, radio-frequency (RF) signals, such as
Wi-Fi [4], [6], [7], [8] and Bluetooth [9], [10], and geomag-
netic field [11], [12] are popular due to their high availability.
Other signal modes, including images/videos, Lidar, and UWB
have also been explored [13], [14], [15], [16]. While encourag-
ing results have been reported, each of the signals has its own
limitations. Consequently, each of these single-modal systems
cannot be used to support pervasive localization alone, but may
serve as the building block in our multimodal fusion platform.

Recently, there have been studies on signal fusion. Some
works engineer the scheme according to the specific signal
modes. For instance, the works in [22], [33], and [30] are
designed based on WiFi while [34], [35] builds on UWB.
Without the availability of these modes, these works would
not be possible. Another typical example is the coarse-to-
fine method, which aims to reduce the search space gradually
by considering signal modes sequentially. For example, the
work [21] constructs heterogeneous filters for WiFi, sound,
and motion, which are applied one by one to prune away can-
didate location points. The works in [27] and Magfi [29] work
in a similar manner where the matching space of the magnetic
field is constrained by other signal modes. As a sequential
structure is adopted in these works, each signal mode tightly
couples with the others and the sequence affects the accuracy.
Then, when some signal modes are missing, the system might
not work properly.

Some other works jointly use different signal modes. In [23],
WiFi and magnetic field fingerprints are hybridized in the input
level. It stacks WiFi and magnetic field fingerprints into a
single vector and estimates user location using kernel discrim-
inant analysis with the KNN algorithm. Similarly, VMag [25]
combines magnetic field measurement with the feature vec-
tor obtained from the captured image, and then use a neural
network to extract the deep features for final location estima-
tion. The proposed scheme in [28] also constructs bimodal
images from the magnetic field and light signals as the inputs
of its LSTM feature extraction network. The work WiMag [24]
first separately processes WiFi, magnetic and inertial sig-
nals, and then selects a result according to the phone status.
Although impressive, they are not applicable under heteroge-
neous signal sampling rates because all signal modes have
to be available as the input. Also, they are tailor-made for a
fixed set of signal modes, and hence cannot be extended to
additional or other modes. In contrast, our fusion platform
overcomes this problem by unifying heterogeneous signals
independently into the same likelihood framework.

To handle the missing signal modes, the work of [31]
introduces a maximum-likelihood-based algorithm that uses
an F-score weighting scheme where the weights are fixed
and based on historical data. Uniloc [32] also designs a
probabilistic framework that combines the available local-
ization schemes using the predicted errors estimated in the
online phase. These works assume a static environment with
the parameters tuned accordingly. By contrast, SiFu is more
robust against environmental variations with its data aug-
mentation and self-correcting neural networks for location
estimation.

User movement is often utilized to enhance loca-
tion estimation. Using pedestrian dead reckoning (PDR),
stride lengths and orientations can be extracted from iner-
tial sensors, such as the gyroscope, accelerometer, and
magnetometer. Works in the area often combine such
information with specific signals in a highly customized man-
ner [22], [24], [25], [27], [30], [33], [34]. Nevertheless, SiFu
employs a typical particle filter, and is generic to support any
signal modes.

In Table I, we summarize the above discussion on SiFu with
respect to fusion localization.
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TABLE II
RELATED WORKS ON MITIGATING ENVIRONMENTAL VARIATIONS

B. Mitigating Environmental Variations

For WiFi, the work in [6] addresses signal noise and miss-
ing signal value problems using a denoising autoencoder.
Tilejunction mitigates signal noise by mapping the received
signal strength indicator (RSSI) of each AP to a tile for local-
ization [36]. Others have utilized channel state information,
that contains more detailed location information, to alleviate
the impacts of signal noise [37], [38]. He et al. [39] used
a subset sampling method to check if there is any altered
WiFi fingerprint signal before localization. The works in [40]
and [41] introduce transfer learning techniques to adapt RSS
measurements by transferring the knowledge from the old
model to the altered one, so that localization can still be done
after fingerprint adaption. To minimize heterogeneity among
devices, the works in [42] and [43] leverage a linear mapping
among them. Furthermore, robustness against these environ-
mental variations specifically for fingerprinting approaches is
also studied in [44] and [45].

For magnetic field, [46] explores the use of different filters
to extract magnetic field fingerprints from noisy measure-
ments. To address the offset in magnetic field measurements
caused by heterogeneous devices and carriage states, the
mean removal technique is often used [22], [29]. Several
other calibration techniques for magnetometers have also been
proposed [47], [48], [49].

A few other works have also tackle environmental vari-
ation for other signal modes. In [50], RSSI measurements
in different phone carriage states are taken to understand
their relationship for proximity detection. Moreover, adap-
tive system parameters are introduced in [35] and [51] to
address the nonline-of-sight problem for UWB, and the user
heterogeneity and carriage state problems for PDR systems,
respectively. Despite the above works, due to their highly
customized nature, extending them to cover multimodal sig-
nals and a wide range of environmental conditions is not
straightforward. As compared to them, SiFu is not designed
and tuned for a specific set of signals or a particular envi-
ronment, but applies to arbitrary set of signals with robust
performance under environmental variation for pervasive
localization.

TABLE III
MAJOR SYMBOLS USED IN SIFU

In Table II, we summarize the above discussion on SiFu
with respect to mitigating environmental variations.

