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Abstract—In indoor localization based on Wi-Fi fingerprinting, a target sends its received signal strength indicator (RSSI) of access

points (APs) to a server to estimate its position. Traditionally, the server estimates the target position by matching the RSSI with the

fingerprints stored in the database. Due to signal noise in fingerprint collection and target measurement, this often results in a

geographically disperse set of reference points (RPs), leading to unsatisfactory estimation accuracy. To mitigate the noise problem,

we propose a novel, efficient, and highly accurate localization scheme termed Tilejunction. Based on only the first two moments of the

measured signal, Tilejunction maps the target RSSI of each AP to a convex hull termed signal “tile” where the target is likely within.

Using a novel comparison metric for random signals, we formulate a linear programming (LP) problem to localize the target at the

junction of the tiles. To further improve its computational efficiency, Tilejunction employs an information-theoretic measure to keep only

those APs whose signals show sufficient differentiation in the site. It also partitions the site into multiple clusters to substantially reduce

the search space in the LP optimization. We have implemented Tilejunction. Our extensive simulation and experimental measurements

show that it outperforms other recent state-of-the-art approaches (e.g. RADAR, KL-divergence, etc.) with significantly lower localization

error (often by more than 30 percent).

Index Terms—Indoor localization, Wi-Fi fingerprint, signal tile, linear programming, clustering, AP filtering
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1 INTRODUCTION

LOCATION-BASED Service (LBS) has attracted much atten-
tion in recent years due to its potential social and com-

mercial values. The quality of such service largely depends
on the localization accuracy of the mobile devices.

Many sensor signals have been explored for indoor local-
ization, e.g., Wi-Fi [1], sound [2], RFID [3], etc. Among all
these, Wi-Fi fingerprinting emerges as a promising one
because it is easy to deploy and requires no extra sensor
infrastructure beyond the existing Wi-Fi network.

Indoor localization based on Wi-Fi fingerprinting is usu-
ally conducted in two phases [4]. In the first offline (survey)
phase, a site survey is conducted to collect the vectors of
received signal strength indicator (RSSI) from the Wi-Fi access
points (APs) at reference points (RPs) of known locations.
These vectors of RSSI are termed the fingerprints of the site
and are stored at a database. In the second online (query)
phase, a user (or target) samples ormeasures an RSSI vector at
his own position and reports it to the server. In traditional fin-
gerprinting approach, each RP location is represented by its
fingerprint. Using some similarity metric (such as Euclidean
distance [1]) in the signal space, the server compares the fin-
gerprints with the received target vector. The target position
is estimated based on the most similar “neighbors,” the set of
RPswhose fingerprints closelymatch the target’s RSSI.

Due to statistical fluctuation of signal strengths (user
movement, wall partitioning or multipath fading in the

indoor site can cause dynamic signal change), there is
uncertainty or noise in Wi-Fi signal measurement in both
fingerprint and target RSSI collections [5], [6]. It often hap-
pens in environment with complex indoor partitioning or
crowds of people nearby. Therefore, the traditional match-
ing algorithm in the online phase may result in a disperse
set of neighbors distant apart in the physical space. This
often leads to unsatisfactory estimation errors (8 to 15 m in
some works [1], [7], [8], [9]).

Observe that the dispersion problem mainly stems from
treating the RSSI vector of the target as a single “entity” in
similarity comparison, which makes the neighbor selection
susceptible to measurement noise. To address this, we pro-
pose a novel and better approach which is to treat the RSSI
from each AP individually. For each of its received AP signal,
the target is enclosed within a convex hull termed signal tile.
The target location is then at the intersection of all these
tiles. This provides far more estimation constraints than
treating the vectors of the target and fingerprints as insepa-
rable entities.

We illustrate the idea in Fig. 1 with three APs. For each
AP, we construct a tile where the target is likely within
based on the RSSI of the AP. Given all the tiles (correspond-
ing to all the APs in the target RSSI vector), their junction is
where the target is. This effectively mitigates signal noise by
tightening the search space without leading to a disperse set
of reference points.

To achieve high localization accuracy, we account
for measurement noise in both fingerprints and target
signal collections. In contrast to other previous works
where signal distribution has to be known, we consider
here only the first two moments of the measured signal.
This leads to much wider applicability of our scheme in
its deployment.
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We propose Tilejunction, a novel, accurate and efficient
indoor localization technique based on junction of signal tiles
to mitigate signal measurement noise. It has the following
three major components in the online phase:

� Tile Construction under Measurement Noise: Given a
certain target RSSI of an AP, Tilejunction constructs
a tile where the target is likely within based on the
first two moments of the signal (mean and variance).
Such a tile can be efficiently computed with algo-
rithms in computational geometry, and is repre-
sented by a set of linear constraints.

� Finding the Maximally Overlapping Tiles: Given the set
of constructed tiles, the target is likely at the junction
of the largest number of overlapping tiles. Tilejunc-
tion employs an efficient algorithm to find such set
of “maximally overlapping tiles,” which can then be
used as constraints to estimate the target location.

� LP-based Localization: Tilejunction uses a novel dif-
ference metric to compare random signals. With
the metric, it formulates a linear programming
(LP) to estimate target location with the objective
of maximizing fingerprint matching at the junction
of the tiles.

To speed up its running time, Tilejunction further may
employ the following independent measures:

� AP Filtering: In order to reduce the computation time,
we should not indiscriminately keep all the APs for
the online phase. Obviously, APs with larger signal
dynamic range in the whole site are preferred. This is
because such APs, with wider signal differentiation,
can lead to smaller tiles to more tightly enclose the
target. Using an information-theoretic entropy mea-
sure [10], Tilejunction efficiently filters out APs with
low spatial signal change in the offline phase to
achieve fast computation at the online phase.

� RP Clustering: The search space in fingerprint data-
base can be large, consisting of large quantities of
RPs. To reduce the search complexity, Tilejunction in
the offline phase can first partition the space into
clusters consisting of similar signal vectors. Each of
the clusters has some exemplar RPs as representa-
tives. During the online phase, Tilejunction maps the

target RSSI vector to one of the clusters of the highest
similarity with the exemplars. The cluster then
serves as the boundary for tile construction and LP
optimization.

We have implemented Tilejunction as a real system and
conducted extensive large-scale experiments in our campus
and Hong Kong International Airport (HKIA). Our results
show that Tilejunction achieves substantial error reduction
as compared with other schemes.

The rest of this paper is organized as follows. After
reviewing related works in Section 2, we describe in
Section 3 the system framework of Tilejunction. In Section 4,
we discuss tile construction and overlap detection under
signal measurement noise. Based on the signal tiles, in
Section 5 we present the comparison metric of random sig-
nals, the LP formulation for localization, and its runtime
complexity. In Section 6, we address how to further reduce
computational load through AP filtering and/or RP cluster-
ing. Illustrative results based on simulation and experimen-
tal trials are presented in Sections 7 and 8, respectively. We
conclude in Section 9. In the appendix, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TMC.2015.2463287, we
also present how to efficiently solve the Tilejunction LP
with the tailored barrier method.

