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Abstract
Delivering goods to many indoor stores poses significant

safety issues, as heavy, high-stacked packages carried on de-

livery trolleys may fall and hurt passersby. This paper re-

ports our experiences of developing and operating DeMo, a

practical system for real-time monitoring of indoor delivery.

DeMo attaches sensors to trolleys and analyzes the Inertial

Measurement Unit (IMU) and Bluetooth Low Energy (BLE)

readings to detect delivery violations such as speeding and

using non-designated delivery paths. Differing from typical

indoor localization applications, DeMo overcomes unique

challenges such as unique sensor placement and complex

electromagnetic characteristics underground. In particular,

DeMo adapts the classical logarithmic radio signal model to

support fingerprint-free localization, drastically lowering the

deployment and maintenance cost. DeMo has been operating

since May 2020, covering more than 200 shops with 42,248

deliveries (3521.4 km) across 12 subway stations in Hong

Kong. DeMo’s 3-year operation witnessed a significant viola-

tion rate drop, from 19% (May 2020) to 2.7% (Mar 2023).

1 Introduction
Indoor localization has been extensively studied by the re-

search community [4, 5, 19, 39, 41, 43, 64, 66]. Very recently,

there emerged commercial, large-scale indoor localization

systems that leverage the two-decade research to benefit end

customers (e.g., mall navigation [30, 43] and presence detec-

tion [18, 19]) and even offer monetization opportunities [46].

In this paper, we investigate a unique and important appli-

cation that falls into the broad topic of indoor localization:

indoor delivery monitoring. Many public places such as air-

ports, subway stations, malls, and office buildings feature

dense retail stores and crowded visitors. Delivering goods to

the stores (Fig. 1) poses significant safety issues, as heavy,

high-stacked packages carried on delivery trolleys may fall

and hurt passersby. The particular indoor environments may

exacerbate such a risk: there are usually no corridors reserved

exclusively for delivery; the uneven road surfaces such as

slopes, tactile pavings, and contraction joints make packages

less stable; delivery personnel may even use passenger lifts,

whose acceleration and deceleration may make packages fall.

Reckless indoor delivery has resulted in severe injury or even

∗Zhimeng Yin and S.-H. Gary Chan are co-corresponding authors.

Fig. 1: Indoor delivery in an MTR station.

deaths [1, 14, 21, 45, 57, 62]. For example, in a recent acci-

dent, multiple packages fell and paralyzed a nearby passenger

when a delivery worker was using a passenger lift to transport

a trolley full of goods [45]. When indoor environments are

crowded, delivery accidents may be more severe compared to

their outdoor counterparts [6, 38], and they may trigger cas-

cading accidents such as crowd collapse and even stampedes

where the death toll can reach hundreds.

As an advocator of indoor delivery safety, Hong Kong Elec-

trical and Mechanical Services Department (HK EMSD) has

been strictly monitoring delivery violations in Mass Transit

Railway (MTR) stations in HK. MTR has a daily ridership of

more than 5 million (Feb 2023). Henceforth, its stations are

dense with passengers, stores, and indoor deliveries. EMSD

has established four delivery violations in MTR stations: (1)

speeding (trolley moving speed ≥ 1.5 m/s), (2) using non-

designated delivery paths, (3) using passenger lifts without

prior permission, and (4) performing delivery in peak hours.

To ensure the rules are being properly followed, since 2010,

MTR has been hiring safety staff to manually monitor the

delivery behavior. The staff needs to physically follow the

delivery worker and manually document observed violations.

Clearly, this approach is inaccurate (in particular for speed

estimation), unscalable, and labor-intense.

To address the disadvantages of the manual efforts, we

collaborated with HK EMSD and MTR on devising a fully

automated indoor delivery monitoring solution, referred to as

DeMo. In this paper, we report our multi-year experiences of

developing, deploying, and maintaining DeMo. Our system

was commercially deployed in 12 MTR stations for monitor-

ing 40K+ deliveries to 200+ stores since May 2020.

At a first glance, it appears that we can trivially apply an

existing indoor localization solution (Table 1) as is: by track-

ing the delivery worker’s location, ideally one can find out

the speed and path of the delivery in real time. However, we

face several unique challenges and practical constraints that
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Table 1: Large-scale indoor operational systems. “B+G”

means BLE and geomagnetic fields; “det.” represents detec-

tion; “prop.” is for propagation; “mon.” means monitoring.

System Technique Signal Application

MLoc [30] Fingerprinting B+G, IMU Navigation

Tencent [43] Fingerprinting WiFi, IMU Navigation

myCoex [27] Fingerprinting WiFi Navigation

aBeacon [18] Proximity det. BLE Presence det.

VALID [19] Proximity det. BLE Presence det.

DeMo Prop. model BLE, IMU Delivery mon.

render off-the-shelf indoor localization solutions not appli-

cable. First, the sensor placement is different. Unlike prior

solutions that assume users carry hand-held smartphones for

localization, for indoor delivery, workers usually attach sen-

sors to the trolley. Therefore, motion sensor readings do not

exhibit periodical footstep-incurred patterns that are widely

leveraged for online location tracking [34, 53]. Again due to

the sensor placement, sensor readings are significantly dis-

turbed when the trolley moves over special ground surfaces

such as tactile pavings and contraction joints. Second, com-

pared to prior localization systems’ target environments (e.g.,
shopping malls), HK’s MTR stations are usually underground
and bear much more complex electromagnetic characteristics
due to operating trains, as demonstrated in Appendix A.1.

Consequently, we cannot adopt commonly used features, e.g.,
geomagnetic field (GMF) strength. Due to the same reason,

we are not even able to obtain the accurate moving direction

that is essential for position tracking. Third, due to privacy
concern and loud noises in MTR stations, we cannot use

vision-based or acoustic-based localization; due to constraints
of device form factor and energy usage, we are not allowed

to adopt WiFi-based localization either, which was heavily

researched [13, 50, 65] and commercially deployed [27, 43].

Fourth, HK EMSD and MTR also hope to minimize the prepa-
ration and maintenance overhead. We thus decide to not use

a fingerprint-based approach that was adopted by almost all

prior commercial indoor navigation solutions [27,30], because

training and maintaining the fingerprint database requires sig-

nificant labor in crowded MTR stations.

To tackle the above challenges, DeMo only uses cheap,

lightweight Bluetooth Low Energy (BLE) beacons as the in-

frastructure. To further lower the deployment bar, instead of

using BLE beacons’ RSSI readings as location fingerprints,

we adopt a simple RSSI-distance model as the core localiza-

tion mechanism. The model is generic across all MTR sta-

tions; it thus eliminates the need for training and updating the

per-site fingerprint database. While RSSI propagation model-

ing has been extensively studied [5, 7, 13, 31, 42], our contri-

bution lies in adapting the classical logarithmic model [42]
to complex indoor environments, and for the first time, demon-
strate its efficacy in supporting fingerprint-free localization
through large-scale commercial deployment. Specifically, we

note that in MTR stations where occlusion, interference, and

dynamic crowds are common, abrupt RSSI change and weak

RSSI values can cause significant ranging errors and fluc-

tuations. Therefore, we adjust the classical free-space prop-

agation model to accommodate these unique challenges in

complex MTR environments. Meanwhile, we properly cali-

brate our model through one-time training and then adopt it

across MTR stations. Experiments indicate that our adjusted

model significantly outperforms the literature [5,7,13,31,42],

many requiring sophisticated tuning such as ray tracing.

On the trolley side, we engineer a lightweight sensor with

an inertial measurement unit (IMU) and a BLE RSSI receiver.

