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Offline Docked-Phone Indoor Carpark Navigation:
Fusing RF and IMU Signals With HMM

Murphy Zheng Zhang

Abstract—We study the challenging problem of navigating in
an indoor carpark in the absence of global navigation satellite
system (GNSS) and cellular signals using an offline smartphone
docked at the car dashboard. There is basic radio frequency (RF)
infrastructure in the venue but, due to signal attenuation by the
car body, the location computed based on the in-car signal is noisy
and intermittent. Previous works on carpark navigation often
require costly specialized equipment as on-car additional infras-
tructure (OCAI), or suffer from error propagation stemmed from
integrating inertial measurement unit (IMU) signals over time.
We propose RICH, a novel, simple, accurate, and cost-effective
docked-phone approach to fuse RF and IMU signals for indoor
carpark navigation using the hidden Markov model (HMM).
RICH uses IMU signals to detect the speed level and turning
of the car, which is then fused with the crude RF localization in
an HMM framework to estimate the car’s location distribution in
real-time. We further present an analysis on the tradeoff between
computation and accuracy of RICH. Our extensive experiments
on smartphone in real carparks show that, as compared with
the state-of-the-art, RICH achieves substantially lower localiza-
tion error (by 40%) with high-computational efficiency (less than
10 ms per location).

Index Terms—Carpark navigation, fusion localization.

I. INTRODUCTION

RBANIZATION has led to increasing number of indoor
Ucarparks. In these carparks, a global navigation satellite
system (GNSS) and cellular signals are often weak or unavail-
able. We consider, in this work, the challenging problem of
indoor carpark navigation, which is to direct the car driver
to a designated spot (parking bay, exit, etc.) in the absence
of GNSS and cellular signals. To achieve that, an app, pre-
installed in the offline phone docked on the car dashboard,
locates the vehicle and makes turn-by-turn instruction to the
driver.

An indoor carpark is characterized by well-defined lanes
with junctions. We illustrate in Fig. 1 a carpark floorplan in our
university, where the vehicle is constrained in paths indicated
in dotted lines. A car typically travels in a carpark with some
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Fig. 1. Typical carpark floorplan with the HMM states corresponding to
possible car positions. In a time slot, the car may move at most H hops away
from its current position according to some transition probability.

rather regular or predictable speed patterns. For example, after
negotiating a corner, a car usually accelerates to around the
designated speed limit (e.g., 10-20 km/h) and slows down at
the end of the lane or junction to make a turn. Despite such
regular features, occasionally the car may unpredictably drop
its speed to some slow level or even a complete stop caused by
some irregular unexpected events, such as pedestrian crossing
or backing of other cars in the front.

To support carpark navigation, we consider the usual case
that a basic radio frequency (RF) infrastructure, such as
Bluetooth beacons and/or WiFi access points (APs), has
already been installed. However, because the RF signals are
markedly shielded by the car’s body, the ambient in-car
RF signals as sensed by the offline docked phone is weak,
intermittent, and noisy. Coupled with possibly low-RF scan-
ning frequency, the localization is often not smooth, greatly
hampering user navigation experience.

To improve navigation accuracy and smoothness, we pro-
pose to augment the RF signals with commonly available
on-phone inertial measurement unit (IMU) with 9DOF (9
Degrees-of-Freedom), which consists of a 3-axis accelerome-
ter, a 3-axis gyroscope, and a 3-axis magnetometer to measure
the acceleration, angular velocity, and geomagnetic field,
respectively. The critical challenge then is how to efficiently
and effectively fuse RF and IMU signals in an offline docked
phone to locate and navigate the driver in an indoor carpark.
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Due to unfavorable in-car RF signal environment, previous
works on carpark navigation often deploy on-car additional
infrastructures (OCAIs) [17], [18], [28], such as wheel odome-
ters, lidars, and surround-view cameras. Despite promising
results, they require the installation of special and costly
equipment, hence not applicable to general users. Visual-based
approaches [2], [9], [21], [29] have also been proposed for
carpark navigation. As they are mainly cloud-based, deploying
such system is costly (due to high network bandwidth, com-
putation power, and the number of cameras), and may have
latency, occlusion, and privacy concerns. There have been quite
a lot of works using RF signal for carpark navigation [1], [6],
[8], [10], [24]. However, the works assume a high signal-
to-noise ratio of in-car RF signals, which requires high AP
density, signal power, and infrastructure cost. Another body
of work uses dead reckoning (DR) to estimate object location
by means of double integration of linear acceleration [4], [11],
[34]. However, this is error-prone due to error propagation over
time. To mitigate that, some require highly specialized, and
hence highly accurate, IMU sensors beyond what is available in
common smartphones today. Yet another body of localization
works uses pedestrian pedometer and DR [12], [16], [19], [36].
They are, however, not applicable for docked phone because
no steps can be detected in a running car.

We propose RICH, a novel docked-phone approach that
fuses on-phone RF and IMU signals for indoor carpark navi-
gation by means of the hidden Markov model (HMM). RICH
is designed based on the observation that RF location and
IMU information can complement each other to achieve higher
localization accuracy. IMU detects car’s heading and captures
the car’s speed pattern to predict the car’s location over some
upcoming time (in seconds). To mitigate error propagation and
location drift, RF and turn landmarks are used to constrain the
car location to a region.

