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Abstract—Due to its accuracy, trilateration has been widely deployed to locate smartphones outdoors. However, such approach

cannot be easily applied indoors due to issues like non-line-of-sight measurement and complex multipath fading. Though fingerprinting

overcomes these issues, its accuracy is often hampered by signal noise and the similarity metric comparing signal vectors. We propose

INTRI, a novel, simple, accurate, and effective indoor localization framework combining strengths of trilateration and fingerprinting.

Given a signal level received from an access point (AP) at target, INTRI first forms a contour given by reference points (RPs) with the

same signal level, taking into account signal noise. The target is hence at the juncture of contours formed by all APs. We present

selecting RPs for random signal by a width parameter determining the signal contour width (or spread). Then, an LP-based formulation

finds the location following spirit of trilateration, which minimizes distance between target position and all contours. A novel particle filter

leverages crowdsourced user inputs to adaptively estimate the width parameter. An online algorithm is further used to calibrate

heterogeneous smartphones. Our extensive experiments in an airport, a shopping mall, and our campus show INTRI outperforms

recent schemes with substantially lower error (often by more than 20 percent).

Index Terms—Indoor localization, contour-based trilateration, user-assistance, particle filter, fingerprinting, device calibration, signal contour,

linear programming

Ç

1 INTRODUCTION

IN trilateration, a mobile device (target) first computes its
distances to a number of landmarks of known locations,

often based on a signal-distance model. It then estimates its
position which best matches these computed distances (by,
for example, minimizing the error between the computed dis-
tances and the distances from that position to the landmarks).
Such localization approach has achieved reasonable accuracy
outdoors, with applications notably inGlobal Positioning Sys-
tem (GPS) and cellular positioning, where the landmarks are
satellites and base stations (cell towers), respectively.

Despite of its successful outdoor application, trilateration
does not work well indoors because distances to landmarks
cannot be computed accurately and easily with models.
Such inaccuracy is mainly due to non-line-of-sight land-
marks, complex indoor signal environment (due to fading
and multipath), over-simplification or parametric uncertain-
ties in indoor propagation models, etc. Fingerprinting, on
the other hand, emerges as a promising approach for indoor
localization. An example is Wi-Fi fingerprinting, which is
gaining popularity due to its ease of deployment without
the need to install extra sensor infrastructure beyond the
existing Wi-Fi network [1], [2].

Fingerprint-based localization is usually conducted in two
phases. In the first offline (survey) phase, a site survey is con-
ducted to collect the vectors of received signal strength indicators

(RSSIs) at known locations, the so-called “reference points”
(RPs). These vectors of RSSIs are the fingerprints of the loca-
tions and are stored in a database. In the second online (query)
phase, a user samples or collects an RSSI vector at his own
position and reports it to the server (in this paper, we use
“user”, “mobile device” and “target” interchangeably). The
server then locates the indoor user by comparing the target
vector with the fingerprints using some similarity metric such
as euclidean distance [3] between signal vectors. The target
position is then estimated out of themost similar “neighbors”,
the set of RPs whose fingerprints closely resemble the target’s
RSSI. (Note that the position may be estimated at the mobile
device if it has enough resources.)

Traditionally, the similarity metric used in comparison
often treats the RSSI vector of the target as a single “entity”.
This makes the neighbor selection susceptible to statistical
signal fluctuation and measurement noise. Due to signal
randomness, it has been widely observed that the matching
in the online phase may be ambiguous, resulting in a dis-
persed set of neighbors (i.e., RPs of similar RSSI vectors are
quite distant apart in the physical space). This leads to
unsatisfactory localization accuracy [1], [4].

In this paper, we propose INTRI (indoor trilateration
using signal contours), a novel, efficient and accurate indoor
localization technique which employs the concept of trilat-
eration in fingerprint-based environment. By treating the
RSSI from each AP individually (instead of as a single signal
vector), INTRI does not suffer from matching ambiguity. It
is hence highly robust to random signals (due to signal fluc-
tuation and measurement noise) as it is not based on finger-
print similarity comparison.