Our sensing algorithm can work with diverse sensor place-

ment: hand-holding, in-pocket, and most importantly, sensor

attaching to the trolley. For trolley-attached placement, we

develop robust algorithms that identify three types of road sur-

faces appearing in MTR stations: normal road, tactile paving,

and contraction joints (Fig. 7). The detected surface type is

then utilized to improve the speed estimation. To overcome

the aforementioned challenge of missing moving direction,

we design a customized particle filter (PF) that leverages the

RSSI-distance model and estimated speed to accurately local-

ize the trolley, without requiring explicit direction reading.

Last but not least, we integrate the above components (RSSI

model, speed measurement, surface detection, PF-based lo-

calization), together with other essential modules (floor plan

processing, violation detection/alarming, store classification,

delivery recording, etc.), into the holistic system of DeMo.

The overall development/testing took 6 months. We then

worked with HK EMSD and MTR to commercially deploy

DeMo in 12 MTR stations in May 2020. We conduct thor-

ough evaluations using two complementary sources: (1) data

collected from our 3-year deployment (42K+ deliveries to

200+ shops, with 3521.4 km total travel distance), and (2) 15-

day controlled experiments (900 deliveries with 54 km travel

distance, with ground truth). Our key results are as follows.

• DeMo’s 3-year operation witnessed a significant violation

rate drop, from 19% (May 2020) to 2.7% (Mar 2023). This

demonstrates DeMo’s influence on delivery behaviors.

• We conducted an A/B test to confirm that the improve-

ment of delivery behaviors is indeed due to DeMo’s violation

detection/warning capability instead of delivery workers’ per-

ception of our sensing devices.

• In contrast to the common belief that a propagation model

suffers from large errors, our integrated design yields a mean

positioning error of 2.17 m in MTR stations without the need

for labor-intensive site surveys.

• DeMo achieves accurate road surface detection, which fur-

ther facilitates trolley speed estimation (mean error 0.31 m/s).

Both only use IMU sensors.

• Compared to manual delivery monitoring used before 2020,

DeMo improved the monitoring coverage (i.e., the fraction of

detected delivery events) from 53% to 88%, and meanwhile

reduced the operational cost by 8X.

• DeMo achieves perfect detection for all violation types with
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speeding being the only exception. For speeding violations,

DeMo reported 9.3% FP and 2.4% FN 1; the real-time warn-

ing is even less accurate. Therefore, DeMo is not intended for

law enforcement actions, similar to prior systems (e.g., detect-

ing reckless driving [69]). Despite this limitation, DeMo was

endorsed by MTR safety staff: we invited 20 staff to partici-

pate in a questionnaire survey; 95% of the participants agree

or strongly agree that DeMo can improve delivery safety.

To summarize, our contribution consists of the following.

(1) We develop DeMo, a first commercially deployed indoor

delivery monitoring system. (2) Through the 3-year deploy-

ment of DeMo, we learn several key lessons and operational

experiences. (3) Most importantly, DeMo indeed makes HK

MTR safer, benefiting millions of riders every day. Note that

DeMo can be potentially extended to broader indoor services

such as property management [73] for monitoring shuttle

vehicles in shopping malls and luggage carts in airports.

Ethical Consideration. Our IRB-approved study complies

with the agreement between us and HK MTR. We did not col-

lect any personally identifiable information (PII) of delivery

workers or passengers. Neither was MTR willing to release

data for the actual incidents because of privacy concerns.

Data Release. To facilitate further research, we have re-

leased our collected IMU and BLE readings on GitHub [15].

2 Motivation
Delivery Violations. The MTR is a major public transporta-

tion network that transports around 5 million daily passengers

in HK. To facilitate commuter needs, MTR stations offer di-

verse shops (including food/beverage, health/beauty, books,

banking, and convenience stores), similar to typical small

malls in many countries. Because of the crowded MTR sta-

tions, indoor delivery has a potential risk and EMSD in HK

requires strict monitoring of delivery behaviors in MTR sta-

tions. Targeting the specific scenario of delivery in MTR

stations, the EMSD defines the violations as follows.

• Violation 1: speeding (trolley moving speed ≥ 1.5 m/s for

more than 3 seconds).

• Violation 2: non-designated delivery path (entry/exit/path).

• Violation 3: usage of passenger lift without prior permission

from the station.

• Violation 4: deliver during peak hours (07:00-10:00 am and

4:00-8:00 pm).

Manual Monitoring and Limitations. To ensure safe de-

liveries following government guidelines, MTR stations hire

additional safety staff for manual monitoring. These safety

staff need to follow each delivery, warn delivery workers once

they observe a violation, and file delivery reports for future

action. These delivery reports include the delivery time, path,

and violation type (if there exists a violation) 2.

1FP is less of a concern since MTR stations hope to slow down delivery

speeds for passenger safety.
2One delivery record example: station code KXX, entry/exit A, start time

5/10/21 10:05, shop ID K001, violation type 2.

Not surprisingly, the current manual system has substantial

limitations. (1) It is difficult to visually monitor delivery work-

ers’ moving speed, which leads to potential violations and

safety risks. (2) Manual recording requires substantial human

resources - a safety staff is required for each delivery. It is

impossible for one safety staff to monitor multiple deliveries

concurrently, leading to monitoring failures. (3) High labor

cost. Each station requires multiple safety staff depending on

its scale, which directly adds up to a high expense.

The above limitations motivate us to design a fully auto-

mated system with reliable monitoring services and reduced

costs - DeMo. During DeMo’s design and prototyping, we

discovered a few unique challenges, such as IMU readings’

large fluctuation due to special road surfaces and the severe

electromagnetic environment, which need to be addressed in

practice for reliable monitoring.

3 System Design

3.1 An Overview of System
DeMo consists of two phases: offline preparatory phase and

online operational phase.

Offline Preparatory Phase. In this phase, we design cus-

tomized sensors that will be attached to trolleys for delivery

monitoring. Then we strategically deploy BLE beacons in

MTR stations to balance the monitoring reliability and deploy-

ment/maintenance cost. To completely remove the intensive

radio fingerprinting cost in many wireless localization sys-

tems, we adopt a Received Signal Strength Indication (RSSI)

to distance model that is quickly applied across different sce-

narios with reliable accuracy. In addition, we further process

the MTR station floor maps. The preparatory phase’s details

are discussed in Sec. 3.2.

Online Operational Phase. Fig. 2 shows the operational

DeMo. When reaching an MTR station entrance, delivery

workers receive DeMo’s sensors from MTR staff and then

attach sensors to workers’ own trolleys that satisfy different

shops’ specific supply requirements.

During delivery, workers manually drive trolleys that carry

supply goods while DeMo monitors the whole procedure.

Specifically, DeMo calculates the moving speed (Sec. 3.3)

using IMU readings. For the trolley trajectory generation

(Sec. 3.4), DeMo adopts a particle filter to leverage received

BLE packets and estimated speed. Although the idea seems

straightforward, DeMo needs to address a few unique chal-

lenges in MTR stations, e.g., large errors due to MTR’s special

road surfaces and missing directions in a severe electromag-

netic environment. Based on the estimated speed and trajec-

tory, DeMo analyzes them for violation detection (Sec. 3.5).

When arriving at the target store, delivery workers unload

their goods which usually lasts 5-20 minutes. DeMo utilizes

this opportunity to identify the specific store and alleviates the

possible false alarms by analyzing the historical IMU+BLE

readings. Then, DeMo uploads the delivery record to the
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Fig. 2: DeMo system overview (operational phase).

server which analyzes the daily violation rate to identify ab-

normally high violations. When delivery workers reach an

MTR exit, they return DeMo’s sensors to MTR staff.

3.2 Offline Preparatory Phase
Our offline phase includes signal choice, sensor design, floor

plan processing, BLE beacon deployment, and RSSI-distance

model verification.