To the best of our knowledge, this is the first piece of
fusion work deployable by offline docked phone. Due to mea-
surement noise and propagation error, RICH abolishes the
traditional integration-based [11], [18] approaches on IMU
readings. Instead, it adopts a simple yet efficient deep-learning
approach to extract and classify accurately IMU signals cor-
responding to some distinct vehicular speed levels, such as
coming to a full stop, driving at low speed, and traveling
normally around the designated speed limit. Moreover, IMU
provides valuable information on car heading and turning.
To fuse this with the crude and intermittent location esti-
mated from RF, HMM is the most suitable fusion model
among typical probabilistic models for the specific car local-
ization task because of a vehicle’s regular motion pattern in
well-defined driving lanes. Comparing with the particle filter
(PF) approach (which is applicable but not optimal), HMM
expresses more naturally a vehicle’s motion regularities in a
carpark by sampling the states only from a vehicle’s drivable
routes. Meanwhile, the speed regularities (transition proba-
bility) of a car in a specific carpark can be learned by a
offline (training) process proposed in Section III-A. To rep-
resent similar constraints, a PF-based method needs to apply
mass constrain-rules on a sufficient large number of particles
in the prediction and resampling step, which spends more
computation but performs worse.
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Time is slotted in RICH with size in the order of a fraction
of a second (0.2 s in our experiment). The driving lanes are
divided into grid points (as shown in Fig. 1), which are the
possible states of the car at a particular time slot. The RICH
models the state transition with an HMM: a car may move to
a grid point at most H hops away from its current one in the
next slot according to some time-varying transition probability,
which depends jointly on the speed pattern as observed from
IMU readings, car heading, and turn, location as estimated
from the RF readings, and the previous location distribution
of the car.

The contributions of this article are summarized as follows.

1) RICH, Novel Fusion-Based Carpark Navigation for
Offline Docked Phones: RICH is the first mass-
deployable approach for offline docked phones to nav-
igate cars in indoor carpark of any layout. It is OCAI-
free, simple, memory and computationally efficient, and
implementable in commodity smartphones. It fuses RF
signals and phone IMU readings by means of an HMM
to fully utilize a vehicle’s motion constraints in an indoor
carpark, and thus achieve real-time and highly accurate
localization. Note that though we use RF signal in this
work, RICH is an HMM framework to fuse any signal
(such as GPS or cellular) with IMU for indoor carpark
navigation.

2) Computational Analysis of RICH: We provide an anal-
ysis on the tradeoff between computation overhead
and localization accuracy. Accordingly, users can adjust
system parameters for different mobile phones to bal-
ance among phone computation time and accuracy in a
carpark.

3) Extensive Experimental Evaluation in Real Sites: We
have implemented RICH in mobile phones and compare
it with existing state-of-the-art schemes in real carpark
sites. Our results show that RICH achieves substantially
better performance, with a 40% reduction in localiza-
tion error and a 60% reduction in computation time as
compared with other schemes.

The remainder of this article is summarized as follows.
After discussing related work in Section II, we overview
the offline and online phases of RICH and formulate and
present the fusion model in Section III. Then, we present
the speed collection in the offline phase in Section IV, and
online signal processing of RICH in Section V, followed by
HMM fusion and its complexity analysis in Section VI. We
present our experimental results in Section VII and conclude
in Section VIII.

II. RELATED WORKS

We discuss related works in three aspects: 1) OCAI-
based indoor vehicle localization (Section II-A); 2) RF-based
localization (Section II-B); and 3) probability-based fusion
approaches (Section II-C).

A. OCAI-Based Indoor Vehicle Localization

OCAI-based localization locates a vehicle by installing
specialized sensors or equipments in a car. Early vehicle
localization methods focus on vehicular ad-hoc networks
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(VANETs) [13], [14], [30], whose basic idea is to perform
cooperative localization through vehicle-to-vehicle communi-
cation. With the rapid development of simultaneous localiza-
tion and mapping (SLAM), more works have been proposed
locating vehicles with wheel odometers [26], [32], lidars,
surround-view cameras, and high-accuracy IMU sensors. A
fusion of lidar and IMU is proposed in [17]. AVP-SLAM [28]
proposes a visual semantic SLAM approach using surround-
view cameras, IMU, and wheel odometers. These SLAM-
based methods are shown to achieve centimeter level local-
ization accuracy. Another approach, such as [25], proposes a
fusion of WiFi, IMU, and lidar applying a Gaussian-mixture
PF model.

OCAI-based methods often require special installation and
hence are more customized and costly. RICH is a cost-effective
solution based on offline docked smartphone for general car
users without the need for additional installation of on-car
sensors. The OCAI works are orthogonal and complementary
to ours and may be used to further improve the localization
accuracy.

B. RF-Based Localization

Received signal strength (RSS) of RF signals has been
leveraged to locate targets. Typical RF signal includes WiFi,
Bluetooth low energy (BLE), Zigbee, etc. Fingerprinting (FP)
has become the most popular RF-based indoor localization
method. The first FP system is RADAR [1]. Horus in [35]
addresses the problem of the temporal variations in RF sig-
nals. By considering the channel state information (CSI),
ArrayTrack [33] achieves submeter-level accuracy. Besides FP
approach, several works, such as weighted centroid localiza-
tion (WCL) localization [3], EZ [8], and EZPerfect [24], map
the RSSI readings to physical distances to estimate the location
with geometric methods. IncVoroni [10] proposes a Voronoi
graph approach to refine user location over time.