We illustrate the basic concept of INTRI, a contour-based
trilateration approach, in Fig. 1 with three access points
(APs). Let S be the signal strength of a certain AP as
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measured by the target. For that AP, we can form a contour
corresponding to S in the region, which is simply the set of
spatially distributed RPs whose signal level for the AP is S,
subject to its own signal randomness (the figure shows a
continuous contour, while in reality the signal contour con-
sists of discrete points in space). It is clear that the target is
somewhere on the contour line. Given the target’s received
signal vector, we can hence form the contour for each of the
APs (three contours for the three APs in the figure). Follow-
ing similar spirit of trilateration, the target position can then
be estimated by minimizing its distances to these contours.

INTRI integrates the trilateration technique with the
indoor fingerprinting by combining the strengths of both
approaches: it does not need the positions of APs and
line-of-sight (LoS) measurement, and overcomes the dis-
persion problem by locating the target at the contour
junction formed by its measured signal levels. Note that
INTRI is a general approach applicable to any other fin-
gerprint signal like Wi-Fi, Bluetooth Low Energy (BLE),
channel state information (CSI), visible light, or RFID.
We have further implemented INTRI over Wi-Fi and
BLE to validate its generality.

In order for INTRI to be practically deployed, we need to
overcome several critical challenges. First, how to select the
set of RPs in a contour for random signals? This is by means
of a width parameter to determine the width (or spread) of
the signal in contour construction. Second, given the con-
tours, how to localize efficiently and accurately the target?
Third, note that signal randomness may vary over time and
sites, and different devices may report different values on a
certain signal (i.e., the heterogeneous device case). Beyond
training contour parameter based on offline-collected fin-
gerprint samples, we hence need to address how to adap-
tively and promptly adjust the width parameter over time
in the site, and to “calibrate” the target device to match the
signal level stored in the database.

In this paper, we make the following contributions in
INTRI, addressing its accuracy and deployment issues:

� Contour formation for random signals: Signal measure-
ment is inherently noisy. Constructing contours
needs to consider such random fluctuation in order
to accurately locate the target. Given fingerprints, we
present how to statistically analyze them so as to
construct contours under random signals.

� Efficient contour-based localization algorithm: We pro-
pose a novel contour-based localization algorithm
based on linear programming formulation. Follow-
ing similar spirit of trilateration, INTRI estimates tar-
get location with the objective to minimize the
distances to the contours constructed according to
the above.

� Crowdsourced parameter estimation: To make INTRI [5]
more adaptive to signal characteristics over time and
site, we propose a novel online algorithm based on
crowdsourced user input and particle filter to better esti-
mate the width parameter for contour construction.
In our scheme, the crowdsourced user inputs can be
easily or conveniently obtained through many
approaches, such as explicit user-input locations [6],
location-based social network, beacon assistance [7]
or QR code scanning or NFC tags [8]. The contour
parameter is first initialized as input to a particle fil-
ter. Then the particles which consistently match the
crowdsourced location inputs are selected to gener-
ate appropriate signal width in the contours for
localization. This achieves less over-fitting upon the
offline fingerprint samples, and better robustness
under noisy environment and over time.

� Adaptive device calibration: Regarding device hetero-
geneity issue (for the case that the devices in the
online and offline phases may be different), offline
calibration for all devices is neither practical nor scal-
able. We propose an adaptive online algorithm to effi-
ciently calibrate devices, which adjusts the target
measured RSSI according to the stored fingerprints
based on signal correlation. Using such an approach,
INTRI achieves scalability for all current and emerg-
ing heterogeneous devices.

We have conducted extensive simulation and large-scale
experimental trials in the Hong Kong International Airport
(HKIA), the Hong Kong Cyberport mall (HKCP) and our
university campus (HKUST). Both simulation and experi-
mental studies further confirm the high accuracy and envi-
ronmental adaptivity of INTRI.