Signal Choice. Various signals, such as acoustics, WiFi,

camera images, and visible light, have been used for indoor

localization. DeMo leverages the RSSI of BLE packets and

IMU readings because of the following reasons:

• The privacy issue restricts us from installing privacy-

intrusive devices, such as cameras or depth cameras.

• As required by MTR stations, we are only allowed to install

small-sized battery-powered devices and cannot place power

cables. As a result, it is infeasible to install power-hungry

devices such as WiFi access points, while MTR stations have

limited WiFi coverage and require dedicated WiFi access

points for WiFi-based localization.

• Acoustic and light-based indoor localization systems are

not practical due to challenges such as noise, reverberation,

limited visibility, and complexity.

• Our DeMo achieves desired violation detection based on

BLE and IMU with low deployment and maintenance costs.

Sensor Design. In addition to commodity BLE beacons

deployed in MTR stations, we customize on-trolley sensors

with two major components, Raspberry PI 4B and customized

hardware attached on top (HAT) in Fig. 4. Our HAT contains

an inertial measurement unit (IMU) MPU9250, a speaker for

alarm, 6 indicator lights to indicate the operation statuses and

a fan for cooling.

Fig. 3: Sender: a beacon de-

ployed on the skirting board.

Fig. 4: Receiver: Raspberry

PI 4B and customized HAT.

Our sensor captures BLE packets via a Bluetooth chipset

and detects violations in real-time. Once detecting a violation,

it alarms through a speaker and also reports to the server

through a 4G dongle. Since this report contains only essential

information (e.g., sensor id, station, entry/exit, delivery time,

destination shop, and violation type), it requires moderate

energy consumption. The overall energy consumption for

DeMo’s sensing, computation, and uploading is around 400

mW. We chose the Raspberry PI to reduce our hardware

design workload, while its operating system accounts for the

majority of the energy consumption (2000 mW). Our sensor

is connected to a small-capacity portable power bank that is

charged roughly every 2 days.

BLE Beacon Deployment. MTR stations impose strict

aesthetic constraints on BLE beacon deployment. We adopt

small-size, battery-powered, and black-coated beacons and de-

ploy them at skirting board locations (Fig. 3) near the ground.

The beacon distance is 6 to 8 meters in the majority of areas.

During DeMo’s initial trial, we noticed several areas that often

lead to large errors or are critical in DeMo’s operation. This

inspires us to adopt dedicated deployment strategies for these

areas. For large pillars, we deploy beacons on all four sides to

alleviate signal obstruction. For in-station stores, we deploy 3

beacons (two outside and one inside the store) to improve the

store classification accuracy.

During DeMo’s operation, we also recognize the beacon

types affect our maintenance. Table 2 shows two types of

beacons primarily used for DeMo. In our initial few stations,

we deployed beacon type 1 but noticed a significant loss rate,

reaching 9% after 5 months (Sec. 4.4). This loss is caused by

the high chances of collisions with passengers. To alleviate

maintenance costs, we turned to beacon type 2, which is more

expensive with a card shape. This card shape offers larger

contact areas for gluing and reduces the chances of colliding

with walking passengers with better reliability, around 2.3%

after 5 months. This motivates us to only deploy beacon type 2

in later deployment/maintenance. Overall, we have deployed

DeMo in 12 MTR stations with more than 1,500 beacons.

RSSI-Distance Model Verification. Many localization

systems [11, 23, 24, 30, 63] rely on radio fingerprinting for

accurate localization and require intensive deployment costs.

Although RSSI-distance models have been extensively dis-

cussed in the literature for localization in small-scale indoor

scenarios for alleviating deployment efforts [5, 7, 13, 31, 42],

its verification is fundamentally missing in large-scale set-

tings. In contrast, DeMo adopts a low-cost and accurate RSSI-
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Comparison Type 1 Type 2

Appearance

Size 39x39x15mm 86x54x6mm

Cost 6.3 USD 9 USD

Table 2: Beacon type comparison. Fig. 5: Abrupt RSSI change with

time at a static sensor.
Fig. 6: Pre-processed floor plan. Yellow re-

gions represent designated delivery areas.

distance model for large-scale operation.

We started with classic free-space propagation models, e.g.,
the well-known logarithmic model r = r0 + 10N logd +Xσ
[42]. Our initial trials brought up multiple unique challenges

in complex MTR stations. (1) Crowd obstruction and reflec-

tion. These factors lead to signal losses that deviate from the

logarithmic model, which is especially inaccurate under weak

RSSI. (2) Highly dynamic crowd movement. The complex

MTR environment results in abrupt RSSI changes even when

our sensor is static. Fig. 5 shows an example of the RSSI

change with time at a static sensor - directly adopting a prop-

agation model will lead to significant localization errors. In

addition to the logarithmic model, we also tried multiple fine-

tuned RSSI-distance models (e.g., [5, 7, 13]) but noticed more

severe localization errors caused by the complex and dynamic

MTR environment.

These preliminary tests motivate us with the following re-

liable model applicable to complex and dynamic settings.

First, we transfer the logarithmic model to a probability

distribution model to be used in a particle filter: p(r|d) =
1

σ
√

2π
exp(− 1

2σ2 (r − r̂)2), which represents the conditional

probability of receiving an RSSI value r given a distance

d, where r̂ = r0 +10N logd. This probability follows a Gaus-

sian distribution with mean r̂ and variance σ2. Next, to

combat crowd reflection and obstruction, we ignore weak

RSSI values under a threshold Rth (empirically set to -80

dBm) to only leverage strong signals with good reliability.

We also modify the probability model as follows: p(r|d) =
k exp(− 1

2σ2 (r−L(r̂))2), where L(r̂) = γ0 + γ1r̂+ γ2r̂2 + γ3r̂3

is a cubic polynomial function to model crowds’ impacts and

k is adjusted normalization. We have tried multiple polyno-

mial functions and observed that our current cubic function

provides good accuracy while maintaining reliable generaliza-

tion. Higher or lower-order polynomials commonly encounter

larger errors when applied across different MTR stations. A

detailed comparison is included in the Appendix A.2. Coef-

ficients (e.g., γ0, γ1, γ2, and γ3 ) are determined through sim-

ulation experiments, and our detailed training procedure is

open-sourced at [16]. To mitigate the highly dynamic crowds,

DeMo adopts a sliding window tsw of 4 seconds and leverages

the maximum RSSI within this period, which outperforms

other statistics, e.g., the average, median, or the most recent

RSSI value. This sliding window enhances DeMo’s reliability

against lost BLE beacons while its duration is empirically set

to 4 seconds to ensure the balance between reliability and

delay. A short window might suffer from insufficient BLE

packets, while a long window leads to a larger delay.

Our training data is collected in three representative areas

(e.g., MTR’s entrance, store area, and corridors) and con-

sists of RSSI values collected at different distances from our

beacons to sensors. There is no significant accuracy differ-

ence between these areas. The overall mean localization error

solely based on BLE without IMU (Sec. 5.3) is 2.81 m. Then,

we further validate our model across the remaining stations

without parameter retraining. Detailed results are included in

Appendix A.3. In most stations, the positioning error is similar

to our initial station used for model training, ranging between

2.42 m and 3.39 m. Nevertheless, two subway stations suffer

from more significant positioning errors at 3.68 m and 3.83

m. These two stations boast unique layouts featuring larger

open spaces, unlike most subway stations that have long, nar-

row delivery areas. In addition, we observed more severe

beacon damages in these two stations. These factors result

in diminished positioning accuracy. These experiments ver-

ify the feasibility of low-cost and accurate localization based

on a simple RSSI propagation model - one-time training is

adequate for accurate localization in complex environments

like HK’s MTR stations. Transferring our model to other sce-

narios (e.g., subway stations located in other cities) involves

parameter reconfiguration, while we have open-sourced our

parameter configuration procedures at [16].