While the above works are impressive, they cannot be
directly applied for in-car docked-phone navigation because
the in-car signal is not strong. While the RF-based methods are
not accurate and responsive enough for real-time car naviga-
tion [6], they can provide crude first-order location estimation.
RICH leverages that and fuses it with IMU using HMM to
provide higher accuracy.

C. Probability-Based Fusion Approaches

The probability-based fusion localization method fuses
multiple sensor or localization system measurements based on
probability. The Kalman filtering and its variants, i.e., EKF
and UKF are the common methods studied and applied to
localization. These works [7], [20], [22] adopt external sig-
nals, such as visuals, GNSS, or RF signals, to obtain a rough
position and apply DR by speed and direction for a more
accurate position estimate. However, in the scenario of using
a mobile phone for navigation inside a vehicle, the on-phone
IMU signal is subject to self-noise and vehicle vibration
interference, making it difficult to achieve DR. Moreover, the
in-car RF signals are noisy and intermittent, leading to large
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TABLE I
IMPORTANT SYMBOLS USED

Symbol Meaning

n The total number of grid points (possible car states)

St The car state at time (slot) t (st = 1,2,...,n)

q; 2-D coordinate for grid point j, j =1,2,3,...,n

F Car speed distribution

S Total number of speed patterns

Pt Vehicle speed pattern at time ¢

bt Vehicle heading at time ¢

oy Variance of heading error

u¢ = [pt, ¢¢] | Vehicle action at time ¢

Tt 2-D coordinate of RF localization result

or Variance of RF localization error

It Boolean variable of whether the car is turning at time ¢

zt = [re, 1] Observation vector at time ¢

v, B8 Precision and recall, respectively, for turn detection

ae(j) Probability that a car is at grid point j at time ¢

H Maximum number of hops for a car transition in a slot

Vimaz Speed limit in the carpark

d Distance between adjacent grid points (meters)

K Kernal function for car transition probability

a(%,7) Transition probability for a car’s transition from ¢ to j at time ¢.
Huber-loss function for fusion localization

and non-Gaussian observation noise. Therefore, the Kalman
filter is not applicable to the scenario.

To address the nonlinear filtering problem, PF [15] was
introduced. Early pedestrian localization works [12], [19], [27]
fuses external signals with PDR by particle filtering, achiev-
ing around 3 m accuracy. These works are not applicable
to vehicle localization due to a lack of periodic patterns.
Substitutions of PDR [5], [11], [18] are to estimate a vehicle’s
travel distance by double integration of forward acceleration.
Such methods are also not applicable in our scenario, because
mobile phone IMU often has limited accuracy and the localiza-
tion error accumulates significantly. Another work [25] applies
PF by assuming a constant vehicle speed which is not common
practice.

Our proposed HMM differs from the aforementioned works
by leveraging a vehicle’s motion constraints (driving patterns)
in a carpark as prior information. By embedding these motion
constraints into HMM, the state space of the vehicle (veloc-
ity, position, direction) has been transformed from continuous,
infinite space to finite, discrete space. Observations that do
not conform to motion constraints (such as heading deviation,
over-speeding, or position exceeding lane boundaries) will be
corrected accordingly. At the same time, limiting the vehicle
to a finite state space can reduce computational complexity.

III. SYSTEM OVERVIEW

In this section, we overview RICH and formulate the
fusion model, by presenting its offline training phase,
online navigation phase, and the HMM fusion model in
Sections II-A-III-C, respectively. We summarize the impor-
tant symbols used in this work in Table I.

A. Offline Training Phase

In the offline training phase, the survey data is first collected
in the carpark. Drivers drive naturally around the carpark while
a surveyor in the passenger seat records driving trajectories and
IMU signals with a mobile phone, where a driving trajectory
refers to the car locations and their timestamps. Normally, it
takes 1-2 h of site survey to set up one typical carpark.
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Fig. 3. Online navigation phase.

We show in Fig. 2 the offline phase, which consists of the

following.

1) Speed Collection: Vehicle motion in a carpark is clas-
sified into S speed patterns. Here, a speed pattern is
described by a collection of vehicle speed over a period
of time, say 2 s. Let n be the number of grid points in
the carpark whose coordinates are qi, q2, ..., qn. The
vehicle speed distribution f;(g;, v) corresponding to each
speed pattern i € [0, S — 1] at grid point g;,j € [1, n]
is collected from the driving trajectories to estimate the
transition probability of the HMM.

2) Speed Pattern Classifier Training: A speed pattern clas-
sifier model is trained with the sourced IMU signals.
This is then saved to classify the car speed pattern in
the online navigation phase.

B. Online Navigation Phase

We overview the online navigation phase in Fig. 3, which

consists of the following.

1) Signal Processing: Raw IMU and RF signals are first
processed in the signal processing step in the docked
phone. Taking computation overhead into consideration,
we apply simple but efficient algorithms for each indi-
vidual algorithm instead of building an end-to-end model
for all. At time slot ¢, the speed pattern classifier trained
in the offline phase processes the raw IMU signals and
outputs the vehicle’s real-time speed pattern o, while
heading estimation detects the vehicle’s heading ¢, using
IMU. We also perform furn detection using a gyro-
scope to identify the turn landmark /;. At the same time,
RF localization estimates the vehicle’s rough location r;
independently.