III. SIFU OVERVIEW

SiFu is based on spatial likelihoods independently given
by the localization algorithm of individual mode. As likeli-
hoods at two physically close locations are expected to be
similar, the area of interest is discretized into m reference
points x1, . . . , xm where likelihoods will be computed. We
list some of the important symbols and acronyms used in this
article in Tables III and IV, respectively.

Fig. 3 overviews SiFu, which consists of two phases:
1) offline training phase and 2) online prediction phase. In
the offline phase, a likelihood prediction network based on the
Bayesian neural network is trained for every signal mode. The
general flow of the training process is depicted in Fig. 3(a).
Given the original collected data of a signal mode, SiFu aug-
ments them to synthesize signals from different localization
environments in the data augmentation module. Note that some
signal modes such as GPS and cellular may not need this step
as they directly provide location results instead of raw signal
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TABLE IV
ACRONYMS USED IN SIFU

Fig. 3. SiFu overview. (a) Offline training phase. (b) Online prediction phase.

values. Using the black-box localization algorithm on these
augmented signals, augmented spatial likelihoods that resem-
ble the one received in a range of localization environments
are obtained for training the Bayesian likelihood prediction
network. The only requirement for the black-box localization
algorithm is giving a likelihood prediction. The network learns
to correct these likelihoods from any bias of the localization
algorithm and then outputs more accurate predicted likelihoods
by using a localization error computed from the ground truth
location labels in the collected data for backpropagation.

For the online prediction phase, the major procedures are
illustrated in Fig. 3(b). At the localization time, SiFu processes
all the signal modes that are sampled within a window of size,
say, 2 s. Each available signal mode will be unified into a spa-
tial likelihood using the given localization algorithm. Suppose
there are n observed signal modes si, . . . , sn in the sampling
window, likelihoods pij := p(xi|sj) for all i and j would be
computed. Then, the spatial likelihood of signal mode j would
be represented as a vector containing all the likelihoods for
the mode as [p1j, . . . , pmj]T.

For each signal mode, the Bayesian likelihood prediction
network corrects the spatial likelihood into a more accurate
predicted likelihood. From the independently computed likeli-
hoods, a weight based on entropy is extracted for each signal
mode and is used to fuse the likelihoods together in the

weighted likelihood fusion module. Finally, the final location
result is estimated through a particle filter, where the fused
likelihood is integrated with the user movement information
provided by INS signals with feasible areas of the map as a
constraint.

IV. OFFLINE TRAINING PHASE

In this section, we discuss the offline training phase of SiFu.
In Section IV-A, we overview the data augmentation process
to train our Bayesian likelihood prediction network. Next, we
provide concrete examples of data augmentation methods for
WiFi and magnetic field in Sections IV-B and IV-C, respec-
tively. We present in Section IV-D the details of the network
design and the localization loss computation.

A. Data Augmentation

SiFu employs data augmentation techniques to train the
Bayesian likelihood prediction network. The intuition of data
augmentation is to simulate signals sampled under different
localization environments. This enables the network to take
into consideration the environmental variations during likeli-
hood prediction, and thus, generalize under general operational
environments. As the survey process is often performed in a
better condition [52], for example, in the least busy time or
with a steady carriage state and walking pattern, collected data
is usually cleaner and accurate. As such, SiFu makes use of
the collected data to create augmented data for training our
neural network. It manipulates raw signals instead of directly
adding perturbations to the spatial likelihood to make sure
that the augmentation follows real-world situations according
to the signal characteristics, which could possibly improve the
effectiveness of the likelihood prediction network.

While numerous data augmentation techniques for images
have already been discussed in previous literature [53], in the
following, we provide examples of data augmentation meth-
ods for WiFi and magnetic field. Note that the actual data
augmentation is not limited to the following methods.

B. Case of WiFi RSSI

WiFi data is often represented by an RSSI vector which
contains the received signal strengths of the deployed APs. A
combination of the following augmentation methods may be
used to transform the collected RSSI vectors. In particular, as
we would like to simulate signals under environments with
different levels of variation, each time the data is augmented,
parameters for augmentation (e.g., AP masking and arbitrary
RSSI in the following) would be sampled from U(0, zw) where
zw can be adjusted according to the maximum variation level
we are expecting in reality.

1) Additive White Gaussian Noise: As there is noise in
the wireless channels and sensor chips as well as other
interference from human activities and partitioning, there
would be statistical fluctuations in the received signal
strengths at the same location. To model this, the white
Gaussian noise with variance σw is added to the received
signal strengths of the detected APs in the RSSI vector.
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2) Offset Noise: It is also well-known that the received sig-
nal strengths measured by different devices at the same
location would differ by an offset [42]. Hence, we sam-
ple a random offset from U(−δ, δ) and add it to every
received signal strength of detected APs.

3) AP Masking: Due to the multipath fading effect or block-
age of AP signals, APs that are detected can vary at the
same location. Therefore, we mask the random APs in
the RSSI vector such that only a subset of the APs is
used to compute the spatial likelihood. The fraction of
masked APs is determined by a parameter α.

4) Arbitrary RSSI: Power adjustments of APs or changes
in environmental settings would affect the signal distri-
bution. While the number of affected APs usually would
not be too large (less than half of the number of APs),
the difference in the received signal strengths before and
after the introduction of altered APs could be significant.
Since how the signal distribution would change cannot
be known in advance, arbitrary RSSI values (from −100
to −30 dBm) are set for a portion of APs determined
by a parameter β.