� Finding 1 Without labor-intensive site surveys, a good
RSSI model with necessary customization offers accurate
localization in complex and dynamic indoor environments
like MTR stations. The deployment cost could be reduced by
one-time parameter tuning and adoption to all stations with
similar accuracy.

Floor Plan Processing. We enhance the floor plans of

MTR stations with detailed information, including geo-

fencing [51] and surface statuses. Geo-fencing involves

adding polygons to the floor map to demarcate the delivery

area in compliance with MTR regulations. These polygons are

then utilized during the online phase for violation detection.

We also examine MTR stations’ ground surface conditions.

During our preliminary deployment, we noticed that certain

road surfaces (tactile paving and contraction joints) lead to

special patterns on the IMU readings, which could be lever-

aged for improving detection performance (further details in
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Sec. 3.3). Note that DeMo avoids tedious examination of each

station since MTR stations’ surfaces follow specific construc-

tion regulations and exhibit very similar IMU patterns. Fig. 6

shows an example of the pre-processed floor plan.

3.3 Online Speed Detection
DeMo estimates the trolley’s real-time speed by analyzing

IMU readings with two major components: road surface de-

tection and speed calculation. Special road surfaces cause

substantial IMU fluctuations, resulting in significant integral

errors. Consequently, in the speed calculation process, we

exclude IMU readings caused by these surfaces to maintain

speed accuracy.

Road Surface Detection. Special road surfaces (tactile

paving [48] and contraction joints [33]) lead to large IMU

fluctuations and speed estimation errors when a trolley passes

these surfaces. Specifically, tactile pavings (Fig. 7(a)) consist

of 4 parallel bars and are widely used to assist pedestrians

with vision impairment. Contraction joints (Fig. 7(b)) have

a narrow width and are often used to avoid cracking damage

caused by thermal expansion. This motivates us to detect

these special surfaces to improve speed detection accuracy.

(a) Tactile paving (b) Contraction joints (c) Normal road

Fig. 7: Examples of tactile paving, contraction joints, and a

normal road.

Fig. 8 compares the IMU readings when a trolley passes

different surfaces. These large IMU fluctuations inspire us to

adopt peak detection [47] to recognize road surfaces. Specifi-

cally, we calculate the standard deviation of the IMU denoted

as astd and extract peak values that are at least 4 times the stan-

dard deviation. The time interval between sequential peaks is

denoted as t1. . . tn, with n number of peaks. Considering that

tactile paving contains 4 parallel bars and a trolley’s typical

movement speed, DeMo’s tries to detect n = 8 peaks within a

short interval threshold (e.g., 0.04 s to 0.2 s). If the above two

conditions hold, the current surface is recognized as tactile

paving. DeMo adopts a similar strategy to detect a contraction

joint, if n is 2 and each of t1. . . tn is between 0.2 and 1 second.

The value of n considers the characteristics of the specific

road surface (e.g., 4 parallel bars) and the number of times

the delivery wheel has passed.

Speed Calculation. DeMo analyzes IMU readings for ac-

curate speed estimation with the following procedures.

• Sensor status detection. When the astd is under 0.01 g [50],

the sensor is considered to be static; it is moving otherwise.

• Sensor placement detection. In practice, delivery workers

adopt the following placement: 1) Our sensor is in a pocket or

hand. Traditional pedestrian dead reckoning [25,34,50] meth-

Fig. 8: IMU readings at different surfaces.

ods could be adopted to recognize human walking patterns

like step detection for speed inference, as widely discussed

in literature [30, 49, 55]. 2) Our sensor is placed on a trol-

ley. DeMo recognizes this placement if IMU readings lack

human walking patterns [8]. Based on DeMo’s operational

results (Sec. 4.3), our sensor is placed on trolleys for 95% of

deliveries.

• Adaptive integral of IMU readings. For a on-trolley sen-

sor3, DeMo estimates this trolley’s speed by analyzing IMU

readings. First, DeMo removes noises and outliers through

a low pass filter, excluding IMU readings that resulted from

special road surfaces. Second, DeMo detects acceleration and

deceleration by analyzing the IMU distribution. According

to our practical experience, the accelerometer readings are

dominated (>80%) by either positive or negative values when

the trolley accelerates or decelerates. Once identifying these

phenomena, DeMo integrates IMU readings with the previous

speed to re-estimate the current speed. Otherwise, when a

sensor is considered to have uniform movement, DeMo does

not re-estimate the current speed.

� Finding 2 Identification of road surfaces (e.g., tactile
paving and contraction joints) via IMU processing benefits
speed estimation accuracy.

3.4 Online Positioning
DeMo leverages a particle filter (PF) [20] to recursively up-

date the probability distribution for tracking the trolley posi-

tion in real-time. We choose PF DeMo because it is good at

fusing diverse signal sources (e.g., BLE, IMU) and also offers

good reliability with less training data in dynamic situations.

For initialization, DeMo generates N particles that have

the same weight and are evenly distributed over the delivery

area. In each iteration, DeMo moves its particles through the

transition model and updates particle weights accordingly. To

tackle the missing movement direction, DeMo leverages IMU

readings and the trolley’s historical trajectory to estimate the

moving direction. Specifically, we combine the accelerometer

and gyroscope reading to calculate the Euler angle [17] and

move each particle to a new position based on the variance

of the yaw angle and the speed produced from Sec. 3.3. In

practice, we observe a high variance of the yaw angle when

3For in-hand or in-pocket sensor, DeMo leverages existing techniques for

speed estimation [34].
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the trolley turns, while the variance is small when moving in

a straight line. As a result, when the yaw angle’s variance is

small, most particles maintain the previous motion direction,

while a small number of particles follow a uniform distribu-

tion to simulate random movement. Otherwise, the number of

particles with random movement increases to estimate the new

movement direction. When receiving a BLE packet, DeMo

updates its particle weights via our RSSI-distance model (Sec.

3.2). After the above updates, DeMo finds a center point of

the top pw weighted particles and repeats this iteration with

new BLE+IMU readings. pw is empirically set to 60%.

3.5 Operational Model
Targeting violation detection and safe delivery, DeMo has the

following designs.

Real-Time Violation Detection. To satisfy the require-

ment of real-time operation, DeMo’s computation is placed

on the sensor (Raspberry PI) side. This also avoids significant

delay and energy consumption for data uploaded to the cloud

server. For speed violations, DeMo compares the speed calcu-

lated in Sec. 3.3 with the regulation (1.5 m/s) to detect if there

is a speed violation. Then DeMo leverages the positioning

results calculated in Sec. 3.4 for delivery trajectory genera-

tion. By checking allowed delivery areas, DeMo is able to

detect delivery involving non-designated path/entrance/exit.

For passenger lift violation, DeMo first utilizes IMU and BLE

readings to recognize the floor change via lifts and then checks

the current position with the map to identify passenger lifts.

As for the detection of peak-hour delivery, our on-trolley sen-

sors record the delivery start time and end time for checking

with peak hours (7:00-10:00 am and 4:00-8:00 pm). If a vio-

lation is detected, DeMo alarms the delivery worker through

its speaker immediately to correct his/her delivery behavior.