2) HMM Fusion: All terms, oy, ¢, l;, and r;, are fused with
the speed distribution f(v, q1),f(v, q2),...,f(v,q,) in
an HMM to estimate the vehicle location.
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Fig. 4. Dependence graph of RICH. The vehicle state s; at time ¢ is dependent
on the previous state s;_ and the vehicle’s action u;. Meanwhile, the vehicle
state can be observed by z;.

C. Fusion Model Formulation

In this section, we formulate the HMM fusion model of
RICH. The HMM in RICH is composed of the following ele-
ments: state s, action u, and observation z shown in Fig 4. Let
s; be the vehicle state, given by any one of the grid points, at
time ¢. The vehicle’s action, defined as

uy = [pr, ¢l (1)

changes vehicle state from s;_; to s;. Recall that p; and ¢,
represent the vehicle’s speed pattern and heading, respectively,
both derivable from the IMU readings. Meanwhile, we infer
the vehicle’s location from an observation z; given by

= [rs, It]. 2)

Recall that r; and I; represent the RF localization result
and the turn landmark, respectively. The fusion localiza-
tion problem is to estimate the hidden state s, given a
sequence of actions u1.; = [uy, ua, ..., us—1, 4y] and observa-
tions z1:; = [z1, 22, - - ., Z+—1, 2¢]. Formally, the fusion objective
is to estimate

p(se = jluiy, 21:) (3)
the conditional probability that a car is at stage j for all j =
1,2, ..., n. Applying the Bayesian rule
p(st = j, Ul Zixr)

p(ui, 21:1)
& p(st = Jj, ur:s, 21:1)
= a(j). “)
Usually, the term o;(j) is also called the “forward variable,”
representing the joint probability that a car is at grid point j at
time 7. Applying the chain rule and the theory of conditional
independence, we have

() = plals; =) Yy pls =jlsi1 = i, udar—1 (). (5)

p(sy = jluty, z1) =

Equation (5) shows that the joint distribution
(1), (2), ..., a;(n) can be recursively computed from the
historical distribution o;_1(1), o;—1(2), ..., o;—1(n). Let

() =Y pls =jlsi1 = i u)er—1 (i) (6)

such that
() = palse = Do (). (7
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Algorithm 1: Localization Process of RICH

Input: IMU readings: acc. {ak}szl, gyro. {wk}kK:1 and
mag. {mk}szl, RF readings P, historical location
distribution «;_1[1:n];

Output: Estimated vehicle location (X;, y;);

1 0 < speed_classiﬁer({ak},’le,{mk}le);

2 ¢, Iy <~ orientation_estimation({ak}kK:1, {wk}szl,

{mk}szl);

r; < RF_localization(P);

ur < [pr, el

7 < [re, i)

for j = 1,2,3...,n do
o () = D p(st = gjlsi—1 = qi w—1)a—1(0);
o (j) = P(Zz|st = C]j)at(f)§

end

o e N R W

PPN e yem @ ()gj
e ~ .
10 (-xt, yt) Zat(j)eM ()

11 return (%, )

Given (7), we perform HMM fusion in two steps, namely,
prediction and refinement.

1) Prediction: Make a prediction of the vehicle loca-
tion o4(j) based on the historical distribution
o 1(1),a,-1(2),...,a;,-1(n) and the action u,.
The term p(s; = jls;—1 = i, uy) in (5) is also known as
the “transition model.”

2) Refinement: Refine the predicted location o (j) with sen-
sor observations z;. The term p(z|s; = j) in (7) is also
known as the “observation model.”

Once every «o;(j) is known, we can finally estimate the vehicle
location by a weighted average of highest probabilities, i.e.,

Za,(j)eM o:(j)gj
Za,(/')eM Ot;(j)

where M is the set of top-k joint probabilities in the set

{a(1), 2 (2), ..., a/(m)}.
Putting all the sections above together, we summarize the
online localization algorithm in Algorithm 1.

(. 31) = ®)

IV. OFFLINE SPEED COLLECTION

Vehicle speed while driving in an indoor carpark forms
a certain number of S speed patterns. Given a collection of
vehicle speed in a period (e.g., 2 s), we consider the peak
value of vehicle speed v,. The speed pattern is labeled as
pr=14,i€l0,5—1],if

Vi) < vp < vp() 9

where v;(i) and v, (i) are the lower and upper bound speed
values corresponding to the speed pattern i.

In offline stage, we define these speed patterns and collect
speed data from real driving trajectories. The set of vehicle
speed distribution F corresponding to all the speed patterns is
saved to compute the transition matrix of the HMM. RICH
associates the offline vehicle speed data with these S speed
patterns, where S is empirically set. We show an example of
S =3 in Fig. 5.
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Fig. 5. Typical car speed patterns observed in an indoor carpark.