C. Case of Magnetic Field

Instead of a single reading, localization using a magnetic
field utilizes magnetic field sequences that contain magnetic
field readings within a period of time. Thus, our augmentation
focuses on magnetic field sequences. Similar to WiFi signals,
multiple augmentation methods would be applied and param-
eters for random masking and random segment augmentation
are generated from U(0, zm).

1) Gaussian Noise: Like sensors for RF signals, magne-
tometers also have intrinsic noise, which is modeled as
an additive Gaussian white noise with a variance σm.

2) Additive Noise: In addition to sensor noise, there is
an additive component affecting magnetometer readings,
which is contributed by multiple factors: a) the hard-
iron effect where ferromagnetic materials on the phone
add a constant field to the readings; b) the factory cal-
ibration offset of the magnetometer; and c) the altitude
of the phone [46]. Hence, a random offset sampled
from U(−θ, θ) would be added to every magnetic field
reading.

3) Multiplicative Noise: Noise can be multiplicative as well
due to the soft-iron effect where the magnetic field is
distorted by external objects [46]. Thus, the magnetic
field readings are multiplied by a random value sampled
from U(1 − γ, 1 + γ ).

4) Random Masking: With varying sampling rates of mag-
netometers in different devices, the number of samples
to represent the magnetic field in the same path would
be different. To emulate this effect, we could ran-
domly mask a portion of magnetic field readings in the
sequence, which is determined by a parameter λ.

5) Random Segment: Magnetometer readings could also
be sensitive to the carriage state, for example, rotation
and swinging that may greatly distort the magnetic field
readings. Thus, we randomly choose a segment from

the sequence and replace it with a random sequence.
The fraction of the random segment is determined by a
parameter μ.

D. Bayesian Likelihood Prediction Network and
Loss Function

SiFu adopts a Bayesian neural network for the likelihood
prediction network. The motivation of using a Bayesian neural
network is that we want to obtain an uncertainty estimation
for the neural network outputs, which in turn can be used for
better fusion.

Here, a Bayesian neural network based on the dropout
technique is leveraged [54]. In our framework, it is a deep
classification network that comprises of fully connected lay-
ers with a dropout layer inserted before every fully connected
layer, and finally a Softmax output layer. This Bayesian neu-
ral network takes a fixed length vector that is determined by
the detected APs in the survey process as inputs. The task
of the network is to classify the user location given a spatial
likelihood vector p generated from the black-box localization
algorithm for the sampled signal. As the Softmax layer gives
a probability distribution, the output of the network is also a
spatial likelihood. It is complexity is the same as traditional
BNN that have computational complexity of � O(K2) by using
K-bit per weights [55] or K bases in total [56].

In the network, the dropout layers do not only serve as a
regularization to avoid overfitting as usual, they also work as
a Bayesian approximation of the Gaussian process [54]. With
dropout layers, each input unit and weight unit becomes a
Bernoulli variable, and it has been shown that this approxi-
mates the predictive distribution q(p̃|p), where p and p̃ are the
input and output spatial likelihoods, respectively.

In the offline training phase, the network is treated essen-
tially the same as the traditional neural network. For the loss
function, the cross entropy loss is used. To further reduce the
impact of labeling errors in the data, the ground truth labels
are smoothed using a Gaussian function into soft labels such
that RPs closer to the location label will be assigned higher
scores.

V. ONLINE PREDICTION PHASE

In this section, we present the online localization process.
We start by describing the inference process of the Bayesian
likelihood prediction network in Section V-A, followed by the
weighted likelihood fusion module in Section V-B. Finally, we
discuss in Section V-C the integration with particle filter.

A. Bayesian Likelihood Prediction Network

Softmax in the traditional NN does not provide uncer-
tainty estimation, probability can be high for inputs that it
does not know. Thus, a Bayesian NN is needed in the likeli-
hood prediction. In the online phase, the dropout layers in the
Bayesian likelihood prediction network are retained so that the
input units and weights will be sampled from their respective
Bernoulli distribution for inference. To obtain the predicted
likelihood, T forward passes are performed. In other words,
T Monte Carlo estimates are acquired from the approximate
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predictive distribution using different sets of weights and input
units. By averaging the results, the predicted likelihood for a
signal mode is computed as follows:

p̂ = Eq(p̃|p)
(
p̃
) ≈ 1

T

T∑

t=1

p̃t. (1)

B. Weighted Likelihood Fusion

There are many fusion technologies and some of them have
been proved to be powerful in its field. For example, an equal-
averaging fusion of the likelihoods in [57] shows a great
performance. However, in our cases multiple competing mod-
els remain viable a posteriori and our goal is to combine them
for reliable estimation. Inspired by [58], a Bayesian Model
Averaging has a particularly better performance in this con-
dition than other naive averaging fusion methods. Thus, SiFu
adopts the idea of the Bayesian Model Averaging [59] to fuse
the independently predicted spatial likelihoods of different sig-
nal modes together. Let M1, . . . , Mn be the n models for the
available signal modes, where each of them can give a poste-
rior distribution p(x|Mi, s) given data s. The Bayesian Model
Averaging suggests that predictions of individual models can
be aggregated to compute the final posterior distribution as
follows:

p(x|s) =
n∑

j=1

p
(
x|Mj, s

) × p
(
Mj|s

)
(2)

where p(Mi|s) is the posterior model probability.
The posterior model probability aims to account for the

uncertainty about individual models. However, it is difficult
to evaluate this probability in practice. Hence, we approxi-
mate it based on the uncertainty information provided by the
Bayesian likelihood prediction network. Intuitively, predictions
with less uncertainty should be given higher importance in the
final decision.