Daily Report. When a delivery worker arrives at the tar-

get shop, this delivery worker stops his/her trolley for supply

unloading, which will usually last 5-20 minutes. DeMo lever-

ages this opportunity to process historical IMU+BLE data to

mitigate false alarms and identify the destination shop based

on positioning results and IMU patterns. Then DeMo gener-

ates the current delivery record that logs the DeMo sensor ID,

entry/exit, destination shop, delivery time, and the delivery

violation type. After this, DeMo uploads the current delivery

record to our cloud server via a 4G dongle. Due to a delivery

record’s limited size, this record uploading requires tiny en-

ergy consumption. DeMo’s server processes these records to

generate daily reports for MTR.

4 Large-Scale Operation
This section offers DeMo’s large-scale in-the-wild operation

results. DeMo covers more than 200 shops at 12 MTR stations

with a delivery area of 19,433 m2. Since its debut in May

2020, DeMo has monitored 42,248 deliveries with a 3521.4

km delivery length. By default, the beacons have a broadcast

interval of 200 ms, and the sample rate of IMU is 500 Hz.

4.1 Violation Behavior Analysis
Violation Reduction. For each violation type, its violation

rate is calculated as the number of violations divided by the

total number of deliveries for all stations. According to DeMo,

the violation rate for wrong delivery path, delivery in peak

hours, and using passenger lifts was 1% in 2020 and dropped

to 0.5% in 2023. Fig. 9 shows DeMo’s detection results of

speeding violations4. At first, DeMo detected a high violation

rate of around 19%, meaning that almost one-fifth of the de-

livery is speeding with potential safety risks to commuters.

Targeting safe delivery, DeMo offers accurate violation detec-

tion (more details in Sec. 5.2) and generates alarm warnings

in real time. These real-time alarms effectively correct work-

ers’ delivery behaviors, e.g., slowing down the movement

speed. By doing so, DeMo gradually reduced the violation

rate with time, which reached 2.7% in March 2023.

Prior to DeMo, MTR stations also adopted a manual moni-

toring system for many years without such an achievement.

Given that DeMo effectively monitors more than 88% of the

total delivery events 5, DeMo offers effective correction on

delivery behaviors with enhanced safety protection.

A/B Testing. To exclude the placebo effect, we launched

additional A/B testing to analyze DeMo’s influence on deliv-

ery behaviors. This test was conducted in two MTR stations

for two months. Version A was the operational DeMo dis-

cussed in Sec. 3.1 and was tested in the first month. In the

second month, we tested Version B, which had all the same

components (e.g., speeding violation threshold and daily re-

port generation) as Version A, while the only exception was

that the real-time alarm notification was disabled. Delivery

workers were not informed of this change. This also rules out

delivery workers’ perception of our devices since the alarm-
ing function is the only difference between Version A and B.

Table 3 shows the comparison of violation rates. Note that

we have only detected the speeding violations, and no other

types of violations were detected during these two months.

The violation rate increased in both of these two stations,

demonstrating the critical role of real-time alarms in notify-

ing delivery workers of behavior changes.

Table 3: A/B testing.

Station
Version A

Violation Rate

Version B

Violation Rate

Station 1 3.61% 9.22%

Station 2 5.19% 11.51%

4Due to the COVID-19 outbreak, DeMo was suspended at MTR stations

from July 2021 to November 2021.
5MTR corporation has a record of all delivery activities since shops are

mandatory to submit their delivery applications. This record is used as the

ground truth to evaluate DeMo’s monitoring efficiency. 88% is the number of

deliveries detected by DeMo divided by the total number of delivery records

according to MTR. The previous manual monitoring only covers 53% of all

deliveries due to its intensive human resource requirement and limited staff.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation    1889



Fig. 9: Violation (speeding) rate. Fig. 10: Distribution of violation

shops.

Fig. 11: A field study of the speed-

ing area.

� Lesson 1 DeMo’s 3-year large-scale operation effectively
reduces the violation rate from 19% to 2.7%. As indicated by
our A/B test, accurate violation detection and real-time warn-
ing are necessary prerequisites for such a positive delivery
behavior change.

Shop Category’s Impacts. We classify more than 200 shops

in MTR stations as convenience goods (CG), food and bever-

age (F&B), fashion and accessories (F&A), health and beauty

(H&B), home living (HL), and passenger services (PS). For

each shop category, the violation ratio is counted as the num-

ber of violations divided by the total delivery, as demonstrated

in Fig. 10. Overall, the CG category has the highest violation

rate, followed by the F&B category. This is likely because

these stores have a high demand for replenishment that natu-

rally leads to more incentives for delivery workers to expedite

deliveries.

Geographic Distribution. We observed that certain areas,

such as long (more than 20 m) and wide (5 m or more) cor-

ridors, exhibit much higher chances of speeding. Generally,

speeding violations often occur in the middle of straight roads

to the shops. This suggests MTR stations take specific coun-

termeasures to improve safety. Fig. 11 shows one example of

the clustered violation distribution, where each dot represents

a speeding violation.

4.2 DeMo vs. Manual Monitoring
Compared with manual monitoring/recording via hired MTR

staff6, DeMo has the following unique advantages.

• Full coverage of violation detection. DeMo reliably de-

tects 4 types of violations, while manual monitoring is not

well suited for speeding detection.

• Delivery behavior change. DeMo regulates delivery be-

haviors with corrections and reduces the violation rate from

19% to 2.7% as demonstrated in Sec. 4.1, which is fundamen-

tally missing in the manual system.

• Efficiency. Manual monitoring requires a safety staff for

each delivery with intensive human resource requirements.

In contrast, DeMo successfully monitors 42,248 deliveries,

covering 88% of the total delivery activities on average (veri-

fied with the total number of delivery activities), much better

6Manual records include violation type, start time, station code, entry/exit,

and the destination shop. Note that the records are taken for both violation

and non-violation deliveries.

than the 53% monitoring rate offered in manual monitoring.

The missing cases are largely the result of insufficient sensors

at some subway stations and sensor hardware failures due to

rough handling.

• Cost saving. DeMo’s cost consists of one-time deployment

and maintenance costs. Its deployment cost includes hard-

ware cost, floor plan processing, beacon installation, and pro-

gram development. For the hardware cost, DeMo requires

Raspberry PI with HAT (90 USD each) and beacons (9 USD

each)7. Each station needs 5-15 Raspberry PI and 50-250

beacons, depending on delivery area size. Overall, the one-

time deployment cost is about 15K-20K USD per station.

DeMo’s maintenance cost to replace failed beacons is about

40 USD per station/month, thanks to DeMo’s low mainte-

nance requirement. As for manual monitoring, each station

hires multiple safety staff (e.g., 2) depending on the station

size. Due to privacy issues, we do not know the exact wage

and use the median monthly wage (2,383 USD) in the statisti-

cal reports [44]. After DeMo’s 3-year operation, the cost of

manual monitoring is at least 8X higher than DeMo.

� Finding 3 DeMo outperforms manual services in terms of
violation detection coverage (especially speeding detection),
delivery behavior change (violation rate drops from 19%
to 2.7%), monitoring efficiency (DeMo detects 88% of the
total delivery events in contrast to the prior 53%), and cost
reduction (> 8X).

4.3 System Performance
Approximated Positioning Accuracy. In DeMo’s large-

scale operation, we lack the trolley’s ground-truth position.

To alleviate this limitation, we utilize the events when trolleys

pass tactile pavings to approximately evaluate the position-

ing accuracy since these events could be reliably detected.

We adopt the following methodology. IMU reading analy-

sis offers the time T when a trolley reaches tactile paving.

We compute the shortest distance from DeMo’s current posi-

tioning result to the nearest segment of tactile paving. This

shortest distance is leveraged as an approximated error, not

the exact localization error.