Based on the frequency of appearance, a speed pattern is
defined as either a regular pattern or an irregular pattern.
Vehicle speed distribution with a regular pattern is regarded as
location dependant. This is because the carpark infrastructures
affect driver’s driving preference. For instance, a car typi-
cally speeds up to a certain speed level and slows down at
the end of lane to make a turn. Therefore, the vehicle speed
has some regularity and is location dependent. In this case,
we collect the car speed at each grid point g; separately and
estimate the speed distribution of each point g; accordingly.
Vehicle speed distribution with the pattern i is collected as
F = {fi(q1,v).fi(q2, V), ..., fi(gn, v)}, wWhere fi(gj, v) denotes
the probability distribution of the vehicle speed with pattern
i at the grid point g;. On the contrary, vehicle speed with
irregular patterns are regarded as location independent. This
is because irregular events are often induced by a temporary
changing of the environment (such as pedestrians and back-
ing cars). Therefore, we estimate the vehicle speed distribution
of irregular patterns with all samples regardless of the car’s
location, i.e.,

filqr,v) =fi(q2,v) = - - = filqn, V) = fi(v). (10)

V. ONLINE SIGNAL PROCESSING

In the signal processing module, raw IMU and RF sig-
nals are processed to extract vehicle actions #; and location
observations z; for HMM fusion. In this section, we discuss
the speed pattern classifier in Section V-A, heading estima-
tion and turn detection in Section V-B, and RF localization in
Section V-C.

A. Speed Pattern Classifier

Speed pattern classifier leverages the IMU signal read-
ings to classify the vehicle speed pattern p;,. The key design
motivation is that the linear acceleration and geo-magnetic
field signals features vary with different speed patterns, as
demonstrated in Fig. 6(a) and(b).

Based on the observations, we apply a 1-D convolutional
neuron network (1D-CNN) model to extract IMU features for
speed pattern classification shown in Fig. 7. We first use a
second-order Butterworth filter to filter out the high-frequency
noise in accelerometer readings. Afterward, the vehicle accel-
eration along the driving direction is estimated. With a sliding
window of 1 s, a number of IMU readings are selected. After
batch normalization and a dense layer, the geomagnetic field
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Fig. 6. IMU signals observed at different speed patterns. The variance of
linear acceleration and geo-magnetic field is smaller in stoppage pattern and
low-speed pattern. (a) Sensed geo-magnetic field with different speed patterns.
(b) Filtered vehicle’s linear acceleration with different speed patterns.
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Fig. 7. Speed pattern classification model.

and forward acceleration are processed separately by 1D-CNN
layers to capture motion features. Finally, the features are con-
catenated and processed with dense layers into speed level
(pattern).

B. Heading Estimation and Turn Detection

Heading estimation detects a car’s heading ¢;. In this arti-
cle, we adopt an efficient algorithm Madgwick filter [23] to
detect the vehicle’s heading. Turn detection captures car turns
to detect turn landmarks /;. In RICH, turn detection is achieved
by a simple threshold-based method, i.e.,

L=1if Y o>T, a1
i

where Zszl w; is the accumulation of vehicle angular velocity
in a certain period and T, is a threshold set empirically.

C. RF Localization

RF localization estimates the vehicle’s rough location 5. We
can employ the typical RF localization methods to acquire §
from the RSSI readings of RF emitters. Many RF localization
methods [3], [8], [31], [35] can be adopted in our framework.
In this article, we adopt WCL [3], a computationally efficient
and fingerprint-free method. WCL estimates the location of a
node by a weighted average of the coordinates of other RF
emitters whose positions are inherently known, shown as

Zj wiM;
Zj Wi

s =

(12)
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where M; = (x;,y;) denotes the coordinate of the jth RF
emitter. The corresponding weight w; is calculated as

Pi—Pg
Wj — ne AP

13)

where P; is the RSSI reading of the jth emitter. Py, AP and
n are some constants set empirically.

VI. ONLINE HMM FUSION AND ITS COMPLEXITY

In this section, we present the HMM fusion model in
terms of its prediction step (Section VI-A) and refinement
step (Section VI-B). After that, we analyze its computation
complexity in Section VI-D.

A. Prediction

The prediction step predicts a car’s future location based
on the past location distribution «;—1 (i) and the action u;. The
prediction step in (6) is modeled as

() =Y p(si = jl¢n, prr si-1 = Detr—1(0)
= > ai.ppsi =l si1 = 1) (14)

where a;(i, j) is the transition probability estimated from the
speed distribution F collected in the offline phase and the
pattern p;. We employ a kernel K to perform the task, given by

— v

ari, j) o /K(V
v Oy

doali =1
J

where f,, (v, ¢;) is the speed distribution of the pattern p;. K is
a kernel function in which o, denotes the variance of the car
speed distribution and, v;; denotes the average speed required
to drive across the states s; and s; within a unit time of At, i.e.,

)fp, v, gi)dv 15)

such that

(16)

v = llg: — Clj”.
At
There are many typical kernel functions that can be applied
to the task. In our framework, we select a simple Gaussian
kernel function, i.e.,

a7)

K(x) = e 2%, (18)

Usually, vehicle speed in an indoor car park is upper lim-
ited. We apply an H-hop constraint to reduce computation.
We assume a vehicle is only capable of transferring into H
hops neighbor states within a period At, i.e.,

a,(i,j) = 0,if  |lgi — gjll > Hd. 19)