For classification problems, entropy is a common measure
to quantify this uncertainty information. The larger the entropy
is, the more uncertain the result is. Given a spatial likelihood
p̂j for a signal mode j, we first find the normalized entropy
given by

Hj = − 1

log m

m∑

i=1

p̂ij log p̂ij (3)

where m is the number of reference points and p̂ij is the ith
entry of p̂j. Note that the range of Hj is [0, 1].

Once we have all the normalized entropies H1, . . . , Hn, the
weights for signal mode j are computed as follows:

wj = 1 − Hj∑n
i=1 (1 − Hi)

(4)

such that
∑n

i=1 wi = 1.
As wi approximates the posterior model probability p(Mi|s)

in 2, the fused likelihood is given by

p(x|s) =
n∑

j=1

p
(
x|Mj, s

) × wj. (5)

C. Particle Filter

After the fused likelihood is obtained, a particle filter is
used to combine the user movement information obtained from
INS signals. The orientation and stride length of the user are
estimated from the readings of the gyroscope, magnetometer,
and accelerometer based on the works in [60] and [61].

Here, a typical particle filter is considered. It consists of the
following four steps: 1) particle prediction; 2) weight update;
3) location estimation; and 4) resampling.

The particle prediction step utilizes the estimated orienta-
tion and stride length to propagate the particles. In the weight
update stage, the measurement likelihood is required. By
Bayes’ theorem, it can be computed using the fused likelihood
as follows:

p(s|x) = p(x|s)p(s)
p(x)

∝ p(x|s). (6)

While likelihoods are only computed at the RPs and parti-
cles do not necessarily locate exactly at them, a particle will
take the likelihood value of its closest RP. Furthermore, if a
particle violates the map constraints such as moving across
a wall, its weight is set to 0. All particle weights are then
normalized.

Given a set of N particles, each with a position li and
a weight wi, the user location is estimated by the weighted
average of their position as follows:

l̂ = 1

N

N∑

i=1

wili. (7)

Finally, the resampling step corrects the set of samples based
on the evidence where particles will be more likely to be
resampled in a region that has a higher probability density.

VI. ILLUSTRATIVE EXPERIMENTAL RESULTS

We have conducted extensive experiments in various sites
to validate the performance of SiFu. In each site, we walk
casually like normal users during the positioning, covering
most regions of the sites. Thus, we can collect data that
are more similar to those in the real cases. In this sec-
tion, we first describe our experiment settings, comparison
schemes, and evaluation metrics in Section VI-A, and then
present the influence of system parameters in Section VI-B.
We also discuss the fusion algorithm and signal combina-
tion in Section VI-C and methods to improve the system
performance in Section VI-D. Finally, we illustrate the influ-
ence of environmental variations on the fusion localization in
Section VI-E.

A. Experimental Settings and Comparison Schemes

We have evaluated our work in three representative testbeds
as shown in Fig. 4 and Table V provides some details about
them.

Our testbeds include: 1) a 1800-m2 university campus area
shown in Fig. 4(a) covering indoor, semi-indoor, and outdoor
environments; 2) a shopping mall of size 2000 m2 shown
in Fig. 4(b) which is mostly irregular open space; and 3) a
subway station shown in Fig. 4(c), consisting of several long
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Fig. 4. Maps of the sites in our experiments. (a) University campus.
(b) Shopping mall. (c) Subway station.

TABLE V
DETAILS OF THE EXPERIMENT SITES

corridors and a couple of open space in 2250-m2 area. A
self-designed Android App has been installed in users’ phone
to collect signal values with timestamps. We have conducted
two tests for each site and each test lasted for 2–3 min.

To demonstrate the versatility of our platform, we consider
several signal modes of different characteristics, including
WiFi, magnetic field, Bluetooth, Google API (geolocation
result provided by Google), and GPS. Using these modes as
examples, we demonstrate how they can be applied in our
platform for multimodal localization. We have exhibited the
use of different combinations of signal modes in different test
sites. In the university campus area, WiFi, magnetic field, and
GPS are used in our baseline model while we utilize only
WiFi and magnetic field in the shopping mall. For the sub-
way station, WiFi, magnetic field, and Bluetooth are used.
As for Wi-Fi APs, they are all are COTS Wi-Fi devices. We
notice that the number of APS varies as user walks in different
sites. Roughly speaking, ust: 30–60; subway station: 5–20; and
shopping mall: 100–150. Many APs are weak in ust and shop-
ping mall, so not all would be useful. After collection, Wi-Fi
data is around tens of kB to hundreds of kB, and magnetic
field data is around a few to tens of MB. The subway station
has a bit less data while ust and shopping mall have more.
We use about hundreds of MB for all signals for all devices
each site for testing. It should be noted that our platform does
not require all signal modes to be available at the localization
time. For example, during the experiments in our university
campus, GPS is not always received as we roam across indoor,
semi-indoor, and outdoor environments. Our results are by no
means limited to these signal modes, and may be equally and
simply extended to others.