2 RELATED WORKS

We briefly discuss related works in this section. Pattern rec-
ognition techniques have been widely studied in Wi-Fi fin-
gerprinting localization. RADAR [1], a pioneer work in
indoor localization, localizes target based on Euclidean dis-
tance and k-Nearest Neighbors without considering random
signals. Horus introduces an approach to estimate the user’s
location given signal probability distribution at each RP [9].
In some other works, radial-basis function has been used to
estimate the signal strength at some locations to reduce the
calibration efforts [11]. Recently more advanced techniques
addressing random signals have been investigated. This
includes KL-divergence [8], kernel distance [12], [13], com-
pressive sensing [14] and conditional random field [15]. In
contrast to this body of work, we employ a geometric
approach based on random signals to constrain the target
region for location estimation. This achieves much better
accuracy in the following simulation and experiment. We
also use only the first twomoments of the fingerprint signals,
which are easily computed statistics that can capture the
overall behavior of the randomness in themeasurements.

Some other works take advantages of the temporal or
spatial RSSI patterns for localization. The work in [16]
records the Wi-Fi RSSI vectors as sequences of spatial pat-
terns along different corridors, termed the “signatures” of
the corridors. The sequence of Wi-Fi RSSI received from
a target is then mapped to the most similar signature of the
corridors. Some others consider location-dependent pat-
terns such as the order of RSSI from different APs [17] or
the unique existence of some Wi-Fi APs at some area [18].
Once the target measures such patterns, its location is then
mapped to the area. These works treat the RSSI signals
together as a single vector and use some pattern matching
techniques on these vectors in localization decision. These

Fig. 1. Illustration of signal tile intersection. The overlapped (red) area
denotes the target potential location.
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studies have not sufficiently considered measurement noise,
which can adversely affect the accuracy of the algorithm.
Tilejunction captures measurement noise through its tile
construction and optimization objective, thereof accounting
better the noise effect on localization.

Sensor fusion has been proposed to improveWi-Fi finger-
printing localization [19]. Fusing motion information has
been studied quite extensively [20], [21]. Wi-Fi SLAM [22]
fuses Wi-Fi with distance measurement for robot indoor
localization. UsingWi-Fi Direct [23] and high-pitch sound [2]
to measure distances between devices, peer-assisted algo-
rithms have been studied. As compared with the above, Tile-
junction does not rely on external sensors other than Wi-Fi
measurement. It is independent and orthogonal to these
works, and may be combined with them to achieve higher
accuracy. Though our discussion in this work is in the con-
text of Wi-Fi fingerprint, Tilejunction is general enough to be
extended to other recent fingerprint-based methods such as
RFID [3] or channel state information (CSI) [24].

A preliminary version of this work has been reported
in [25]. The work is based on sectors, and hence formulates
a quadratic constraint (sector) over the target estimation
(i.e., quadratically constrained programming). Tilejunction
advances from it in several major ways: 1) It accounts for
the measurement noise in both fingerprints and target RSSI
collections, making it more accurate; 2) It uses tiles to con-
strain the target location, which is much tighter, and hence
more accurate, than our previous approach; 3) As the tiles
are linear constraints, Tilejunction formulates an LP-based
localization problem which can be solved more efficiently.
Tilejunction is a far better formulation, because the previous
non-convex constraints require further convex relaxation
and solving the quadratically constrained problem is more
computationally intensive.

3 SYSTEM FRAMEWORK

We show in Fig. 2 the system framework of Tilejunction.
The Wi-Fi fingerprint database is initialized by a site survey,
storing pairs < location, RSSI> at each RP and version
information. The module Wi-Fi AP Filtering filters out those
APs with narrow signal ranges (i.e., low dynamic signal
range) and keeps the remainders for localization. The first
two moments of the signals at each RP are also estimated at

this stage. Using the filtered APs, the server executes RP
clustering module, which partitions the area into smaller
regions/clusters and elects a number of exemplars for each
cluster. After the two modules, the system is prepared for
online estimation. (Note that these two modules are to
reduce computational complexity. They may be indepen-
dently applied. They are optional, and hence in practice one
does not have to apply them if the site is small.)

Given its measured signal vector, the target is first
mapped to an RP cluster (module RP cluster mapping). Using
the mapped cluster as boundary constraint, the server con-
structs the signal tiles based on the target’s RSSI measure-
ment of APs. It then detects and extracts the maximally
overlapping tiles (module tile construction and overlapping
detection). Using a novel comparison metric between ran-
dom signals as its objective, Tilejunction estimates the target
location by solving an LP based on the cluster and tile junc-
tion (module LP-based localization).

In the following sections, we give further the details of
each module. The major symbols used in this paper are
shown in Table 1.

4 TILE CONSTRUCTION & OVERLAP DETECTION

In this section, we first show how to construct a tile where
the target is likely within, given the first two moments of
the measurement noise of signals (Section 4.1). Then in
Section 4.2 we present an efficient algorithm to find the set
of maximally overlapping tiles (i.e., the set with the maxi-
mum number of overlapping tiles), followed by correspond-
ing complexity analysis in Section 4.3.

4.1 Tile Construction under Measurement Noise

Let N and L be the total number of RPs and distinct APs
detected in the whole survey site, respectively. Further leteY l
n be the random variable of the RSSI collected at RP n for

Fig. 2. An overview of Tilejunction localization system.

TABLE 1
Major Symbols Used in Tilejunction

Notation Definition

ylnðtÞ t-th RSSI sample at RP n from AP l (dBm)

T l
n

Number of RSSI samples at RP n for AP l

Y l
n

Random variable of RSSI at RP n (dBm)

al
n

Autocorrelation of signal sequence at n for l
qn Wi-Fi RSSI vector received at RP n
p Wi-Fi RSSI vector received at target
cl

n
RSSI at n for AP l (dBm)

sl
n

Standard deviation of cl
n at RP n for l (dB)

sl RSSI standard deviation at target for l (dB)

fl RSSI at target for l (dBm)
x̂ Estimated 2-D coordinate of target
rn 2-D coordinate of reference point (RP) n
Cm Index of RPs in the selected clusterm
Qm Index of RP exemplars in clusterm
N Number of RPs in fingerprint database
vn Weight of RP n in target estimation
K Number of RP clusters
L Number of APs
LL Set of tiles with maximal overlapping
Bl Edges of tile for AP l

By Set of edges in map constraint
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AP l in the offline fingerprint collection, where 1 � n � N
and 1 � l � L. Multiple RSSI samples are collected at differ-
ent time t indexed by 1; 2; . . . for RP n and AP l. We denote

the samples as fylnðtÞjt ¼ 1; . . . ; T l
n; T

l
n > 1g, where T l

n is the
total number of samples collected.