Fig. 12 plots the approximated positioning error distribu-

tion in March 2022, with a median error of 1.45 m. Further-

more, we evaluate DeMo’s stability with time by comparing

7The prices were in 2020.
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the approximated error in March and July 2022. After four

months, the median positioning error slightly increases to 1.49

m. Note that this approximated error differs from the actual

localization error offered from our controlled experiments in

Sec. 5.3.

Fig. 12: Approximated posi-

tioning error in 2022.

Fig. 13: Beacon failure rate

with time in 2020.

Statistics of Sensor Placement. We observe that a small

percentage of delivery personnel (5%) hold the sensor in their

hands or pockets, while the other 95% place sensors on trol-

leys. DeMo is compatible with both placements.

4.4 System Maintenance
This section analyzes DeMo’s maintenance cost.

Impact of Beacon Types. Our initial deployment adopted

beacon type 1 but noticed a high loss rate caused by various

reasons, such as natural falls and collisions with passengers.

This high loss rate motivated us to switch to beacon type 2

in our latter deployment or maintenance, as discussed in Sec.

3.2. Fig. 13 shows the beacon failure rate with time. After 5

months, the loss rate of type 1 reached 9%, while type 2 was

only around 2.3%. This experiment validates that appropriate

beacon selection could effectively reduce maintenance costs.

Failed Beacon Location. Table 4 offers the beacon loss

rate at different locations. These statistics only include beacon

type 2 and were collected 5 months after the deployment.

Areas such as stores and entry/exit have the highest beacon

loss rates, which is likely to be caused by the dense crowd.

For locations with high loss rates, we increase the beacon

broadcast frequency (e.g., 100 ms) to compensate for lost

beacons and leverage the deployed beacons before they fail.

Table 4: Beacon failure with the location.

Location Store Entry/Exit Corridor Others

Failure rate (%) 5.3 3 1 0.6

� Finding 4 Strategic beacon deployment could alleviate
system maintenance costs. For example, card shape beacon
(type 2) significantly reduces the beacon failure rate compared
with common box-shaped beacons. As a result, beacon shape
and deployment areas should be thoroughly considered, while
beacon broadcast frequency in high loss-rate areas could be
increased for better utilization before device failures.

Fig. 14: Feedback from 20 MTR staff.

4.5 MTR Feedback
We designed a questionnaire to evaluate DeMo’s performance

and Fig. 14 depicts the feedback from 20 safety staff in 12

MTR stations. Our survey contains six questions, each em-

ploying a 5-point Likert scale ranging from 5 (strongly agree)

to 1 (strongly disagree). The six questions are: 1. satisfac-

tion with our system, 2. low complexity of device usage, 3.

effect on violation reduction, 4. speed detection accuracy, 5.

decrease of workload, and 6. frequency of sensor damage.

The detailed questionnaire is included in the Appendix A.5.

We summarize these questions with 4 takeaway messages.

Overall, DeMo receives positive feedback from the major-

ity of MTR staff. Taking question 1 (satisfaction with our sys-

tem) for example, more than 95% of the interviewees highly

rate DeMo with a score of 4 (agree) or 5 (strongly agree). The

major takeaway messages are as follows.

(1) User friendly. The operation of DeMo is easy and conve-

nient without complicated knowledge.

(2) Violation rate decrease. DeMo effectively decreases the

violation rate by correcting delivery behaviors.

(3) Workload reduction. DeMo effectively reduces MTR

staff’s workload.

(4) Sensor failure. Some interviewees complained about sen-

sor failure caused by delivery workers’ rough handling (about

one device/month in some stations). Our device was not de-

signed with industry-level reliability and could be damaged

by collision, which needs to be improved in the future.

� Finding 5 DeMo is highly rated by the majority (95%) of
MTR operators. Its positive feedback covers various aspects,
such as easy accessibility, effective delivery behavior change,
and workload reduction. On the other hand, we plan to ad-
dress device failures by designing more reliable hardware.

5 Evaluation via Controlled Experiments
This section evaluates DeMo via controlled experiments with

collected ground truths, in contrast to our large-scale in-the-

wild evaluation in Sec. 4. Our controlled experiments last

15 days and cover 0.9k delivery cases with a total length of

approximately 54 km.

5.1 Evaluation Methodology
Without loss of generality, we chose three stations of different

scales (552, 1105, and 3,003 m2 respectively) to represent
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small, medium, and large stations for our controlled experi-

ments. We hired several delivery personnel to perform test

deliveries in each station, while DeMo operated in real-time

to monitor all the delivery procedures. To evaluate DeMo,

we adopt the following ground truth collection mechanisms

instead of leveraging in-the-wild deployment data. In this

evaluation, our testing device has an embedded screen that

displays the MTR floor map with special checkpoints that

could be easily found (e.g., pavement contraction joint, pillar,

lift). The distance between the two checkpoints is about 5 m.

When passing through a checkpoint, hired delivery personnel

will click on the screen to record the ground-truth location

and time. The ground-truth speed of two adjacent checkpoints

can be calculated accordingly.

For violation behaviors, hired delivery personnel purpose-

fully violate the delivery rules, such as speeding, delivering

during peak hours, using non-designated paths, and using pas-

senger lifts. We have obtained approval from MTR stations

and adopted additional safety measures for passenger safety.

5.2 Violation Detection Reliability
We evaluate DeMo’s detection reliability for four violations

mentioned in Sec. 2. Overall, our data set contains 900 de-

liveries. Among them, the number of violations for speeding,

wrong delivery paths, taking passenger lifts, and delivery in

peak hours is 41, 16, 18, and 11 respectively, with a total num-

ber of 86 violations. Each delivery only includes one violation.

To ensure a balanced data set, we randomly selected a subset

of normal deliveries (without any violation), with the number

of 43, 18, 19, and 12, respectively. Table 5 demonstrates the

detection performance with the following metrics. True Posi-

tive (TP) represents that DeMo correctly identifies a delivery

violation. True Negative (TN) indicates the accurate detection

of a normal delivery. False Positive (FP) shows DeMo falsely

recognizes a normal delivery as a violation. False Negative

(FN) means DeMo recognizes a violation as non-violation.

Note that only speeding (daily report) in Table 5 is based on

the historical IMU+BLE data during the delivery procedure,

while all other evaluations are real-time.

For real-time speeding detection, DeMo achieves a TP rate

of 95.1% and TN rate of 83.7%, while it suffers from 16.3%

FP errors and 4.9% FN errors. When the current speed ex-

ceeds 1.5 m/s, the speeding criteria defined by MTR stations,

DeMo could reliably detect it as a speeding violation. How-

ever, when the current speed is smaller than but close to 1.5

m/s, DeMo might classify this case as speeding, leading to

FP results. This is the reason that DeMo’s FP is significantly

worse than FN, which is deliberately adjusted by us since

MTR stations hope to slow down delivery workers to ensure

safety. Leveraging historical IMU+BLE data, DeMo manages

to further reduce the FP and FN performance.

Besides speeding detection, DeMo offers reliable perfor-

mance for the remaining 3 violations. Thanks to DeMo’s

accurate localization performance (a median positioning error

of 1.89 m), it is able to generate accurate delivery trajectory

by connecting individual positioning results. By checking the

current trajectory with allowed areas, DeMo can identify non-

designated delivery paths. Since freight lifts and passenger

lifts are far away from each other (more than 6 m), DeMo

can accurately detect the use of passenger lifts. For each de-

livery, our on-trolley sensors record the delivery start and

end times for checking with peak hours (7:00-10:00 am and

4:00-8:00 pm). Given a long delivery duration, e.g., 20 min-

utes, DeMo ensures accurate detection of peak-hour delivery.

Overall, DeMo offers accurate detection for different types of

violations in Table 5, demonstrating its reliability in practice.

Table 5: Violation detection accuracy.