The rest of this paper is organized as follows. After
reviewing the related works in Section 2, we describe in Sec-
tion 3 the system framework and forming contours for noisy
signals. Based on these contours, in Section 4 we present the
linear programming formulation for localization based on
the idea of trilateration. Then in Section 5, we discuss the
idea of improving contour settings with crowdsourced
inputs, followed by an efficient online device calibration
algorithm. Illustrative simulation and experimental results
are presented in Section 6. We finally conclude in Section 7.

2 RELATED WORK

We briefly discuss related works in this section. Pattern rec-
ognition techniques have been widely studied in Wi-Fi fin-
gerprinting localization. RADAR [3] and Horus [9] are the
two representative approaches. Recently more advanced
techniques on pattern matching have been investigated [1],
[10], [11], [12]. Signal propagation model is also considered
recently to derive RSSI at different locations [2], [13].
EZ [13] utilizes rigid matching between signals and distan-
ces to determine the target location. More recent works like

Fig. 1. The basic idea of indoor contour-based trilateration by minimizing
the distance to signal contours.
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EZPerfect [14] and Modellet [2] further utilize the labeled
fingerprints to derive the signal propagation model.

In contrast to the above, we combine the strengths of fin-
gerprinting and trilateration approaches. We employ a geo-
metric scheme (following the similar spirit of trilateration)
based on random fingerprint signals to constrain the target
region. By formulating a novel linear programming, INTRI
achieves much better localization accuracy without neigh-
bor dispersion.

Some other recent works leverage the temporal or spatial
RSSI patterns for localization. These works consider loca-
tion-dependent patterns such as the trend of RSSI sequences
along corridors [15], order of RSSIs from different APs [16],
or the unique existence of some Wi-Fi APs at some
area [17]. Once the target measures such patterns, its loca-
tion is then mapped to the area. These patterns achieve
promising results for constrained and narrow environment
with well-defined user trajectories (like corridors or offices).
In contrast, the contours in INTRI are solely derived from
fingerprints and are applicable to any indoor environment.
Furthermore, INTRI does not need the positions of APs and
LoS measurement, and is not based on indoor models
(indoor environment may be too complex to model).

Calibrating different devices has been studied in recent
works [18], [19], [20], [21]. Traditional offline calibration [18]
causes extra manual efforts in real deployment and hence is
not scalable. Given the target RSSI measurement, works
like [19], [20], [21] utilize the deduction [19] (or ratio [20])
between AP signal values to calibrate the devices. However,
large noise and fluctuation in signal levels can degrade the
quality of above calibration approaches. Some learning-
based approaches [2] utilize expectation maximization to
calibrate the signal difference. Different from these works,
INTRI proposes a more efficient and robust scheme which
maps the target signals to the signal space in fingerprint
database.

User-input has been recently studied in [22], [23] for
better indoor localization. Many previous works only

focus on improving the fingerprint database [6], [24] or
calibrating heterogeneous devices [22]. Unlike these
works, to our best knowledge, INTRI is the first work
calibrating location-based system parameters with user
assistance. The user simply inputs his/her current loca-
tion if a location correction is needed for INTRI. By imple-
menting a novel particle filter algorithm [25], INTRI
learns the suitable contour width parameters for the envi-
ronment. Hence our INTRI becomes adaptive to practical
deployment on new sites. Our study of parameter estima-
tion is orthogonal and also amendable to crowdsourcing
feedback works in [26], [27], [28], and can serve as a plug-
in for many other localization systems [3], [9] for better
adaptivity.

To improve fingerprint localization, sensor fusion has
attracted intensive attention recently. Using the smart-
phone inertial sensors, fusing motion information has
been studied extensively to improve fingerprint-based
positioning [1], [29]. Different from above fusion
approaches, INTRI solely relies on the wireless measure-
ment (such as Wi-Fi and iBeacon), and therefore does not
require inconvenient motion or step length calibration.
INTRI is also independent of these works, and is amend-
able to integrate with them for higher accuracy of mobile
localization.