The unbiased estimate of Eð eY l
nÞ is denoted as bml

n, which

is simply given by the mean of ylnðtÞ’s, i.e.,

bml
n ¼

1

Tl
n

XT l
n

t¼1
ylnðtÞ

0@ 1A: (1)

The unbiased estimate on the variance of eY l
n is denoted asbs2 eY l

n

� �
, given by

bs2 eY l
n

� �
¼ 1

T l
n � 1

XT l
n

t¼1
ylnðtÞ � bml

n

� �20@ 1A: (2)

ylnðtÞ’s are the realized values of the measured fingerprint

signals, denoted by the random variable Y l
nðtÞ’s. Let cl

n be

the mean of Y l
nðtÞ at RP n for AP l, i.e.,

cl
n ¼

1

T l
n

XT l
n

t¼1
Y l
nðtÞ: (3)

Due to data cache and other factors, the RSSI sequence
obtained from the smartphones may be correlated. Let V ðtÞ
be an i.i.d. noise process independent of Y l

nðtÞ. Let al
n be the

parameter representing the autocorrelation of samples at
RP n from AP l. Thus, the signal time series (assuming cor-
relation between consecutive samples) can be represented
as a first-order autoregressive model [26], i.e.,

Y l
n tð Þ ¼ al

nY
l
n t � 1ð Þ þ ð1� al

nÞV ðtÞ; (4)

where al
n can be approximated by autocorrelation coeffi-

cient with lag one [26].
Therefore, for cl

n, its expected value �cl
n and standard

deviation sl
n can be estimated as

�cl
n ¼ bml

n; (5)

and

sl
n ¼

bs2 eY l
n

� �
T l
n

� �2 1� al
n

� �T l
n

1� al
n

0@ 1A2

þT l
n � 1

248<:
�ðal

nÞ2
1� ðal

nÞ2ðT
l
n�1Þ

1� ðal
nÞ2

#)1=2

;

(6)

respectively [26]. ðsl
nÞ2 indicates the variability of the esti-

mation mean at each RP n for AP l. To summarize, Equa-
tions (5) and (6) represent the two moments of the RSSI at
RPs when constructing the signal tiles.

We further form the fingerprint RSSI vector at RP n
given by

qn ¼ ½�c1
n;

�c2
n; . . . ;

�cL
n �; (7)

where, by definition, �cl
n ¼ 0 if AP l is not detected at RP n.

In the online stage, let fl be the target measurement of

AP l. Let ðslÞ2 be its variance, estimated as the global aver-
age of the variance in all the fingerprints:

sl ¼ 1

jNlj
X
n2Nl

bs2 eY l
n

� �0@ 1A8<:
9=;

1=2

; (8)

whereNl is the set of RPs detecting AP l in the site and jNlj is
its cardinality. The RSSI vector at the target is represented as

p ¼ ½f1;f2; . . . ;fL�; (9)

where, by definition, fl ¼ 0 if AP l is not detected at the target.
Given the above, the variance of the signal difference

between the target and fingerprint at RP n for AP l is then
(assuming independence)

Var fl � cl
n

� � ¼ sl
� �2þ sl

n

� �2
; (10)

which represents the overall signal fluctuation at RPs and
target. Our fingerprint collection is conducted under normal
indoor scenarios (e.g., with signal noise from neighboring
crowd movement or reflection from walls). In order to cap-
ture the potential noise, we consider using the first two
moments of collected real signals for tile construction.

A tile for AP l is a convex hull enclosing a set of RPs,

denoted as Rl, where the target is likely within. Here Rl con-
sists of RPs whose signal strength of AP l is unlikely lower

than fl (so that the convex hull formed by the RPs encloses
the target). It is hence obtained by excluding the RPswhose sig-
nal is likely lower than the target’s. In other words, we exclude

RP n ifP ðcl
n < flÞ is higher than a certain value, i.e., if

fl � �cl
n > d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var fl � cl

n

� �q
; (11)

for some d0 > 0meeting such probability requirement.
By reversing Equation (11), we hence construct the signal

tile for AP l as follows:

Definition 4.1. Given a target signal measurement fl, we first

obtain Rl consisting of RPs so that (from Equations (10)
and (11))

�cl
n � fl � d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
slð Þ2þ sl

n

� �2q
: (12)

A tile for the signal of AP l is the convex hull CHðRlÞ,
defined as a continuous 2-D space where any interior point nn
can be expressed as

nn ¼
XRlj j

i¼1
kir

l
i; (13)

where Rl
�� �� is the cardinality (size) of Rl, rli is the coordinate of

RP i in Rl, and 0 � ki � 1 is its weight satisfying

XSlj j
i¼1

ki ¼ 1; 8i: (14)

Using some well-known algorithms such as Graham
scan [27], the convex hull can be efficiently constructed,
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where the tile can be represented by linear line segments on
its boundary. Note that the device dependency (difference
between devices in offline stage and those at online phase)
in finding signal tiles is outside the scope of this paper. We
can calibrate the signal values across different devices
through offline learning or crowdsourcing. Interested read-
ers may refer to works like [28], [29] for further details.

4.2 Finding Set of Maximally Overlapping Tiles

The area overlapped by the maximum number of tiles is
likely where the target is. To find such a set of maximally
overlapping tiles, termed the maximally overlapping set, we
first need to obtain the entrance and exit points of any two
overlapping tiles.

Consider any two tiles. All the intersection points of their
line segments, if any, can be obtained efficiently through
segment intersection algorithm [27]. In Fig. 3, we show two
overlapping tiles with all their intersection points indicated
as circles. If we sweep a line horizontally from left to right
(as indicated), out of all the intersection points, there is an
entrance point of the overlap, termed Beginning of Intersection
(BoI), and exit point of the overlap, termed End of Intersection
(EoI). Given two convex hulls, the BoI and EoI are obviously
the ones with the smallest and largest X-coordinates, respec-
tively (which can be easily found by a linear examination of
the X-coordinate of the intersection points). We call these
two extreme points the sandwich points of the tiles.

For multiple tiles, we can generate all the pair-wise com-
binations of the tiles. For each pair, we run the above algo-
rithm to get the sandwich points of the pair, with a flag
(Boolean) bit indicating whether it is EoI or not. As we have
a maximum total of L tiles, we haveO L2ð Þ sandwich points.

Given the sandwich points of all the tile pairs, we present
how to find the maximum number of overlapping tiles and
the corresponding maximally overlapping set. We store
each sandwich point as a data structure consisting of its X
and Y coordinates, which pair of intersecting tiles it refers
to, and a Boolean bit indicating whether it is EoI or not. We
then sort these sandwich points according to their X-coordi-
nates, and visit these points in their sorted order. If it is BoI
(i.e., EoI bit as 0), we increment the overlap counter by 1
and add the intersecting pair to an overlap list (which can
be implemented as a balanced tree structure for efficient
lookup, insertion and deletion). If it is EoI (i.e., EoI bit as 1),
we decrement the overlap counter by 1 and remove the

intersecting pair from the overlap list. At the end of visiting
the sorted sequence of all the sandwich points, we should
have found the maximum overlap number and its corre-
sponding overlap list. The union of all the tiles in the over-
lap list is then the maximally overlapping set.