The term p(s; = j|¢y, s;—1 = i) represents the probabil-
ity that a car has the heading ¢ when s; = j and s,—1 = i.
We illustrate how such probability is estimated with Fig. 8.
First, the observed vehicle’s heading is expected to be close
to the direction of vehicle’s real transition. Let o represent
the variance of orientation estimation error. We assume that
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i °e)
g Cm P g
Fig. 8. h represents the angle between the direction of proposed transition

(sr—1 = q; and 5; = g;) and the observed vehicle’s heading ¢;. A smaller &
indicates a higher probability of proposed transition.

the orientation estimation error forms a Huber-loss distribution
given by

Ix? +2Ino, if x| <o

InL(x, 0)) = a<|x| — %a) oo if | =0 2O
Then, we estimate the probability with
plsi = jlon, si-1 = i) = L(h(¢, g1, 4j), 9p) (2D

where the function & represents the angle between the direction
of transition and the estimated vehicle direction, given by

h$. qi. qj) = h(. (xi. ) (5. 5)))
(xj — xi) cos(¢) + (yj — yi) sin(q?))
V=) + (=)’

arccos

(22)

B. Refinement

We refine the predicted location with the RF localization
result 7, and the turn landmark /;. As [; and r, are conditionally
independent with the state s; known, the refinement step works
as follows:

o (j) = p(relse = Ppelse = pee()- (23)
The term p(r:|s; = g;) represents the error distribution of the
RF localization result. Knowing the variance of the RF local-
ization error oy, we assume that the RF localization error forms
a Huber-loss distribution, i.e.,
p(rlse =j) = L(lre = gl o). (24)
The term p(l;|s; = j) represents the probability of observing a
car turn /; at j. We model the likelihood of observing a turn
at the point g; with the distribution

. l 1-1,
plids=j) = g(g)" (1 —g(g)) "L €{0. 1} (25)
where
N8B if g; is a junction point
8(9)) = { 1 —y, if g; is not a junction point (26)

where B and y are the recall and precision of the turn detection
algorithm.
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(b) When driving at middle points. (c) When negotiating a corner.

C. Visualized Demo

To elaborate more on the proposed HMM model, we
visualize the inference process by showing the probability
distributions of a car in Fig. 9(c). The red cross indicates the
ground-truth location while the blue points show the probabil-
ity distribution of the states. The size of a blue dot indicates the
probability that a car is at the corresponding position. At the
beginning, an RF packet and an IMU packet are received refer-
ring to a rough initial distribution with heading, as shown in
Fig. 9(a). With more RF/IMU observations received, the distri-
bution gradually converges and gets closer to the ground-truth
location by iterating the prediction and refinement steps men-
tioned in Sections VI-A and VI-B, shown in Fig. 9(a). After
negotiating a corner, the probability distribution converges to
the corresponding corner point, shown in Fig. 9(b).

D. Computational Complexity
The computational complexity in online localization is

O(F) + O(Hn) 27)

where F is the computation cost for signal processing, H is
the number of hops, and n is the number of states.

We explain (27) as follows. The online localization consists
of the signal processing stage and the HMM fusion stage. As
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TABLE 11
SPECIFICATION OF THE TWO CARPARKS

Car park name \ University carpark  Apartment carpark

Area (m?) 3600 9200
iBeacons deployed 19 35
Junctions 6 6

the vehicle’s transition probability a; with all speed patterns
can be memorized in advance, the prediction step costs O(Hn)
computation. The refinement step costs O(n) computation.
Note that if the vehicle speed is upper bounded by Viax,
the minimum H achieving the highest localization accuracy is

chosen as
H— [VmaXAt"
d

where Ar denotes the unit period to perform localization, d
is the grid size, and [x] denotes the ceiling of x. From (28),
we have

(28)

Hod . (29)

Furthermore, the total number of states n satisfies

nocd™! (30)

because the total length of driveable paths in an indoor car
park is fixed. Therefore, the computation complexity may be
rewritten in terms of the grid size d as

O(F) + 0(Cd‘2> 31)

where C is a constant.

Grid size d is the critical hyperparameter to balance the
computation complexity and localization accuracy. We study
the computation-accuracy tradeoff through experiments in
Section VII-F.

VII. ILLUSTRATIVE EXPERIMENT RESULTS

We have implemented RICH in smartphones and conducted
extensive experiments in real carparks. In this section, we first
discuss our experimental settings, performance metrics, and
comparison schemes in Section VII-A. The speed classifier
used in RICH is then evaluated in Section VII-B. We present
the overall performance in Section VII-C. Then, we discuss
how parking occupancy and AP density affects the localization
in Sections VII-D and VII-E, respectively, and finally discuss
the computation-accuracy tradeoff in Section VII-F.

A. Experiment Settings and Performance Metrics

The experiments are conducted in two typical indoor
carparks, one in our university and the other one of a pri-
vate apartment building. Both carparks are deployed with
proper density of BLE beacons (iBeacons) with broadcast-
ing interval of a second. Specifications of the two experiment
fields are shown in Table II. Different brands of private cars
are involved in the experiments, including Hyundai, BMW,
Honda, and Nissan. Mobile phones involved in the experi-
ments also vary in different types, including Samsung, Huawei,
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TABLE III
BASELINE PARAMETERS

Parameter  Value
d 1.2m
At 0.2s
H 5

S 3

Vivo, and iPhone. Our system is implemented in both Android
and i0OS platforms with Dart language. We also implement the
system on a 4-core 17-6560 personal workstation with Python
language for evaluation purposes.