A preliminary version of INTRI has been reported
in [5]. In this paper, we further advance from it in the fol-
lowing major ways: 1) We present a novel approach based
on particle filter and crowdsourced input (say, locations
and signals from user feedbacks or sensors) to adaptively
and promptly adjust the width parameter in contour con-
struction. This improves localization accuracy. We have
conducted extensive experiments in different sites to vali-
date the improvement and robustness of such crowd-
sourced approach. 2) Beyond Wi-Fi, we have deployed
INTRI with iBeacon, and conducted extensive experiments
to show the more general applicability of INTRI. We also
compare INTRI with recent state-of-the-art algorithms to
validate its accuracy improvement for iBeacon-based
localization.

3 SYSTEM FRAMEWORK & FORMING SIGNAL

CONTOURS

In this section, we describe how to properly form the signal
contours for later location estimation. After presenting sys-
tem framework in Section 3.1, we present in Section 3.2 how
to find the signal contour for each AP, given target random
RSSIs. A contour (of an AP) consists of discrete RPs whose
signal level is the same as the target’s measured signal level,
subject to statistical fluctuation. To achieve higher localiza-
tion accuracy, the RPs visited by many contours of strong
signals are preferred. Therefore, in Section 3.3 we propose a
weighting scheme which is able to differentiate the impor-
tance of the RPs. The important RPs are kept while those
unimportant ones (where target is unlikely at) are filtered.
After the above steps, given that the target is likely to be in
the “dense” region of selected RPs, we finally present in Sec-
tion 3.4 how to find such region based on maximally con-
nected components. The major symbols used in this paper
are shown in Table 1.

TABLE 1
Major Symbols Used in INTRI Formulation

Notation Definition

N;L Number of RPs & APs in the fingerprint database.
fn Wi-Fi RSSI vector received at RP n.

fln Wi-Fi AP l’s RSSI at RP n (dBm).

g Wi-Fi RSSI vector received at target.

gl Wi-Fi AP l’s RSSI at target (dBm).

sl
n & sl AP l’s standard deviation at RP n & the target (dB).

z0 Width parameter for contour construction.

Sl & Cl Signal contour from AP l & the indices of RPs on it.bdl Pseudo distance from AP l.

Dn Contour weight at RP n.
R Indices of selected RPs for LP localization.
NR Number of RPs selected in R.

Dl
n

Minimum distance between RP n and Sl.

vn Weight of RP n in target estimation.
rn 2-D coordinate of RP n.bx Estimated 2-D coordinate of target.

xi Crowdsourced input location.
cp Distance between user-input location and particle p
up Weight of particle p in user assistance.
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3.1 System Framework

We show in Fig. 2 the system framework of INTRI. The Wi-
Fi fingerprint database is initialized by a site survey, storing
< location, RSSI vector> pairs for each RP and vendor
information of the devices used for data collection. The sys-
tem is now ready for online estimation.

In the online phase, INTRI first checks the vendor informa-
tion of the user’s device. If that is different from the devices
used for site survey, the target RSSI vector will be calibrated
using the stored fingerprints. The calibrated RSSI vector is
then used to construct the signal contours. Given signal con-
tours, INTRI formulates a linear programming (LP) to jointly
minimize the distances to the contours and estimates the
user’s position. The location is finally returned to the user’s
device. During the initial deployment of INTRI, crowd-
sourced inputs are fed to the particle filter learning module in
order to learn the contour width parameter in the site. After
the contour width parameter is adapted and learned, it is
stored for online localization purpose.

3.2 Forming Signal Contour

Let N and L be the total number of RPs and distinct APs
detected in the whole survey site, respectively. Further leteFl
n be the random variable of the RSSI collected at RP n for

AP l in the offline fingerprint collection, where 1 � n � N
and 1 � l � L. Multiple samples are collected at different

time t indexed by 1; 2; . . . ; T l
n for RP n and AP l, which are

denoted as ffl
nðtÞjt ¼ 1; . . . ; T l

n; T
l
n > 1g, where T l

n is the
total number of samples collected.