Fig. 4 illustrates the process of finding themaximumnum-
ber of overlaps and the maximally overlapping set. There are
four tiles labelled as 1; 2, 3 and 4 (corresponding to four APs)
with a total of eight sandwich points labelled as a; b; . . . ; h in
sorted order of their X-coordinates. As we visit the sorted
sandwich points (from left to right), the intersecting pair of
Tiles 1 and 2 is first put into the overlap list, followed by the
Pair 2-3 (due to BoI). Upon visiting the EoI of the Pair 2-3, the
overlap counter is decremented by 1 and the Pair 2-3 is
deleted from the list. After visiting sandwich point h, the
maximum number of overlapping tiles is 3, with the union of
the tile list f1; 2; 3g the maximally overlapping set. These tiles
will be used for Tilejunction (Tile 4will be excluded).

Algorithm 1. Find the Maximum Overlapping Tiles.

Input:
T: EoI bit of each intersection points.
P: List of overlapping pairs corresponding to T.
Output:
LL: set of signal tiles for Tilejunction.
1 Ns  0; /*# of overlapping pairs */
2 Max 0;
/* Max# of overlapping pairs */

3 Hs  ;; /* Current overlapping tiles */
4 LL ;; /* Final set of tiles */
5 for i 0 to T:sizeðÞ � 1 do
6 if T½i� ¼¼ 0 then
7 Ns  Ns þ 1; /* BoI */
8 Hs  Hs [ P½i�;
9 else
10 Ns  Ns � 1; /* EoI */
11 Hs  HsnP½i�;
12 end
13 Max max(Max,Ns);
14 if sizeof(Hs) > sizeof(LL) then
15 LL Hs;
16 end
17 end

Algorithm 1 details how to find the maximum number of
overlapping tiles and the maximally overlapping set. We

Fig. 3. An example of sandwich points of two overlapping tiles. The left-
most sandwich point is BoI while the rightmost is EoI.

Fig. 4. An example of finding the maximum number of overlapping pairs.
EoI Bit ¼ 0 means BoI while EoI Bit ¼ 1 means EoI.
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initialize the overlap counter Ns to record the number of
overlapping pairs.Hs and LL store the currently overlapping
tiles and the maximally overlapping set discovered so far,
respectively (Lines 1 to 4). Each time we encounter BoI (i.e.,
EoI bit ¼ 0), we increment Ns by 1. If we encounter EoI (i.e.,
EoI bit ¼ 1), we decrement Ns (Lines 5 to 12). We keep the
maximum number of overlapping pairs in Max and the
corresponding tiles in LL (Lines 13 to 16).

After we obtain the maximally overlapping set LL, the tar-
get is within the junction of the tiles in the set. For tile l 2 LL,

let Bl be the set of all its bounding line segments. Given the
two ending points of each line segment, the target location,
denoted as x̂ ¼ ½x̂; ŷ�, is then in the tile overlap region as
linear constraints:

alex̂þ bleŷþ cle � 0; e 2 Bl; l 2 LL: (15)

4.3 Complexity Analysis of Tile Construction
and Overlap Detection

We analyze the complexity of constructing tiles and finding
maximally overlapped tiles as follows:

1) Tile construction (Section 4.1): With N RPs, we can
construct a tile within O N logNð Þ (using Graham
scan [27]). Therefore, with L Wi-Fi APs, the total
complexity of convex hull construction is

O LN log Nð Þ: (16)

2) Finding the maximally overlapping set (Section 4.2):It
consists of the following three steps:

a) Finding all the intersection points of the tiles: Each
tile has OðNÞ edges. WithO Lð Þ tiles, there are overall
O LNð Þ edges. Finding all the intersection points of
these edges takes (based on well-known line seg-
ment intersection algorithms [27]):

O LN log LNð Þð Þ: (17)

b) Given intersection points, finding all the sandwich
points for pairwise tiles: As a tile is a convex hull, each
of its edges intersects with the other tile of the pair at
most two points. Finding the sandwich points out of
theirO Nð Þ intersection points is henceO Nð Þ (a linear
scan on all the points). For L tiles, there are O L2ð Þ
pairs. Therefore, the total time to get all the sandwich
points given the intersection pairs takes

O L2N
� �

: (18)

c) Given the sandwich points for pairwise tiles, finding
the maximally overlapping set: Sorting the O L2ð Þ sand-
wich points takes OðL2 logLÞ time. Given O L2ð Þ
sorted sandwich points, and examining each one by
manipulating the overlap list takes O logLð Þ time,
the search of maximally overlapping tiles takes

O L2 logLð Þ time (using a balanced tree structure in
the overlap list). Therefore, the total running time of
sorting the sandwich points and finding the maxi-
mally overlapping set is

O L2 log L
� �

: (19)

Summing Equations (17), (18) and (19), the total
complexity of overlap detection is hence

O LN log LNð Þ þ L2N þ L2 log L
� �

: (20)

5 LP-BASED LOCALIZATION

The target is within the junction area of the maximally over-
lapping set of tiles. Its location is estimated as the point
within the area where its measured signal best matches
with the AP signal environment. In Section 5.1, we first
present a difference metric to compare random signals as
measured in both fingerprint and target collections. Using
that as the minimization objective, we formulate in
Section 5.2 a linear program to find the target location at tile
junction. We present the complexity analysis of Tilejunction
in Section 5.3.

5.1 A Metric to Compare Random Signals

To find the location whose AP signals best match with the
target’s, we need to consider signal noise when comparing
them. Recall that the signal strength cl

n at RP n for AP l has

expected value �cl
n and standard deviation sl

n, respectively
(Equations (5) and (6)). For AP l common to both p (target

vector) and qn (fingerprint vector at RP n), i.e., fl 6¼ 0 and

cl
n 6¼ 0, the expected signal difference between them,

denoted as Glðp;qnÞ, is then

Glðp;qnÞ
, E fl � cl

n

� �2� �
¼ E fl

� �2�2flcl
n þ cl

n

� �2� �
¼ E fl

� �2� �
� 2E fl

� �
�cl
n þE cl

n

� �2� �
¼ fl

� �2þ sl
� �2�2fl �cl

n þ �cl
n

� �2þ sl
n

� �2
¼ fl � bml

n

� �2þ sl
� �2þ sl

n

� �2
;