For the black-box localization algorithms, we adopt a cosine
similarity-based algorithm for WiFi [5], and a dynamic time
warping (DTW)-based algorithm for matching magnetic field
sequences [11]. In addition, the geolocation results, including
GPS and Google API, are transformed into probability based
on the reported location and accuracy. In our experiments, the
Bayesian likelihood prediction networks for Google API and
GPS have been omitted.

To study the impacts of the Bayesian likelihood prediction
network for each signal mode, we first compare with the works
that leverage a single signal. For WiFi, we use the following
comparison schemes.

1) WKNN [5] which finds the top k RPs whose fingerprint
RSSI vectors have the highest cosine similarity with the
sampled one and computes a weighted average of the
positions of the RPs.

2) WiDeep [6] which applies stacked denoising autoen-
coders to denoise WiFi RSSI vectors. Noise is injected
to the fingerprint data for training. For every refer-
ence point, an autoencoder is trained correspondingly.
User location is estimated from the likelihoods com-
puted based on how well the autoencoders recover the
sampled WiFi RSSI vector.

3) Laafu [39] which specifically addresses the problem
of altered WiFi signals caused by AP power adjust-
ment, environmental changes, etc. It first uses a subset
sampling method to identify the APs that have been
altered. After filtering out these APs, the user location
is estimated by a WKNN algorithm.

For the magnetic field, we use the following for comparison.
1) DTW [11] which stretches or compresses the time

dimension of sequences and finds an optimal warping
path between two sequences. Based on the distance
of warp paths between fingerprints and the sampled
sequence, location is estimated.

2) Recurrent Neural Network (RNN) [12] which applies
RNN to predict locations from magnetic field sequences.
To address the ambiguity problem, training data are
obtained from a magnetic field map by generating
million traces of randomly generated walking paths.

Then, we compare our work with another three state-of-the-
art fusion localization algorithms. The parameters settings are
tuned to the best performance in our work.

1) Magicol [22] which fuses WiFi, magnetic field, and INS
signals. Likelihoods are computed for WiFi and mag-
netic field, and a modified particle filter is designed
based on the property of WiFi signals to fuse the
likelihoods with INS signals.

2) Uniloc [32] which is a unified scheme to fuse different
localization schemes. An error model is trained for each
scheme to estimate the errors during the online phase.
Based on the estimated errors, location results from dif-
ferent schemes are fused. In this scheme, INS signals
are used as one of the spatial signal modes to provide
spatial likelihood.

3) F-Score-Weighted (FSW) [31] which measures the
weights of WiFi and magnetic field at different RPs
through F-score. The final location is estimated by
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TABLE VI
DEFAULT PARAMETERS

minimizing the weighted sum of log-likelihoods of
two modes, which are calculated using the Gaussian
probability density function.

The localization error, which is the Euclidean distance
between the estimated location and the ground truth, serves as
the performance metric for comparison. It is the most direct
and common measure to evaluate the overall performance of
localization systems. Error distributions will also be exam-
ined for a more comprehensive assessment. For robustness,
we focus on the change of localization errors due to different
environmental variations.

Each model was trained for up to a few hours depending on
the signal mode and the size of the site. We have implemented
the system and tested in Android phones of three different
models. The sampling frequency is around one sample every
few seconds for WiFi and Bluetooth sensors, and tens of sam-
ples every second for magnetic field and other INS sensors.
Furthermore, Google Fused Location API returns a location
every few seconds while the sampling rate of GPS is gen-
erally faster. Our system supports offline localization in real
time. It gives a localization result every 0.5 s although the
computation time is much lower. The parameter settings in
our experiments are shown in Table VI.

B. Impact of System Parameters

We first study the effectiveness of our proposed Bayesian
likelihood prediction network. Fig. 5 shows the performance of
SiFu and other schemes under different environmental varia-
tions for WiFi. In Fig. 5(a), the mean errors of different WiFi
localization schemes with different fractions of altered APs
are shown. With altered APs, the received RSSIs would be
deviated from the fingerprints. However, it can be observed
that SiFu is less sensitive to this situation as compared to
other schemes. The errors of SiFu increase less rapidly with
increasing fraction of altered APs and it gains more than 20%
improvements in the accuracy over the other schemes when the
fraction becomes more significant. Naive WKNN is not robust
to altered APs since it simply uses the deviated RSSIs for
localization. Laafu, being a scheme to address altered APs, can
work reasonably well when altered APs are not too many since
it would identify and filter out these altered APs before local-
ization. If the fraction of altered APs is high, identifying these

Fig. 5. Mean errors of WiFi localization schemes under different signal
environments. (a) Mean errors of WiFi localization schemes with different
fractions of altered APs. (b) Mean errors of WiFi localization schemes with
different fractions of deployed APs.

APs becomes more difficult using the random subset sampling
method, leading to a worse performance. The performance of
WiDeep also sharply degrades with altered APs as the repre-
sentations learnt from the denoising autoencoders may deviate
from the actual situation. In comparison, the injection of ran-
dom RSSI measurements in the data augmentation process of
SiFu brings it the capability to work robustly under altered
APs. Despite the robustness, we can see a little tradeoff for
SiFu in accuracy when there are no altered APs at all. Its
performance is slightly worse than the other schemes, probably
because our model needs to take into account the uncertainty
from the environmental variations, and thus, it sometimes gives
more ambiguous and less accurate predictions.