The unbiased estimate of expectation Eð eFl
nÞ, denoted asbml

n, is the mean of fl
nðtÞ’s. The unbiased estimate on the vari-

ance of eFl
n is denoted as bs2ð eFl

nÞ. Then bml
n and bs2ð eFl

nÞ are
respectively given by

bml
n ¼

1

T l
n

XTl
n

t¼1
flnðtÞ

0@ 1A;

bs2 eFl
n

� �
¼ 1

T l
n � 1

XT l
n

t¼1
flnðtÞ � bml

n

� �20@ 1A:

(1)

Let fl
n be the mean of the measured fingerprint signals

(a random variable) at RP n for AP l, given by

fln ¼
1

T l
n

XT l
n

t¼1
Fl
nðtÞ; (2)

where F l
nðtÞ’s are random variables distributed as eFl

n and

flnðtÞ’s are their realized values. Let vðtÞ be a noise process

independent from flnðtÞ. Let al
n be a parameter determining

the autocorrelation of samples. Then the signal time series
can be represented as a first order autoregressive model [30],

fln tð Þ ¼ al
nf

l
n t � 1ð Þ þ ð1� al

nÞvðtÞ; (3)

where al
n represents the correlation between successive

samples (0 � al
n � 1). For fl

n, its expected value �fln and stan-

dard deviation sl
n [30] can be estimated as

�fln ¼ bml
n; sl

n ¼
bs2 eFl

n

� �
ðT l

nÞ2
1� ðal

nÞT
l
n

1� al
n

 !2

þ T l
n � 1

248<:
�ðal

nÞ2
1� ðal

nÞ2ðT
l
n�1Þ

1� ðal
nÞ2

#)1=2

;

(4)

respectively. Here al
n can be approximated by autocorrela-

tion coefficient with lag one [30] for RSSI samples in the off-
line fingerprinting, i.e.,

al
n �

PTl
n�1

t¼1 fl
nðtÞ � bml

n

� �
fl
nðt þ 1Þ � bml

n

� �
PT l

n
t¼1 flnðtÞ � bml

n

� �2 : (5)

Such autocorrelation within sequential RSSIs may be related
to the caching in Wi-Fi sampling. Wi-Fi data caching can be
identified using Timing Synchronization Function (TSF) of
the RSSI. We can conclude that an RSSI is a cached one if its
TSF is identical to another in an earlier scan result.

Therefore, here we implement Equations (4) and (5) to
calculate sl

n for more general cases. Given the above, let

fn ¼ ½�f1
n;

�f2
n; . . . ;

�fL
n �; ssn ¼ ½s1

n; s
2
n; . . . ; s

L
n �; (6)

be the RSSI vector (fingerprint) and variance at RP n. This
ends the offline phase in forming fingerprints for INTRI.

In the online query stage, denote the target measurement
of AP l as gl. We denote the RSSI vector at the target as

g ¼ ½g1; g2; . . . ; gL�: (7)

For Equations (6) and (7), by definition, �fln ¼ 0 (gl ¼ 0), if AP
l is not sampled at RP n (at the target).

As online gl is also random signal, we utilize the uncer-
tainty in offline fingerprint to characterize its variation. Spe-

cifically, let ðslÞ2 be its variance, estimated as the mean of
the variance in all the fingerprints, i.e.,

sl
� �2¼ 1

jNlj
X
n2Nl

bs2 eFl
n

� �0@ 1A; (8)

where Nl is the set of RPs detecting AP l in the site and jNlj
is its cardinality.