(21)

where we have used Equations (5), (6), (8) and fl (as

the unbiased estimate of EðflÞ). Using mean square
value for signal difference follows the spirit of mean
square error and can assign greater costs to RPs with
large signal difference in signal space, which helps dif-

ferentiating the RPs. By definition, if either fl ¼ 0 or

cl
n ¼ 0 (or both), Glðp;qnÞ ¼ 0 (i.e., only the common APs

of two vectors are compared).
The difference metric to compare random signals is the

overall expected signal difference (ESD) between the finger-
print at RP n and the target, given by

G p;qn

� � ¼ 1

Jn

XL
l¼1

Glðp;qnÞ; (22)

where Jn is the number of APs common to the target and RP
n (0 < Jn � L). If Jn ¼ 0 (no shared APs between the target

and RP n), we have by definition G p;qn

� � ¼ 1, i.e., RP n is

essentially excluded from the optimization formulation in
Equation (28).
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5.2 Linear Programming Formulation

We formulate the localization problem using our difference
metric given in Equation (22). Let rn ¼ ½xn; yn� be the coordi-
nate of RP n. Let C be the set of the RP coordinates, i.e.,

C ¼ frnjn 2 f1; . . . ; Ngg: (23)

Let vn be the weight assigned to rn in locating target. As
the target is bounded by the RPs, its estimated position can
be expressed as

x̂ ¼
XN
n¼1

vnrn; (24)

where rn 2 C, and the weights satisfy

XN
n¼1

vn ¼ 1; (25)

and

vn � 0; 8n 2 f1; . . . ; Ng: (26)

Besides at the tile junction (Constraint (15)), the target
location should also be constrained by the allowed area in
the map (the user accessible area such as the corridors
between offices or the atrium in a building). Denote the
boundaries of the above allowable area of target location as
a set of linear constraints denoted as By. The target location
must satisfy

aye x̂þ bye ŷþ cye � 0; e 2 By: (27)

Using the above, the localization problem can therefore
be formulated as a linear programming:

argmin
fvng

XN
n¼1

vnG p;qn

� �
;

subject to Constraints ð15Þ; ð24Þ; ð25Þ;
ð26Þ and ð27Þ:

(28)

In other words, we seek to find the location with the best
match between the target vector and the RP fingerprints
using the difference metric for random signals, by con-
straining the target location within the tile junction (Con-
straint (15)) and allowable area (Constraint (27)). The
solution is the set of weights assigned to each RP which
minimizes the signal difference, i.e., the RPs with finger-
print similar to the target vector are assigned higher
weights, and vice versa.

We present in the appendix, available in the online
supplemental material the specialized barrier method tai-
lored to solve the above LP problem [30]. Using the
closed forms of the gradient and Hessian matrix, our
method does not rely on general solvers and hence is
more efficient. The solution vn’s are then used to esti-
mate the target position according to Equation (24).

5.3 Complexity Analysis of LP

As there are OðLÞ maximally overlapping tiles, there are a
total of O NLð Þ edges (line segments). There are O jByjð Þ
edges (line segments) in map constraints. Therefore, totally
there are O NLþ jByjð Þ linear constraints. From Equa-
tion (26), there are O Nð Þ decision variables, fvng, in the LP.
Given the above, the complexity of solving the LP formula-
tion in Equation (28) is given by [30]

O N2ðNLþ jByjÞ� �
: (29)

The LP can also be efficiently solved by some commercial
solver [30]. Summing Equations (16), (20), and (29), the
overall online complexity of localization is then

O LN log ðLNÞ þ L2N þ L2 log LþN2 NLþ jByjð Þ� �
;

where we have used the fact that Equation (16) is asymptoti-
cally smaller than Equation (17) and hence can be ignored.

6 FURTHER COMPUTATIONAL REDUCTION

The complexity of Tilejunction depends on the number of
APs L and the number of RPs N . To reduce its computation
time, we should reduce the APs by using only those which
show substantial signal differentiation in the site. To this
end, we employ an information-theoretic metric to screen
the APs by offline pre-processing (Section 6.1). To reduce N ,
we pre-process the RPs using spectral clustering to partition
the site into smaller regions, each of which with some exem-
plars (Section 6.2). During the online stage, we map the tar-
get vector to the cluster which has the most similar
exemplars (Section 6.3). This effectively reduces the search
space to a small region.

6.1 Offline AP Filtering

In the survey site, some APs may show large signal range.
These APs can generate tighter tiles of smaller area. To
achieve computational efficiency, by means of the informa-
tion-theoretic entropy measure Tilejunction filters away
those APs of small signal range. The basic idea is as follows.

We first discretize the signal range of each AP in the site.
For an AP l, let minn bml

n and maxn bml
n be its minimum and

maximum fingerprint value among all the RPs, respectively.
Given a certain signal discretization step w, the number of

levelsMl for the AP is hence given by

Ml ¼ maxn bml
n �minn bml

n

w

� 	
: (30)

The fingerprint signal bml
j is of level i, where i 2 f1; . . . ;Mlg, iff

minn bml
n þ ði� 1Þw � bml

j < minn bml
n þ iw: (31)

To calculate the entropy of an AP, we count the number
of RPs for each signal level of the AP. Let Nl

i be the number

of RPs corresponding to level i of AP l. Recalling that jNlj is
the number of RPs that can detect AP l, the fraction of RPs
of level i, Pi, is hence

Pi ¼ Nl
i

jNlj : (32)
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The entropy of AP l is given by

Hl ¼ �
XMl

i¼1
Pi log2 Pi: (33)

High entropy means that the AP has large signal range with
rather uniform or similar number of RPs in each signal level.
In Fig. 5a we show the typical signal pattern for a Wi-Fi AP
with a high entropy. As shown in Fig. 5b, its RP distribution
within each signal level is rather uniform. Thus, using this
AP, we can generate distinct tiles depending on target sig-
nals. To reduce the number of APs (and hence speed up our
LP solution), we filter out those APs with low entropy and
keep only the top ones. In this way, the number of APs in the
site would be greatly reduced to only the top ones.

The entropy calculation of all the APs takes OðNLÞ. Sort-
ing the corresponding entropy takes OðL logLÞ. Therefore,
its total complexity is OðNLÞ.

6.2 Offline RP Clustering and Exemplar Election

In order to efficiently solve the LP problem, we partition the
whole survey site into smaller regions within which the fin-
gerprints are similar. This is done through spectral cluster-
ing, which converges to the final solution faster than
K-mean clustering [31]. By confining the search within a
cluster, much fewer RPs need to be examined in LP (i.e., N
in Equation (24) reduces to the size of cluster), thereof
greatly speeding up the computation process.

The clustering process is as follows. Out of all the N RPs,
we first calculate the pairwise similarity of their fingerprints
using Cosine similarity [10]. The similarity between two fin-
gerprints qi and qj is given by

simðqi;qjÞ ,
qi � qj

kqikkqjk

¼
PL

l¼1 �c
l
i
�cl
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL

l¼1 �cl
i

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL
l¼1 �cl

j

� �2
r :

(34)

If there is no common AP between RP i and j (i.e.,
�cl
i
�cl
j ¼ 0; 8l), the similarity is defined to be 0.