Fig. 5(b) plots the performance of different schemes when
only a subset of deployed APs is used for localization. Under
this situation, SiFu outperforms the other schemes since its
accuracy does not greatly deteriorates as the other schemes
do. This is not surprising since the training data have been
augmented by masking random APs. The results should be
accurate even when some APs are not detected. Similarly, the
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Fig. 6. Mean errors of magnetic field localization schemes with different
fractions of perturbed readings.

training of WiDeep also involves AP masking, so its accuracy
can be maintained when only the majority of deployed APs are
used. However, since it only masks a small and fixed fraction
in the training process to maintain its accuracy, its performance
drops quickly when using less and less deployed APs. In the
meantime, missing APs may not greatly influence the com-
putation of cosine similarity, so the performance of WKNN
is still acceptable. For Laafu, reducing the number of used
APs may affect the subset sampling process, so it has a worse
performance than the naive WKNN. In this figure, we also
observe a tradeoff between accuracy and robustness against
missing APs. SiFu is relatively less accurate than the others
when all APs are used as the model may need to generalize
to a range of environments instead of specializing a particu-
lar one. These two figures validate the use of our Bayesian
likelihood prediction network for WiFi under the situation of
altered APs and missing APs.

For the magnetic field, we plot in Fig. 6 the performance of
different magnetic field localization schemes under different
fractions of perturbed magnetic field readings. Perturbations
are done by adding random noise and injecting random seg-
ments to emulate distorted measurements caused by unusual
carriage states and external ferromagnetic objects. It is obvi-
ous that SiFu is both accurate and robust to perturbations in
the magnetic field readings compared to other works. On the
one hand, it manifests that our network is able to correct the
bias in the likelihoods given by the DTW algorithm as it cuts
the errors of the naive DTW algorithm by around 20%. On the
other hand, using augmentation methods to train our network,
our system becomes less vulnerable to unexpected perturba-
tions in reality. On the contrary, the naive DTW algorithm and
the RNN model do not train with perturbed data in the offline
phase, so they may not work so well in such cases.

We further scrutinize how different augmentation techniques
in our training process affects the localization results of SiFu.
For WiFi, Fig. 7 plots the mean errors when using different
combinations of data augmentation methods under different
environmental variations. In Fig. 7(a), we show that arbitrary

Fig. 7. Mean errors of SiFu under different signal environments using dif-
ferent data augmentation techniques in the training process. (a) Mean errors
with different fraction of altered APs. (b) Mean errors with different fraction
of deployed APs.

RSSI injection is vital for a good performance under altered
APs. We perturb the data that already collected with random
noise to emulate power control upon hardware adjustment.
Without using it in the data augmentation process, localization
errors would be much larger and the accuracy drop is more
significant when there are more altered APs. As in Fig. 7(b),
it can be seen that AP masking improves the accuracy and
robustness under the situation with missing APs. Both models
that use AP masking to augment the training data suffer less
decline in accuracy than the other two that do not mask any
AP in the training process. For the magnetic field, we illustrate
in Fig. 8 the mean errors under perturbed magnetic field read-
ings when using different combinations of data augmentation
methods in the training process. With no augmentation, the
accuracy is worse and obviously drops with perturbed read-
ings. In contrast, noise injection and adding random segments
in the training process indeed help reach a higher accuracy
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Fig. 8. Mean errors of SiFu with different fractions of perturbed readings
using different data augmentation techniques in the training process.

Fig. 9. Mean errors of different schemes in different sites.

and robustness to perturbed measurements. In other words,
data augmentation for the likelihood prediction network is
effective to boost the accuracy and robustness under different
environmental variations.

C. Fusion Algorithm and Signal Combination

After investigating on single signals, we analyse SiFu in
the fusion perspective. Fig. 9 presents the mean localization
errors of SiFu and the compared schemes over three test sites.
We notice notable improvements of SiFu over the other state-
of-the-art algorithms in all three sites. The localization errors
are cut by at least 20%. FSW and Uniloc perform relatively
worse than the other two. This could be owing to the fact
that INS signals have not been well utilized in these two
schemes. FSW does not fuse them while Uniloc uses them
only for spatial location estimation, which will be erroneous
due to the accumulated errors in the INS sensors. In contrast,
SiFu and Magicol adopt particle filters to incorporate temporal
information from INS signals, leading to a better performance.

Fig. 10. Cumulative distribution of localization errors in different sites.
(a) University campus. (b) Shopping mall. (c) Subway station.

As compared with Magicol, our scheme corrects any bias in
the given localization algorithms using neural networks and
does not specifically depend on WiFi signals. Hence, it would
be less negatively affected in areas with weak WiFi signals,
especially in the shopping mall and the subway station.

Furthermore, the error distributions of different schemes in
various sites are examined as plotted in Fig. 10. It is clear
that SiFu achieves the best performance among all compared
schemes in all three sites. In general, the maximum error is
greatly reduced and the majority of the results are satisfactory.
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Fig. 11. Real-time localization errors of different schemes.

Fig. 12. Mean errors using different combinations of signal modes.