Violation Type TP (%) TN (%) FP (%) FN (%)

Speeding (real-time) 95.1 83.7 16.3 4.9

Speeding (daily report) 97.6 90.7 9.3 2.4

Wrong delivery path 100 100 0 0

Using passenger lift 100 100 0 0

In peak hour 100 100 0 0

� Lesson 2 A monitoring system based on low-cost hard-
ware (BLE and IMU) is adequate for reliable (TP > 95%
for all required scenarios) and real-time violation detection
toward safe delivery.

5.3 System Performance
Speed Detection Accuracy. We compare three speed cal-

culation methods: the algorithm used in DeMo, traditional

integral without road surface detection, and positioning-based

approach (the speed is calculated from the localization results).

The ground truth speed is calculated from the hired delivery

personnel’s ground-truth locations and the time passing them.

Fig. 15 shows the overall speed detection error. Not sur-

prisingly, the position-based approach leads to the highest

mean speed error of 0.52 m/s. This is because the localization

includes multiple sources of errors, such as wireless fading,

failed BLE beacons, and IMU fluctuations. In contrast, di-

rectly calculating speed via IMU readings is only affected

by the IMU errors. For the speed detection based on direct

integral, the mean error is 0.43 m/s. For DeMo, it detects the

special road surfaces and further excludes them to improve

its speed detection accuracy, leading to a mean error of 0.31

m/s. The tail improvement is much more significant: the third

quartile error decreases from 0.62 m/s to 0.44 m/s, meaning

that the speeding violation detection is much more reliable.

Impact of Delivery Path Length. Table 6 shows the dis-

tribution of the delivery length from the station entry to the

destination shop. Fig. 16 demonstrates trolley speed estima-

tion errors under the different path lengths of 50m, 100m,

200m. In general, we observe a smaller error (median error

of 0.18 m/s) for short paths (<50 m), while long paths (100-

200 m) exhibit larger errors (median error of 0.23 m/s). This

difference is because the integral error accumulates with time.

1892    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Fig. 15: Trolley speed esti-

mation accuracy.

Fig. 16: Delivery path length

with speed estimation error.

Table 6: Delivery path length distribution.

Delivery Path < 50 m 50 - 100 m 100 - 200 m

Fraction (%) 10 75 15

� Finding 6 DeMo detects special road surfaces (e.g., tac-
tile paving and contraction joints) solely based on IMU read-
ings for accurate speed estimation, which reduces 28% of
the average speed error compared with conventional integral
computation.

Positioning Accuracy. Fig. 17 compares positioning ac-

curacy of using traditional logarithmic model [42], DeMo,

DeMo which only relies on BLE without IMU (denoted as

DeMo: BLE only), and the ideal localization based on BLE

and ground-truth velocity calculated from passing two check-

points (denoted as BLE+GTV). When only using BLE with

the traditional logarithmic model, the mean positioning error

is 3.22 m, while our new RSSI-distance model effectively

reduces the mean positioning error to 2.86 m. By combining

the IMU data analysis, DeMo significantly reduces the local-

ization error to 2.17 m, demonstrating the effectiveness of

utilizing IMU data for improving tracking accuracy. The 90th

and 99th positioning errors are 4.29 m and 6.44 m, respec-

tively. Additionally, we notice that for 2% of the checkpoints,

DeMo’s positioning error exceeds 6 m. This large error is pri-

marily due to failures in receiving the broadcast BLE beacon

packets and does not affect DeMo’s operation in practice. Not

surprisingly, BLE+GTV offers the best accuracy with a 1.70

m mean error, while GTV is not available in practice.

Fig. 17: Positioning accuracy.

� Lesson 3 Without labor-intensive radio fingerprinting, an
RSSI-distance model with customization is feasible to achieve
accurate localization in complex environments. DeMo’s inte-
grated analysis of BLE and IMU readings yields an average

positioning error of 2.17 m in dynamic and highly crowded
MTR stations. This accuracy is adequate for common indoor
applications [30, 43].

BLE Beacon Density. The beacon density affects the po-

sitioning accuracy. (1) For the evaluation of beacon density

in typical areas, we randomly select one station that has a

beacon density of 6m and adjust the beacon density to 12 m

by temporarily disabling some beacons. As in Fig. 18, the

mean error increases from 2.17 m to 3.23 m. This is because a

higher beacon density leads to more BLE packets received by

DeMo and thus better positioning accuracy. A higher beacon

density with an interval smaller than 6 m will further improve

the localization accuracy, which is more than enough since

the existing system already satisfies the violation detection

required by MTR stations. At the same time, a higher den-

sity significantly increases the deployment and maintenance

costs, so it is not adopted in DeMo. (2) In addition to typi-

cal areas, several key areas are critical for DeMo’s operation.

For example, beacons deployed in shops (details in Sec. 3.2)

are leveraged in DeMo’s shop classification. The identified

shop is essential in DeMo’s delivery record and used to find

shops with abnormally high violations. With three beacons,

DeMo’s store classification accuracy is 97%, which drops

to 86% when there is one beacon. The classification errors

largely result from trolleys’ parking positions, which could

be very close to nearby shops. To ensure reliable operation,

DeMo adopts three beacons for shop classification.

BLE Beacon Broadcast Frequency. Another factor to af-

fect localization accuracy is beacon broadcast frequency. Fig.

19 compares the positioning error with beacon broadcast in-

tervals of 200 ms and 500 ms at the same station, while all

other parameters are the same. The mean localization error in-

creases from 2.17 m to 2.78 m, since DeMo’s sensor receives

more BLE packets with a smaller broadcast interval. Based on

our 3-year operational experience, the average battery life of

a BLE beacon with a 200 ms setting is 22 months. This leads

to a maintenance cost (replacing failed beacons) of around 40

USD for each station per month.

IMU Sample Rate. In this experiment, we set the IMU

sample rate to 500 Hz for data collection and then down-

sampled it to generate the IMU data at different frequencies.

Fig. 20 shows the detection accuracy of road bump events,

including tactile paving and contraction joints. Generally,

DeMo’s detection rate increases with the IMU sample rate and

offers a stable performance at 200 Hz. Similarly in Fig. 21, the

speed estimation error is significant when the IMU sample rate

is less than 100 Hz. As for energy consumption, increasing

the sampling rate from 50 Hz to 500 Hz contributes to less

than 3% of the total energy consumption (including sensing

and computation). This experiment suggests that a relatively

high IMU sample rate is desirable for reliable monitoring.

� Lesson 4 DeMo aims at reliable monitoring under practi-
cal costs. It deploys sparse beacons for localization in most
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Fig. 18: BLE beacon density

vs. positioning accuracy.

Fig. 19: BLE beacon broad-

cast frequency vs. positioning

accuracy.

Fig. 20: IMU sample rate vs.

road bump detection rate.

Fig. 21: IMU sample rate vs.

speed error.

areas but adopts dense beacons for accurate store classifica-
tion and reliable operation. Additional considerations such
as maintenance cost and energy consumption also contribute
to DeMo’s trade-off.

6 Related Work
Prior Deployment Experiences. A few BLE-based [22, 30,

40, 70] and WiFi-based [27] localization systems were de-

ployed in public indoor sites to offer localization and navi-

gation services for clients. Recent studies [18, 19] reported

deploying arrival detection for efficient delivery in large-scale

instant delivery systems. In contrast, DeMo provides fine-

grained monitoring of delivery violations toward better safety.

A prior study [30] integrates BLE beacons and geomagnetic

fields as fingerprints to offer localization services for shopping

malls, while DeMo utilizes a labor-free RSSI-distance model

to achieve similar localization accuracy. Other real-world ex-

isting BLE systems conducted presence detection [59,60]. To

our knowledge, there is very limited work on indoor delivery

violation detection and regulation. During the operation of

DeMo, we have learned valuable lessons that will contribute

to future safety delivery.