Let Cm be the set of RPs in cluster m. We group the RPs
into K clusters so as to maximize the similarity of RSSI vec-
tors within the clusters, i.e.,

max
fCmg

XK
m¼1

X
j2Cm

sim qj; rrm

� �
; (35)

where rrm is the mean of RSSI vectors within the clusterm:

rrm ¼
P

j2Cm
qj

jCmj : (36)

The RP clustering using spectral clustering is shown in
Algorithm 2. The similarity between different RPs is calcu-
lated first (Lines 1 to 6). Based on the pairwise similarity
matrix S (formed by elements Sij , simðqi;qjÞ), we con-
struct a symmetric matrix, Diag, where each diagonal ele-
ment represents the sum of each column in S (Line 7). Then
eigenvalue decomposition is conducted over the difference
between S and Diag (Lines 8 to 9). Then we conduct the
K-means algorithm over the obtained eigenvectors with
the given number of clusters (Line 10).

Algorithm 2. Pseudocode for RP Clustering.

Input:
fqng: set of RSSI vectors at all RPs;
K: number of clusters to be constructed;
Output:
fCmg: Index of RPs in each clusterm.
/* Calculate the pairwise Cosine

similarity between the RPs. */
1 for i 1 toN do
2 for j 1 to i do
3 S½i; j�  simðqi;qjÞ;

/* Cosine similarity. */
4 S½j; i�  S½i; j�;
5 end
6 end
7 Diag diagðsumðSÞÞ;
/* Construct a symmetric matrix where

each diagonal element corresponds to

sum of each column of S. */
8 DS Diag� S;
9 Vec eigsðDS;Diag; KÞ;
/* Eigenvector ofDS. */

10 return fCmg  KmeansðVec; KÞ;
/* K-means clustering algorithm. */

To efficiently identify which cluster the target belongs to,
we elect some exemplars within each cluster as representa-
tives for cluster comparison. These exemplars are the top
few fingerprints which exhibit the highest similarity
with all the other members in the cluster. Mathematically,
for cluster m and for each j 2 Cm, we computeP

s2Cm;s 6¼j simðqj;qsÞ. Out of all the jCmj computed values,

we choose the top ones as the exemplars for clusterm.
We next discuss the computational complexity of this off-

line preprocessing. Given L APs after filtering, the complex-
ity of constructing the similarity matrix out ofN RPs (i.e., all

the simðqi;qjÞ) is OðN2LÞ. The eigenvalue decomposition

Fig. 5. (a) A typical signal distribution of a Wi-Fi AP with high entropy. Dif-
ferent colors indicate different discretized levels. (b) The RP distribution
of the above AP within different levels.
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takes OðN3Þ and finding the top K eigenvectors takes
OðN logNÞ. The complexity of K-means clustering is

OðNK2Þ � number ofK-means iterations [32] [33]. Summing
them up, and noting K 	 N , the total complexity is hence

O N3 þN2Lð Þ.

6.3 Online Cluster Mapping

Given the exemplars of each RP cluster, we map the online
target RSSI vector to a corresponding RP cluster. Denote the
set of exemplars of cluster m as Qm. We compare the target
vector with each exemplar signal vector using Cosine simi-
larity, and map the target to the cluster which has the high-
est overall similarity, i.e.,

argmax
Cm

X
j2Qm

sim p;qj

� �
: (37)

After a cluster is mapped, we filter out the RPs of the
other clusters and use only the RPs in the cluster region for
localization. This greatly reducesN in the LP computation.

We leave this section by discussing the online complexity
reduction after applying the AP filtering and RP clustering.
Let A � 1 be reduction factor for the APs, given by the ratio
between the original number of APs and the resultant num-
ber of APs after filtering. Similarly, let R ¼ N=jCmj � 1 be
reduction factor for the RPs. The speedup factors due to our
AP reduction (by AP filtering) and RP reduction (by cluster-
ing) in each online localization component is shown in
Table 2. It is clear that the speedup can be very substantial.

7 ILLUSTRATIVE SIMULATION RESULTS

7.1 Simulation Settings

We develop a simulation environment using our campus
map. All the transmitters and receivers are equipped with
omni-directional antennas. The RSS f (dBm) at distance D
from an AP is given by the log-normal shadowing
model [34]:

f ¼ PTX � Lð0Þ � 10a log10
D

Dð0Þ


 �
þ S; (38)

where S 
 Nð0; s2
dBÞ is the measurement noise. In our simu-

lation, we set the transmission power PTX 25 dBm, the path

loss exponent a 4:0, the reference path loss Lð0Þ 37:7

dBm [34] and the reference distance Dð0Þ 1 m. Based on our
experimental observations, if f < �95 dBm, the target

cannot detect the AP signal. The APs are uniformly
deployed in the site in each round of deployment.

Unless otherwise stated, we use the following parame-
ters as our baseline (default): grid size 5 m (grid size is
defined as the distance between two neighboring RPs in site
survey); 10 APs ; k ¼ 20 for the nearest neighbor search;

100� 100 m2 survey site; APs are deployed in 35� 35 m2

area; d0 ¼ 1 in Equation (11); four RP clusters; 5 exemplars
at each cluster; w ¼ 2 dB in Equation (30); sdB ¼ 5 dB in the
shadowing model.

In the simulation, we compare Tilejunction (Tilej.) and
Sectjunction (Sectj.) with four other state-of-the-art schemes:

� KL-divergence-based (KL-div) [8]: It utilizes the Kull-
back-Leibler (KL) divergence distance between the
distribution at an RP and target signal during com-
parison. The k RPs with the minimum KL-diver-
gence are used for final location estimation.

� Kernel-based [12]: It utilizes the kernelized distance to
compare RSS observations with RSS training records
(Gaussian kernel in our experiment). The top k
RPs with smallest kernel distances will be used
for final estimation.

� RADAR [1]: It computes the Euclidean distance
between the fingerprint and the target RSSI vector,
and finds the k Nearest Neighbors of smallest dis-
tance [7] to estimate the target location.

� Horus [9]: It first calculates the probability distribu-
tion of the RSSI value at each RP. Given a target RSSI
vector, Horus computes the overall probability of
the vector at each RP and finds the one with the max-
imum likelihood as the target location.