In Fig. 10(a), we observe that the localization errors have
remarkable improvements in the university campus. Large
errors are observed for FSW and Uniloc and the performance
of Magicol is reasonable, but our system further improves the
accuracy. Our spatial likelihoods are probably more accurate
because of the likelihood prediction networks and the weighted
likelihood fusion scheme. In the shopping mall as plotted in
Fig. 10(b), the performance of SiFu and Magicol is quite close
as they both fuse WiFi, magnetic field and INS signals in
a similar way. Still, SiFu is slightly better as our likelihood
prediction networks play a role in correcting the spatial like-
lihood under highly dynamic environments in the shopping
mall. Without these networks, Magicol that specifically relies
on WiFi may particularly suffer in such an environment with
weak or noisy WiFi signals. For Fig. 10(c), all the comparison
schemes do not work very well as the weak signals and noisy
environments in the subway station makes it challenging for
localization. Still, our scheme can attain a good accuracy by
incorporating Bluetooth.

Fig. 11 shows the real-time localization errors of different
schemes in the university campus. In this path, we performed
several indoor–outdoor transitions. As observed in the figure,
these transitions can hardly be noticeable for SiFu. Despite
some sudden increase in the error, the performance can quickly
recover. Although the performance of Magicol is similar to
ours, large errors can be observed toward the end of the path
and they are less stable when compared to ours. For FSW and

Uniloc, they do not exploit user movement information from
INS signals, thus their performance badly fluctuates.

We also assess the mean errors of SiFu in the univer-
sity campus using different signal combinations in Fig. 12. It
clearly demonstrates the genericity of our framework as it is
possible to fuse different combinations with decent accuracy.
In this site, we found that the magnetic field fused with GPS
does not work so well because the site covers both indoor
and outdoor areas. When GPS signal cannot be received in
indoor areas, we can only rely on the magnetic field. It is
not ideal due to the low global discernibility of the magnetic
field. In contrast, WiFi with GPS is better since WiFi can
usually provide rough location estimations with reasonable
accuracy, contributing to a more stable performance. When a
magnetic field is combined with WiFi, we can indeed alleviate
the global ambiguity of magnetic field by the rough location
estimates provided by WiFi signals, enabling us to make use
of the locally unique magnetic field for better localization.
In addition, the performance can be even better if we further
include GPS since it can offer a rather accurate clue outdoors.
For the Google API, it provides the same location result as
GPS when GPS can be received, and becomes not so accu-
rate in indoor areas. Hence, including the Google API may
introduce noise in the decision process and slightly reduce
the performance. In a nutshell, signal modes that can more
consistently yield an acceptable localization result would be
more important, for example, WiFi/Bluetooth in indoor areas
and GPS in outdoor areas. When these signal modes are avail-
able, others can contribute to more fine-grained localization.
Nevertheless, additional signal modes do not always help if
they are too noisy.

D. Performance Improvement

Although many previous works have demonstrated the effect
of particle filtering in improving the localization accuracy, we
want to prove the effectiveness of using particle filter com-
bine the user movement from INS signals in our work for
rigour. We have conducted comparison experiments in these
three sites. We show the mean localization errors of SiFu with
or without using a typical particle filter method in Fig. 13. It
illustrates that the accuracy of localization can be improved
by about 3–5 m in each site by using particle filtering. Thus,
we validate the use of particle filtering in our system.

In Fig. 14, we compare the localization errors of SiFu with
each individual signal mode across time. Note that the sig-
nal modes are sampled in different rates and are not always
fully available at the localization time. This demonstrates that
our framework is capable of handling dynamic and arbitrary
combinations of signal modes during localization time. In
terms of localization performance, although the localization
errors of some signal modes are sometimes large, the errors
of SiFu do not follow. Instead, SiFu keeps a rather consistent
performance. In particular, its performance is closer to the
signal whose performance is better as our weighting scheme
possibly allows us to trust more on the better signal modes.
Yet, it is expected that our scheme cannot always trace the
best envelope of the signal modes as it only assigns weights
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Fig. 13. Mean localization errors of SiFu with/without particle filtering.

Fig. 14. Real-time errors of SiFu and individual signal modes.

based on the uncertainty of the modes instead of choosing the
best one. As a result, information from the less reliable signal
modes will still be included into consideration.

E. Influence of Environmental Variations on the
Fusion Localization

Similar to the single signal case, we are interested in how
different environmental variations affect the fusion localization
schemes.

Fig. 15 demonstrates the performance of SiFu and other
fusion works under different noise levels. We define the noise
level as the level of various environmental variations (fraction
of altered APs and fraction of missing APs for WiFi, and the
fraction of perturbed readings for magnetic field) such that
both WiFi and magnetic field are affected. The result reveals
that SiFu can achieve a highly accurate and robust performance
despite these environmental variations. Over 30% improve-
ments can be observed. While its accuracy is the highest
among different schemes in the baseline situation, the local-
ization error does not drastically rise either as the noise level
increases. Contrastingly, the performance of other schemes is
more adversely affected. This reinforces that our Bayesian
likelihood prediction networks are able to generalize and
correct likelihood estimations under environmental variations.

Fig. 15. Mean errors of fusion schemes under different noise levels.

Fig. 16. Mean errors of fusion schemes using different devices.