Fig. 2. System framework of INTRI.
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We consider the randomness in the difference between
fingerprint and target RSSI, i.e., gl � fl

n, for each AP l. As gl

and fln are independently measured, the variance of gl � fl
n

is therefore given by

Vðgl � fl
nÞ ¼ VðglÞ þVðfl

nÞ ¼ ðslÞ2 þ ðsl
nÞ2: (9)

By evaluating the signal map of each given AP within the
survey site, we may observe a set of RPs which share similar
RSSI values with target one, subject to some statistical fluctua-
tion. These RPs forms the signal contour for that AP. Specifi-
cally, a signal contour for AP l, denoted asSl, consists of a set of

RPs where the target is likely within. In other words, Sl repre-
sents the RPs whose RSSI for AP l is likely within a certain

range from gl. Therefore, in finding the contour Sl, we eliminate
the RPs whose RSSI is more likely far away from the target’s,
i.e., if

gl � �fl
n

�� �� > z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V gl � fl

n

� �q
; z0 > 0; (10)

where z0 is termed width parameter, because z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V gl � fln
� �q

together represents the width (or spread) of the signal from
AP l at RP n to be included into the contour. z0 determines
the sensitivity of INTRI towards the signal noise. In deploy-
ment of INTRI, we can determine z0 through offline training
samples. We may initially assign a value for z0 (say, 2 or 3
in our experiment). In order to make INTRI more adaptive
to online signal environment, we further consider a novel
algorithm learning z0 online (Section 5.1).

Then a target measuring a similar RSSI value is likely
within a certain range from that contour, i.e.,

gl � z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V gl � fln
� �q

� �fl
n � gl þ z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V gl � fl

n

� �q
: (11)

Given AP l, we denote the corresponding index set of

RPs on contour Sl as Cl, i.e.,

Cl ¼ fn 2 Nl;where �fl
n satisfies Equation ð11Þg: (12)

Then we denote its cardinality as jClj.

3.3 Calculation of Contour Weights

Given the found contours, an intuitive idea is to locate the
target at RPs with the maximum number of contours. How-
ever, due to the indoor partitions and signal measurement
uncertainty, spatially dispersed RPs may have very similar

number of signal contours passing by. In this case, finding
the RPs with the largest number of contours may not lead to
accurate location estimation. As shown in Fig. 3, a target
(red diamond) measures a signal vector consisting of RSSIs
from six APs, A, B, C, D, E, and F. The contours of D, E, and
F (black circles) shift from those of A, B, and C (red rectan-
gles) due to signal fluctuation or wall partitions. Thus, the
RPs in black circles may share the same number of contours
as those close to target. If all these RPs are considered
equally without sufficient filtering or differentiation, large
location errors still exist.

Through empirical studies, we observe that the strong sig-
nals near APs providemore reliable location-dependent infor-
mation than the weak ones. The stronger the RSSI, the more
important theAP contour is in contributing to location estima-
tion. This is due to the sharpness of signal strength change at
the locations near the Wi-Fi APs, which differentiates RPs the
most from other distant ones. Inspired by this, we consider as
follows how to utilize such distinguishable RSSIs to improve
location accuracy.

Take Fig. 3 again as an illustration. The signals at con-
tours of A, B and C are stronger since they are closer to the
corresponding APs. If we can assign more weights on the
contours with strong signals in final location decision, we
can distinguish the important RPs more accurately. Thus,
we propose a weighting scheme which differentiates RPs
the most and finds the RPs with higher confidence. The
physical intuition of the weighting scheme is based on the
log-distance path loss (LDPL) model [2], [13]. We adopt it in
the weighting function for signal contour differentiation,
which achieves high localization accuracy.

Denote the reference power at distance d0 as Pl
0 (dBm).