We evaluate the algorithms in terms of localization error.
Denote estimated location as x̂u and the true location as xu.
Localization error is given by eu ¼ kx̂u � xuk2. Given a set of
the target users U, we evaluate the overall performance by
their mean error (ME):

ME ¼ 1

jUj
XjUj
u¼1

eu: (39)

7.2 Illustrative Results

Fig. 6 shows the mean localization error versus the finger-
print signal noise (s2

dB in Equation (38)). All algorithms
degrade as the noise increases, mainly due to dispersed
nearest neighbors in signal space. Different from these

TABLE 2
Computation Time Reduction (Speedup Factor)

for Online Localization Components

Computation Step Complexity Speedup
Factor

Tile construction &
intersection points

O LN log LNð Þð Þ RA

Finding sandwich points O L2Nð Þ RA2

Finding maximally
overlapping set

O L2 log Lð Þ A2

Linear programming O N2ðNLþ jByjÞð Þ R3A

Fig. 6. Mean localization error versus signal noise (simulation).
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schemes, Tilejunction considers the first two moments in
signal noise for tile construction. Therefore, it mitigates the
adverse effect of signal noise compared with Sectjunction.
As Tilejunction outperforms Sectjunction under all noisy
signal measurements, in the following we focus on compar-
ing Tilejunction with other state-of-the-art algorithms.

Fig. 7 shows mean localization error versus the site width
of AP deployment, i.e., we vary the site width (a square) to
change the AP installation density, given different schemes.
In general, the error first decreases and then increases. This
is because localization error depends on two factors: AP fin-
gerprint differentiation in the site and the number of APs
detected at a location. When the site is small, the AP finger-
prints are very similar among all the RPs. Therefore, the
error is high. As the width increases, there is more AP signal
differentiation in the site, and hence the error decreases. As
the width further increases, the error increases because, as
APs are deployed in a sparser manner, the number of APs
detected at a location decreases. The result shows that with-
out sufficient AP signal differentiation, high AP density
would not help. It also shows that Tilejunction achieves sub-
stantially the lowest error as compared with the other
schemes, as the tiles using the first two moments of signals
mitigate adverse effect of noise.

Fig. 8 shows the average localization error against the
number of deployed APs. When the AP number increases,
localization error decreases because more APs helps localize
the target to a smaller area. There is diminishing return of
adding an extra AP, because signal (or fingerprint) differenti-
ation reduces aswe addmoreAPs to a fixed area. Tilejunction

achieves the highest accuracy due to its joint consideration of
measurement noise and use of junction of tiles.

Fig. 9 shows the mean error against the survey grid size.
Accuracy suffers as grid size increases, because signal
uncertainty more easily leads to incorrect matching to dis-
tant RPs. It also illustrates the tradeoff between survey cost
and localization accuracy.

8 ILLUSTRATIVE EXPERIMENTAL RESULTS

8.1 Experimental Settings

Besides simulation, we have conducted extensive experi-
mental trials in both HKUST campus atrium and Hong
Kong International Airport. In Table 3, we summarize the
settings in these experimental sites.

At each RP at both sites, data is sampled from four differ-
ent directions (north, west, south and east). For each direc-
tion, a certain number (15) samples of RSSI vectors are
collected. In the data preprocessing, we filter out the mobile
APs tethered by smartphones, and combine virtual APs
(VAPs) [35]. The Wi-Fi APs are pre-deployed by indepen-
dent bodies of the site and hence we do not know their
actual mounted positions. At each RP, the probability of
measuring an AP in all RSSI samples (15 samplings) is
76 percent on average in HKUST (55 percent in HKIA). We
use 5m as our grid size in both sites.

By facing each of the four different directions, we collect
five samples at each target position. We conducted site sur-
vey in HKIA on December 5th, 2013, and in HKUST campus
on August 8th, 2013 (both data sets were sampled in the
morning). The target samples were collected one month
later than RP collection. The survey is conducted under nor-
mal condition (work hour) and hence there may be crowds
nearby. The time interval between samples in RP sampling

Fig. 7. Mean localization error versus site width of AP deployment
(simulation).

Fig. 8. Mean localization error versus deployed AP number (simulation).

Fig. 9. Mean localization error versus survey grid size (simulation).

TABLE 3
Summary of Experimental Sites in HKUSTand HKIA

Survey Sites HKUST Atrium HKIA

Size (m2) 2,000 8,000
# RPs 183 220
# Clusters 6 4
# Targets 800 1,100
# APs 323 360
Average APs/RP 32 46
Average APs/Target 28 28
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and target sampling is 1 second. Figs. 10 and 11 show the
survey floor plans with clustered RP and target locations in
HKUST atrium and HKIA, respectively.

We compare Tilejunction with the same state-of-the-art
algorithms as in Section 7. We also have the following base-
line parameters: four exemplars at each cluster; d0 ¼ 1;
20 APs with the highest entropy are used for Tilejunction
localization; w ¼ 3 dB in Equation (30). Unless otherwise
stated, the above parameters remain fixed.

We compare these algorithms using the mean localiza-
tion error defined in Equation (39). For cluster mapping,
denote the number of targets which are correctly mapped to
their nearest clusters as nc. We define the accuracy of the
cluster mapping as

Accuracy ¼ nc

jUj : (40)

To evaluate the computation efficiency, we define the corre-
sponding average running time as the overall running time
of all target estimations divided by their number. The
measurement of running time is conducted on a PC with
3:0 GHz dual-core i5 CPU.

8.2 HKUST Atrium

Fig. 12 shows the localization accuracy against the survey
grid size. As the minimum grid size is five meters, lines or
rows of RPs are removed to form grid size with multiples of
five. We can see that all six algorithms degrade as grid size

increases. We can see that Tilejunction has higher localiza-
tion accuracy than other algorithms for different grid size. It
is because it utilizes the signal tiles through the joint optimi-
zation and reduces the influence from measurement noise.

Fig. 13 shows the running time using Sectjunction and
Tilejunction. Sectjunction uses sectors, which are quadratic
constraints in the formulation. To the contrary, Tilejunction
utilizes linear tiles in linear programming. Solving linear
constraints is much more efficient than solving quadratic
constraints. Therefore, Tilejunction achieves much higher
computational efficiency than Sectjunction.

Fig. 14 shows the computation reduction using cluster
mapping and AP filtering in Tilejunction. It shows the mean
computational time of 800 targets in HKUST atrium for
four components: (a) tile construction and intersection
points; (b) finding sandwich points; (c) finding maximally
overlapping set of tiles; (d) linear programming. It corre-
sponds to the theoretical analysis in Table 2. We can

Fig. 10. The floor plan and RP clusters in HKUSTatrium.

Fig. 11. The floor plan and RP clusters of a survey site in HKIA.

Fig. 12. Mean localization error versus survey grid size (HKUST).

Fig. 13. Comparison on online running time (HKUST).

Fig. 14. Computational time reduction in different components of
Tilejunction (HKUST).
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observe significant computation reduction through cluster
mapping and AP filtering.

Fig. 15a shows the cluster mapping accuracy against the
number of exemplars used. We pick out overall 800 targets
in the HKUST atrium as the test cases. The accuracy
increases quickly as the exemplar number increases and
then stabilizes at a few exemplars (around four to five). It is
because the exemplars added later contribute less to the
estimation accuracy. With a few representatives, we can
already efficiently and correctly map the target to one of the
cluster. Fig. 15b shows accuracy improves when applying
RP clustering and mapping. It is because cluster mapping
reduces the set of disperse nearest neighbors and we can
locate the target without large error deviation.