Since the performance of WiFi and INS sensors can be
device dependent, we evaluate the ability of SiFu to work
in heterogeneous devices. Fig. 16 plots the mean localization
errors of different schemes using different models of smart-
phones. We can see that SiFu‘s performance is consistent
among different devices, while other schemes may perform
badly for some phone models. SiFu is unsurprisingly better in
handling device heterogeneity because emulating signals from
different devices is one of our data augmentation methods for
training our likelihood prediction networks, allowing SiFu to
work under deviations across devices.

Furthermore, we investigate the impact of different param-
eters in our system on the localization performance. We
start with the parameters related to the Bayesian likelihood
prediction network.

In Fig. 17, the mean localization errors of likelihood
prediction networks for WiFi and magnetic field with differ-
ent numbers of hidden layers are plotted. It is shown that our
networks could be simple that without requiring many layers.
While more layers may be helpful for the networks to learn
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Fig. 17. Mean errors of the likelihood prediction network with a different
number of layers.

Fig. 18. Mean errors of the likelihood prediction network with different
dropout rates.

more information, networks with too many layers can be over-
fitted to the training data and cannot generalize at the test
time.

We also illustrate in Fig. 18 the mean localization errors
of likelihood prediction networks for WiFi and magnetic field
using different dropout rates. Similar trends can be observed
for both signals. With increasing dropout rates, the errors
generally first decrease, and then remain constant. As the
dropout rate becomes larger, the errors increase again and grow
more rapidly with a large dropout rate. When the dropout
rate is zero, the networks are simply conventional neural
networks which ignore any uncertainty in the weights or the
inputs. This can lead to overconfident but incorrect predictions.
Nevertheless, a large dropout rate drops weight units in the
network too often and the results can be inaccurate if too few
weight units are used for prediction. With a suitable dropout
rate, the network can reach a better performance.

In addition to the neural network parameters, Fig. 19 plots
the mean localization errors in different sites with different

Fig. 19. Mean errors in different sites with different grid sizes.

Fig. 20. Mean errors in different sites with different window sizes.

grid sizes, which we define as the distance between adjacent
reference points. In general, we find that there is an optimal
grid size. With an increasing grid size, grid classification accu-
racy of the likelihood prediction networks increases since a
smaller number of classes and denser training data ease the
training. This leads to better localization accuracy. On the con-
trary, localization accuracy decreases with grid size due to grid
granularity. Likelihood at a reference point may not accurately
reflect the probability of the user location within the neigh-
borhood of the grid. Therefore, an appropriate grid size is
essential for the best performance.

In Fig. 20, we analyse the impacts of the sampling window
size on the localization errors in different sites. In general, the
curves follow a V-shape. If the window size is small, there
will often be at most one signal mode sampled within the
window. In this case, our weighting scheme cannot bring into
play as the weighted likelihood will exactly equal the like-
lihood of the only signal mode. This is not desirable when
the sole likelihood is not accurate. On the other hand, set-
ting the window size too big can harm the accuracy since the
window size determines how frequently the likelihood will
be computed and used to correct the particles in the parti-
cle filter. In other words, we should find a window size such
that multiple signal modes can be sampled within the window

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on December 23,2022 at 15:00:09 UTC from IEEE Xplore.  Restrictions apply. 



918 IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 1, 1 JANUARY 2023

while being small enough to allow timely update of particles’
weights.

VII. CONCLUSION

As a user roams across different indoor and outdoor envi-
ronments, the sampled data exhibit markedly varying signal
modes and values. To support pervasive localization, such vari-
ation has to be accounted for with robust accuracy. Signal
fusion has been shown to achieve high accuracy by leverag-
ing the strengths while mitigating the weaknesses of individual
signal modes. Prior works in the area are usually highly cus-
tomized for a few (two or three) signal modes, and targeted
to work in a specific environment. To address this for the per-
vasive environment, we propose SiFu, a novel, simple, highly
accurate, and generic multimodal signal fusion platform which
supports arbitrary addition, removal, and combination of signal
modes, and achieves robustness against environmental vari-
ations, such as signal noise, device heterogeneity, missing
signal values, phone carriage states, etc. SiFu is a framework,
and hence supports any existing, emerging, and future sig-
nals based on their individual localization algorithms as black
boxes.

To the best of our knowledge, SiFu is the first piece of work
achieving both genericities in signal modes and robustness in
performance for pervasive localization. It adopts a probabilis-
tic fusion formulation. Signal modes are first independently
processed, and then unified as likelihoods into the platform.
Furthermore, it utilizes Bayesian neural networks to yield
more accurate likelihoods, and combines them in a weighted
fashion to minimize the localization error. To generalize its
deep learning model to a wide range of environments, SiFu
employs data augmentation in the training phase. We have
implemented SiFu in Android mobile phones and conducted
extensive experiments in a university campus, a shopping mall,
and a subway station. Our results show that SiFu achieves
significantly higher accuracy and robustness in online local-
ization. It outperforms other state-of-the-art schemes by a
large margin (more than 20% in terms of localization accu-
racy). In spite of environmental variations, its localization error
is still significantly lower than state-of-the-art schemes (by
around 30%).

We discuss some of the possible directions for future work
here. Our current work studies traditional signals, such as Wi-
Fi, GPS, etc. One may extend it to emerging signals, such as
image and/or video. In this regard, the processing and memory
capability of the handheld device needs to be considered.
Another emerging signal is 5G, which should be incorporated
into our framework to achieve pervasive localization. UWB,
CSI, and Lidar are emerging signals worth studying as well.
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