Wireless Indoor Localization. Researchers have pro-

posed various wireless indoor localization techniques for navi-

gation [4,54], positioning [56,65], and assets tracking [35,72].

Their design principles could be classified as RSSI propaga-

tion model [10, 13, 26, 29, 31], fingerprinting [5, 11, 23, 28,

43, 55, 61], Angle-of-Arrival model [3, 12, 36, 37, 67], and

Time-of-Flight [4, 58]. Although existing studies offer good

positioning accuracy, they are commonly evaluated in small-

scale environments. For example, Spotfi [37], ArrayTrack [67]

and ToneTrack [68] achieve sub-meter localization accuracy

by leveraging WiFi Channel State Information (CSI). Never-

theless, these systems are not applicable in real-world appli-

cations due to the lack of CSI support in most commercial

WiFi Access points and limited WiFi coverage in MTR sta-

tions. In contrast, DeMo’s in-the-wild operation validates the

possibility of accurate localization via simple RSSI models

with low deployment and maintenance costs, in addition to

several unique lessons and insights.

IMU-Assisted Sensing System. These works [9, 71] ana-

lyze IMU’s signal characteristics and extract the motion fea-

ture of humans to infer their posture, especially for Pedestrian

Dead Reckoning [32]. This study [52] extracts step events

from various types of periodic human behaviors by carrying

a smartphone with IMU through CNN. Another study [2]

improves positioning accuracy by inferring the posture direc-

tion of IMU readings. DeMo leverages IMU reading to detect

special road surfaces and further improves speed accuracy,

and provides reliable positioning service.

7 Discussion
Limitations. (1) On-trolley sensor failure. We plan to design

more reliable hardware with additional protection methods to

ensure good device reliability. (2) Bypassing DeMo. DeMo

covers 88% of the total deliveries. We will analyze delivery

behaviors to understand possible ways of bypassing DeMo

and further adopt corresponding mitigation to offer seam-

less monitoring coverage. (3) Delivery worker dissatisfaction.

Although DeMo offers accurate violation detection as demon-

strated by controlled experiments and feedback from MTR

staff (Sec. 4.5), our small-scale interviews suggest that deliv-

ery workers perceived DeMo as a surveillance system, and so

it was not received favorably.

Future Improvement and Deployment. We plan to im-

prove DeMo with the following aspects. (1) Automatic pa-

rameter tuning. Delivery trolleys are generally still in front

of the destination shops for 5 to 20 minutes when offloading

products. This opportunity could be leveraged for fine-tuning

our RSSI-distance model. (2) Future hardware design and

deployment. We will improve our hardware reliability under

rough handling and deploy DeMo in 10 more MTR stations.

8 Conclusion
Our experiences with DeMo demonstrate the feasibility of

monitoring indoor delivery. Dedicated designs are essential

to combat unique challenges and ensure reliable violation

detection. DeMo outperforms the prior manual system for

better coverage, effective change of human behaviors, better

efficiency, and cost reduction. We hope that these lessons will

contribute to future delivery monitoring systems.
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A Appendix

A.1 Geomagnetic Field

When designing DeMo, we collected geomagnetic field

(GMF) strength at different locations, including entry, exit,

and open areas, within three stations. Our preliminary experi-

ments validated significant GMF strength changes caused by

operating trains. These changes are difficult to predict and

eliminate. In normal indoor settings, e.g., shopping malls, the

geomagnetic field values are relatively stable without signifi-

cant disruptions. Fig. 22 compares the collected GMF strength

values at a fixed location (e.g., entrance) in an MTR station

and a shopping mall, respectively. As a result, we decided not

to leverage geomagnetic field sensing in DeMo.

Fig. 22: Examples of GMF strength change with time at a

shopping mall and MTR station.

A.2 RSSI-distance Models Comparison

Crowd obstruction and reflection cause severe signal strength

degradation (or even signal loss), deviating from the tradi-

tional logarithmic model. Therefore, we instead use a polyno-

mial function to model the effect of crowds on signal strength.

Table 7 lists the average positioning accuracy of 4 different

polynomial models with degrees ranging from 1 to 4. The

parameters of the RSSI-distance model were trained using

data from one station and applied to other stations without

retraining. Models with a higher polynomial degree are prone

to overfitting, while those with a lower polynomial degree ex-

hibit unstable accuracy due to the influence of subway crowds.

Consequently, we have opted for a cubic polynomial function

as it delivers superior accuracy compared to other polynomial

orders.

Table 7: Mean localization accuracy under different polyno-

mial orders at two MTR stations.

Polynomial Orders 1 2 3 4

Station 1 3.16 m 3.09 m 2.81 m 3.22 m

Station 2 3.61 m 3.38 m 2.93 m 3.97 m

A.3 Positioning Accuracy Validation
DeMo’s training data for its RSSI-distance model is collected

in one MTR station, followed by a one-time parameter tuning

process. Then we validate this RSSI-distance model across

the remaining stations. To demonstrate the robustness of our

model, we present the overall mean localization errors (solely

relying on BLE without IMU integration) in Table 8. The val-

idation process is conducted via control experiments, follow-

ing Sec. 5.1. In most stations, the positioning accuracy closely

matches the initial station used for model training. However,

two subway stations exhibit poorer positioning accuracy (3.68

m and 3.83 m). Compared to most subway stations, which typ-

ically feature long, narrow delivery areas, these two stations

have unique layouts with larger open spaces. This distinct

layout can result in reduced positioning accuracy within those

open areas. Besides, we noticed more severe beacon losses

in these two stations which inevitably affect the positioning

accuracy.

Table 8: Positioning accuracy in 12 stations.

Stations Mean Accuracy (m)

Station 1 2.81

Station 2 2.55

Station 3 2.93

Station 4 2.62

Station 5 2.99

Station 6 3.39

Station 7 2.82

Station 8 2.42

Station 9 3.68

Station 10 3.83

Station 11 2.45

Station 12 2.51

A.4 Glossary of Main Parameters
Table 9 lists DeMo’s main parameters, which are crucial for

the system’s functionality. tsw, Rth, n and pw are empirical pa-

rameters. Coefficients γ0 through γ3 are trained via simulation

experiments, with the detailed training method available at

the link [16]. Besides, astd refers to the study [50].

A.5 Questionnaire
The questionnaire consists of six multiple-choice questions,

each utilizing a 5-point scale ranging from 5 (strongly agree)

to 1 (strongly disagree). The detailed questions are: 1. please

select the option that best represents your level of satisfaction

with the DeMo system, 2. please select the option that best

describes your perception of the ease of use of the DeMo

device, 3. please select the option that best represents your
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Table 9: Glossary of main parameters.

Parameters Values Description

tsw 4 s A sliding window

Rth -80 dBm RSSI threshold

γ0 94.8951 Coefficient of the cubic function

γ1 5.8301 Coefficient of the cubic function

γ2 0.0811 Coefficient of the cubic function

γ3 0.0005 Coefficient of the cubic function

n 2, 8 # of IMU reading peaks

astd 0.01 g Standard deviation of the IMU

pw 60% # of weighted particles

assessment of the DeMo system’s effectiveness in reducing

safety violations, 4. please select the option that best reflects

your perception of the DeMo system’s accuracy in detecting

speeds, 5. please select the option that best describes the extent

to which the DeMo system has reduced your workload, and 6.

please select the option that best represents how frequently

you have encountered sensor damage issues with the DeMo

system. The feedback from 20 safety staff in 12 MTR stations

is demonstrated in Fig. 14.
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