Fig. 16 compares the performance of expected signal dif-
ference with weighted Euclidean distance (W. Euc.), Cosine
similarity and traditional Euclidean distance. in the objec-
tive function of Tilejunction. Denote the target RSSI vector
as p and fingerprint data as qj. Euclidean distance
(Ed ¼ kp� qjk2) and cosine similarity (Equation (34)) do

not consider the signal variance in the noisy measurement
and thus cannot discriminate the disperse nearest neighbors
with large signal change. Weighted Euclidean distance

(Ew ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

lðcl
n=s

l
n � fl=slÞ2

q
) aims to standardize the signal

values but cannot represent the expected difference
between two random signals. Therefore, it cannot effec-
tively differentiate the RPs with similar signal measure-
ment. In contrast, ESD discriminates the fingerprints by
penalizing the RPs that have large signal variance. Then we

mitigate the influence from the noise in the measurement.
Thus it achieves better performance than the other three
similarity metrics.

Fig. 17 compares the cumulative errors of different algo-
rithms. Due to large measurement noise in the atrium,
RADAR’s accuracy is weakened by the disperse nearest
neighbors. Horus assumes a certain distribution of signal
level at each RP and therefore cannot represent real signal
distribution under limited sampling. Kernel-based and KL-
divergence also require large data sampling and dense fin-
gerprints in signal distribution comparison. Therefore, they
cannot adapt to the noisy environment in the campus
atrium. Tilejunction considers the signal noise using tile
constraints and therefore reduces the misestimation.

Fig. 18 shows the number of APs detected at each RP and
target in HKUST atrium. On average, each RP in atrium can
measure 32 APs and each target in atrium can detect
28 APs. The number of APs is due to uncoordinated AP
deployment from different parties at different floors or loca-
tions. As some targets may measure many APs, AP filtering
can be conducted to facilitate the calculation.

We conduct related analysis to illustrate the AP filtering
based on information entropy in Fig. 19. We first plot in
Fig. 19a the cumulative probability of Wi-Fi AP entropy in
the survey site. We can observe the two turning points
(dashed lines) in the cumulative distribution, which forms
three groups of APs. Therefore, in our AP filtering, we select
the group of APs on the right with the highest entropy.

Based on these selected APs, Fig. 19b plots the mean
localization error against the number of APs selected. We
sort the APs according to their entropy. Then we select the

Fig. 15. (a) Mapping accuracy versus number of cluster exemplars.
(b) Accuracy improvement using cluster mapping (HKUST).

Fig. 16. CDF of localization errors given different measures of signal
difference (HKUST).

Fig. 17. Cumulative distribution of localization errors (HKUST).

Fig. 18. Histogram of measured AP number at RPs and targets
(HKUST).
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APs with high entropy (Section 6.1). We can see there is a
decreasing effect in the error reduction when selecting APs.
Error converges after we select the top few APs which corre-
spond to the right group in Fig. 19a. It is because the later
added APs carry less entropy to differentiate the RPs. To
make a tradeoff, we select the top few APs (right group in
Fig. 19a) with high entropy for localization.

In Fig. 20, we plot the performance of five algorithms
against the number of APs used. By fixing a number of
detected APs at target side, we randomly select the APs
detected to simulate the miss of the RSSI due to crowds of
people or site construction change. As the number of APs
used increases, all five algorithms’ performance improves
and then converges, because the APs which are later added
do not significantly increase the differentiation of locations.
Tilejunction is less susceptible than other four algorithms
under AP detection change. It is mainly because RP cluster-
ing and tile junction can constrain the target in a small
region and reduce the disperse set of nearest neighbors.

8.3 Hong Kong International Airport

We have also conducted extensive trials in the Hong Kong
International Airport.

We have analyzed the signal noise in HKIA and HKUST.
Fig. 21 shows the signal noise (sl in Equation (8) and sl

n in

Equation (6)) in the two sites. Note that sl represents the

average signal noise at the target for AP l, while sl
n means

the average signal noise at the RPs for AP l. We can observe
the signal noise in HKIA is slightly larger than that in
HKUST.

Fig. 22 shows RSSI values versus the distances from an
AP in HKIA. We generate the plot based on the collected
fingerprint data from HKIA. The location of this AP is
inferred by the signal regression scheme [36]. Generally, as
distance increases, the RSSI decreases. Due to multipath
effect, the Wi-Fi signal fluctuates at different distances from
the AP. Therefore, we observe the imperfection of fitting in
the path loss model. Such noise effect in offline and online
measurement influences performance of the traditional
localization systems.

Fig. 23 shows that the performance of all algorithms
degrades when the grid size increases and Tilejunction
achieves higher accuracy under all training grid size. Fig. 24
shows the overall performance of different algorithms in
HKIA. Similar to HKUST atrium, Tilejunction in HKIA still
achieves higher accuracy and robustness than other state-
of-the-art algorithms.

Note the marked resemblance between Figs. 12 and 23
with Figs. 17 and 24, in Section 8.2. The AP number in
HKIA is larger in HKUST, which can provide more RP dif-
ferentiation and reduce the adverse noise effect. We also
study the performance of Tilejunction same as those in

Fig. 19. (a) CDF of AP entropy. (b) Location error versus selected AP
number (HKUST).

Fig. 20. Mean localization error versus the number of APs used
(HKUST).

Fig. 21. CDF of sl and sl
n in HKUSTand HKIA.

Fig. 22. Scatter plot of Wi-Fi RSSI versus distance from AP (HKIA).

Fig. 23. Mean localization error versus survey grid size (HKIA).
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HKUST atrium. As the conclusions are qualitatively the
same, for brevity we will not repeat them here.

9 CONCLUSION

Due to signal measurement noise, the traditional com-
parison-based approach in Wi-Fi indoor fingerprint-
based localization often leads to a disperse set of RP
neighbors, resulting in unsatisfactory estimation error.
To mitigate the problem, we propose in this work a
highly accurate and efficient algorithm called Tilejunc-
tion, which takes into account of measurement noise
based on only its first two moments.

For each AP signal the target measures, Tilejunction con-
structs a “tile,” a convex region where the target is likely
within given measurement noise. Using a comparison met-
ric for random signals, Tilejunction formulates an efficient
linear programming problem to localize the target to the
overlap area (i.e., the junction) of the tiles. To further speed
up the computation, we present an entropy measure based
on information-theoretic approach to filter away the APs
which are not effective in localization. We further present
an approach to substantially reduce the search space by RP
clustering. We have conducted extensive simulation and
experimental studies on Tilejunction in our campus and
Hong Kong International Airport. Compared with other
approaches, Tilejunction is highly accurate, substantially
cutting the error by a wide margin.
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