We conduct site surveys to collect the data for both the
offline and online phases. A total of six volunteer drivers
participated in the experiments. Drivers vary in driving age
and gender. They drive in prescribed routes while the sur-
veyor seated in the car collects data with a docked phone. We
have collected a total of 276 min of driving trajectories in the
two aforementioned car parks. The driving data covers various
speed bands to cover most driving scenarios. Unless otherwise
stated, we use the baseline parameters according to Table III.
The parameters and settings in online signal processing step
are specified in Table IV.

We developed an app for signal collection. The app collects
the IMU signals at 50-Hz sampling frequency and updates
the BLE readings at 5-Hz sampling frequency. Sensor (RF
and IMU) data is automatically collected by the app. The car
speed and the trajectories are annotated from recorded videos,
frame by frame.

The performance metrics are as follows.

1) Localization Error: The localization error is defined as
the distance between the estimated vehicle position and
the ground truth. The overall performance is evaluated
by the average localization error, final distance error,
max distance error, and cumulative distribution function
(CDF) error.

2) Average Computation Time: The average computation
time is defined as the average time required to estimate
one car location. Considering the computation power
heterogeneity of various devices, we evaluated the aver-
age computation time on various devices, including a
personal computer and various mobile phones.

Due to the uniqueness of our sensor settings, RICH is hard
to compare directly with other works. We select the following
comparable schemes.

1) WCL [3]: Tt is implemented as the baseline. It is also
the RF localization algorithm adopted in the signal
processing stage described in Section V.

2) GMPF [25]: Tt is a state-of-the-art approach which
has similar sensor settings as RICH. GMPF applies
ensemble WiFi fingerprinting to perform RF localiza-
tion. Afterward, it acquires odometer information by
fusing IMU and lidar. Finally, the WiFi and odome-
ter readings are fused using a Gaussian-mixture PF. In
our experiments, we replace the ensemble fingerprinting
method with WCL. As lidar is unavailable in our sensor
setting, we replace lidar-based odometer with the speed
distribution learned in our offline training stage.
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TABLE IV
ONLINE SIGNAL PROCESSING SETTINGS

Module Specifications

speed pattern classifier
turn detection
Madgwick Filter
WCL

LPF cut-off frequency: 15HZ; Number of 1D-CNN layers: 3
Turn detection threshold: 77, = 10

Regression step: 8, = 0.8

PO = —60dB,AP = 20

TABLE V
ACCURACY OF SPEED CLASSIFIER

| Stop Low Speed Driving  Regular Driving
Precision | 0.87 091 0.76
Recall 0.85 0.79 0.92
F1-score 0.86 0.84 0.83
1.0 1.0
0.8 08 T
L 06 L 0.6
a a
“o4 “o.4
P —— RICH
0.2 o2/ GMPF
wcL
00"2 2 & & 10 1z 14 0053 4 & & 10 12 14

error (m) error (m)

(a) (b)

Fig. 10. CDF of different schemes. (a) CDF in University Carpark. (b) CDF
in Apartment Carpark.

B. Speed Pattern Classifier

In our experiments, the number of speed patterns § is
selected as 3: stoppage, low-speed driving, and regular driving.
A training set containing 200-min length driving trajectories
is applied to train the speed pattern classifier model. We apply
tenfold cross-validation to validate the trained model.

Table V shows the accuracy of the speed pattern classifier.
The average F1-score is around 85%. We observe a high recall
in regular driving case because regular driving pattern appears
most frequently in the training data.

C. Overall Performance

In Fig. 10(a) and (b), we show the CDF localization error
in our two experiment fields. We observe that the pure RF-
based WCL method has a limited localization accuracy, mainly
due to the signal attenuation by the car body. Our scheme
RICH significantly outperforms WCL and GMPF in localiza-
tion error. We summarize the average computation time and
average localization error of all schemes in Table VI. WCL
consumes least the computation time, as both GMPF and
RICH are implemented on top of it. Our RICH outperforms
GMPF in both computation time and accuracy. Comparing the
CDF curves in both sites, we observe RICH achieves better
accuracy in University Carpark than Apartment Carpark. This
is mainly because RF emitters in University Carpark is more
densely deployed and therefore higher signal-to-noise ratio.

We observe at the bottom left of Fig. 10(a) and (b) that
there is a proportion of the positioning error close to zero.

TABLE VI
AVERAGE COMPUTATION TIME ON 4-CORE 17-6560 CPU WORK
STATION, PYTHON 3.7.1

Scheme | WCL  PF  RICH
Computation time (ms) 0.2 7.2 4.1

RMS error (m) 21.0 10.1 4.4
20.0 20.0
we we
s ompr | EL73] GMPF
515.0 — RICH £ 15.0{ — RICH
5125 5125
_5 10.0 _5 10.0
g 7.5 g 7.5
© 5.0 © 5.04
S 25k S 25 ;
00— 0.0 s
0 2 4 6 8 10 12 14 0 5i 10 15 20
time (s) time (s)
(a) (b)

Fig. 11. Localization error over time under the (a) regular driving pattern
and the (b) low-speed driving pattern.