Let dl be the distance between target and AP l. Then the
received power at target from AP l is given by

gl ¼ Pl
0 � 10gl log 10

dl
d0

� 	
þX; (13)

where g l denotes the decay rate of RSSI in propagation.X rep-
resents the inherent signal fluctuation and noise.Herewe con-
sider using LDPL to represent the closeness ofAPs for contour
differentiation (not exact distance), and X has been consid-
ered separately in forming contours (Section 3.2). Based on
Equation (13), we define the corresponding pseudo distance
fromAP l (d0 ¼ 1m) as

bdl ¼ 10
Pl
0
�gl

10gl : (14)

Instead of indicating actual distances, we use it to represent
the confidence level with AP signals. Specifically, the smallerbdl, the more likely the AP is nearby. Then the contour weight
at RP n from all detected APs is defined as

Dn ¼ 1

L

XL
l¼1

1bdl : (15)

Using Equation (15), for each gl at contour Sl, we consider
the potential that an AP is physically nearby. The larger Dn,
the more contours of strong signals hit the RP. Such APs are
more likely to be close to these RPs around the target, and

Fig. 3. Illustration of differentiating signal contours.
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we further utilize such closeness information to constrain
the target region.

Then we find the RP set R consisting of the indices of RPs
which have the highest contour weights as the potential
area for final estimation, i.e.,

R ¼ argmax
n

Dn: (16)

In INTRI, we dynamically select the RPs with Dn higher
than r maxfDng (r ¼ 0:75 in our simulation and experi-
ment). RSSIs from an AP that is located in a region sur-

rounded by obstacles may lead to larger gl than those from
other APs with freer signal propagation. Here we do not
assume ideal line-of-sight measurement. The external

parameters (Pl
0 and g l) in Equations (13) and (14) can be

learned through gradient decent analysis over the finger-
print signals [13], [31].

To summarize, by traversing the survey site, we find the
signal contours at each RP within the signal range in Equa-
tion (11), and calculate the contour weights at that RP using
Equations (14) and (15). The most important RPs with
strong signals will be selected to form R.

3.4 Finding the Dense Contour Region

The selected RPs in R may still have “strayed RPs” due to
measurement uncertainty. In Fig. 4, we illustrate the spa-
tial distribution of R (red rectangles), which is based on
the extensive experimental observations in the Hong
Kong International Airport (HKIA) trials (from 1; 100 tar-
get RSSI samples). We can find RPs which are physically
close to each other. These RPs form a region where the
target is likely at, and should be used in our localization
formulation. Due to signal temporal fluctuation, some
RPs (the two to the right) exist and are distant away from
the target location. If included in localization, these RPs
may lead to location error and unnecessary computation.
Considering their spatial connectivity, we observe in
Fig. 4 that the RPs near the target (red diamond) form a
connected component with the largest cardinality, namely
the maximal connected components (MCC). Based on such
observation, we utilize an algorithm of finding MCC, and
find the region with dense contours by filtering out RPs
not in the region.

We show the process of such filtering in Algorithm 1.
Let NR be the cardinality of R. We first construct an

NR �NR adjacency matrix A, where Aði; jÞ ¼ 1 indicates
that RP i and j are adjacent, and Aði; jÞ ¼ 0 otherwise

(Lines 1). We set the threshold of adjacency as
ffiffiffi
2
p

times
of the square grid width in site survey. By treating RPs
in R as an undirected graph, we find the membership
list of all connected components [32] (Lines 11 to 27).
After that, we find the component with the maximum
number of RPs (Line 28). If multiple components have
the maximum cardinality in common, we use their union
for later localization.

Algorithm 1. Finding Dense Contour Region

Input: R: indices of selected RPs; z: threshold.
Output: R: set of RPs with dense contours.
/* Constructing Adjacency Matrix. */
1: A zerosðNR; NRÞ: /*NR �NR matrix. */
2: for i 2 f2; . . . ; NRg do
3: for j 2 f1; . . . ; ig do
4: if dist(i; j) � z then
5: Aði; jÞ  1; Aðj; iÞ  1;
6: end
7: end
8: end
9: isDiscovered zerosðNRÞ;
10: m fg; /* Set of Components */
11: nG 0; /* Number of Components */
12: for n 2 f1; . . . ; NRg do
13: if !isDiscoveredðnÞ then
14: nG nGþ 1; isDiscoveredðnÞ  1;
15: m½nG�:pt m½nG�:pt [ fng; ptr 1;
16: while ptr � sizeofðmm½nG�:ptÞ do