TABLE VII
MAX DISTANCE ERROR

RICH
6.61

Scheme | WCL PF
Max Distance Error(m) ‘ 1522 17.62

Zero error happens when a car is correctly located at a turn-
ing point by turn detection. The cumulative density of O error
is expected to be Br, where r is the ratio of the total turn-
ing period over the driving period and B is the recall of the
turn detection algorithm. In our experiments, turning occupies
3.2% and 11.2% of the total driving period in the two fields,
respectively; 8 = 0.95.

We illustrate the superiority of RICH with temporal local-
ization error plots. Fig. 11(a) and (b) shows the localization
error over time at nominal vehicle speed and low-speed bands,
respectively. We observe that both GMPF and RICH have
reasonable localization accuracy at the nominal speed case.
However, once the vehicle drops to a low speed for several sec-
onds, the localization error of GMPF drifts to 10 m over time.
RICH reduces the drift with the speed classifier and calibrates
the location error with a detected turn. For the same reason,
we observe that the final distance error shown in Fig. 12 and
the maximum distance error shown in Table VII of RICH are
also the lowest.

We also test the average computation time of RICH on vari-
ous phones. As shown in Table VIII, the average computation
periods on the mobile phones range from 0.9 to 8.2 ms, all
below the minimum response time, i.e., Af = 0.2 s. Therefore,
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Fig. 12. Boxplot: final distance error of all schemes.
TABLE VIII
AVERAGE COMPUTATION TIME OF RICH ON VARIOUS PHONES
Phone type ‘ Sumsung S8  Vivo Y12  iPhone 11
Computation time (ms) | 8.2 4.2 0.9
TABLE IX

LOCALIZATION ERROR WITH DIFFERENT PARKING OCCUPANCY

Occupancy \ Localization Error(m)
30% 33
70% 3.62

Heading Error(degree)
17.6
342

RICH is light-weight enough to deploy on a typical mobile
phone.

D. Parking Occupancy

As the vehicle body is usually made of metal, the parking
occupancy rate can affect the magnetic field in the parking lot.
Therefore, we tested the positioning accuracy at different park-
ing occupancy rate (approximately 30%, 70%). The results are
shown in Table IX. We observe no significant change of aver-
age localization accuracy, but a double of heading estimation
error. Therefore, the localization error is relatively robust to
the parking occupancy.

E. AP Density

The deployed AP density may diverse in different carparks.
We evaluate the influence of AP density on the localization
error. Here, the AP density ratio is measured by the total num-
ber of APs participated in localization divided by the total of
APs deployed in the carpark. As shown in Fig. 13, all schemes
(WCL, GMPF, RICH) increase their accuracy with the increase
of AP density. However, RICH is comparatively more robust to
the AP density because of a better design of the turn detection,
speed pattern classifier, and the motion constraints implied in
the HMM model.

F. Computation-Accuracy Tradeoff

We show in Fig. 14(a) the average computation time versus
the number of hops H under a variation settings of grid size d.
The average computation time increases linearly with H. The
computation cost increases as the grid size d decreases. We
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Fig. 13. Average localization error with different AP density ratios, where
ratio = 1 means all APs deployed in the carpark are utilized in localization.
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Fig. 14. System performance with variation of parameters H and d.
(a) Average computation time under different d and H settings. (b) Average
localization error under different d and H settings.

show in Fig. 14(b) the average localization error versus the
number of Hops H under a variation settings of grid size d.
Generally, the localization error decreases when the grid size
is smaller. The localization error drops significantly as H
increases until the accuracy achieves its optimal given by (28).
In our experiments, the maximum vehicle speed Viax is 9 m/s.
We perform localization every 0.2 s, i.e., At =0.2 s.

We study the computation-accuracy tradeoff of RICH as
follows. We observe how the computation time and the local-
ization error change with the grid size d under the optimal
setting of H determined by (28). As shown in Fig. 15(a),
the average computation time decreases as the grid size d
increases. Moreover, the average computation time is approx-
imately inverse proportional to the square of d. Fig. 15(a) fits
well with (31). Fig. 15(b) shows how average error changes
with the grid size d. In general, localization error increase
as the grid size increase. We observe a significant decrease
of localization error when d is small (at d = 1.2m). This
is because a smaller d means finer granularity such that the
transition probability can be estimated more accurately. We
show in Fig. 15(c) the computation-accuracy tradeoff curve.
The average localization error decreases and converges to a
minimum as we afford more computation time.

VIII. CONCLUSION

We study the problem of navigating in an indoor carpark
under the general case of weak or no GNSS and cellular
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Fig. 15. Performance of RICH under different grid size settings. H is set to be optimal in (28). (a) Average computation time over the grid side d. (b) Average
localization error over the grid side d. (c) Tradeoff between the computation time and the localization accuracy.

signals. To address it, we propose RICH, a novel, simple, accu-
rate, and cost-effective approach for an offline docked phone
without costly OCALI installation and error-prone IMU inte-
gration. Using IMU signals, RICH classifies the car speeds
and detects the car heading and turning. This information and
the crude RF localization are then fused with an HMM to
accurately compute the car location.

We analyze the computational complexity of RICH and
its tradeoff with accuracy. We have implemented RICH in
smartphones and conducted extensive experiments in two
carparks in university and apartment complex. RICH achieves
significantly lower (by more than 40%) localization error
as compared with the state-of-the-art approaches. It is also
computationally light-weight, deployable real-time in offline
smartphones.
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