/* Find Its Neighbors. */
17: nei findðAð:;m½nG�:ptðptrÞÞÞ;
18: for nb 2 f1; . . . ; sizeofðneiÞg do

/* Connected Components */
19: if !isDisoveredðneiðnbÞÞ then
20: isDisoveredðneiðnbÞÞ  1;
21: m½nG�:pt m½nG�:pt [ fneiðnbÞg;
22: end
23: end
24: ptr ptrþ 1;
25: end
26: end
27: end
28: R MaxMembersðmÞ;

In Fig. 5, we plot the histograms of NR from 1; 100 tar-
gets in HKIA before and after the proposed RP filtering.
We can observe that such a scheme narrows the search
scope and facilitates the final location estimation.

4 LP FOR LOCATION ESTIMATION

In this section, we present the core formulation of INTRI.
To formulate the objective function, we first define in
Section 4.1 the physical (geographical) distance from an
RP to signal contours. Then in Section 4.2, we formulate
a linear programming based on weighted physical dis-
tances to those contours. We finally analyze the online
computational complexity of INTRI in Section 4.3.

Fig. 4. Illustration of MCC to find the dense contour region.
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4.1 Defining Distances from an RP to Signal
Contours

We are given a set of RPs where the contours locate. In the
following we introduce how to utilize the signal contours as
the objective for INTRI.

Recall that traditional trilateration estimates target posi-
tion byminimizing the difference between themeasured dis-
tances and the distances from the position to the landmarks.
In our formulation, based on the same spirit, we use the dis-
tances to the constructed signal contours. As RPs on contours
are discretely sampled in the survey site and a target is sur-
rounded by RPs, we utilize in our formulation the distances
from RPs in R to those on other contours. The RPs with small

distances to other Sl’s are likely to be the target region.
Let rn ¼ ½xn; yn� be the coordinate of RP n 2 R. We calcu-

late its distance from each RPm (n 6¼ m) in Sl, i.e.,

dlnm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn � xl

m

� �2þ yn � ylm
� �2q

; 8m 2 Cl; (17)

where ½xl
m; y

l
m� is RPm’s coordinate on signal contour l. Given

all distances dlnm; 8m 2 Cl, we find theminimumone, i.e.,

Dl
n g; fnð Þ ¼ min dlnm; 8m 2 Cl; (18)

which represents the distance between RP n and contour l.
Given above, the distances to all contours are aggregated as

Dn ¼
XL
l¼1

Dl
nðg; fnÞ; (19)

which, in other words, approximates the residual between
the target estimation’s distances to the landmarks and the
measured distances.

By minimizing Equation (19), we minimize the distance
difference and hence extend the idea of trilateration into a
contour-based scheme. As the contours are derived from
fingerprints and target RSSIs, we require no explicit knowl-
edge of AP locations or LoS measurement, and therefore
combine the advantages of both fingerprinting and trilatera-
tion in our formulation. In the following, we present the for-
mulation to find the target position.

4.2 Linear Programming Formulation

Given R and Dn, we formulate the localization problem based
on linear programming (LP). For each target, denote its esti-
mated location as bx ¼ ½bx; by�. Let vn be the weight assigned to

rn in locating the target. As the target is surrounded by the
RPs inR, its estimated position can be expressed as

bx ¼XNR

n¼1
vnrn; (20)

where rn 2 R, and the weights satisfy the normalization and
non-negativity, i.e.,

XNR

n¼1
vn ¼ 1; vn � 0; 8n 2 f1; . . . ; NRg: (21)

Based on Equation (18) and (20), we extend the idea of trilat-
eration into finding the weights which minimize the target’s
weighted sum of distances to all the contours, i.e.,

argmin
fvng

XNR

n¼1
vnDn: (22)

In real deployment, a target is far more likely to be
between two neighboring RPs (or within the square grid
formed by four RPs). In order to jointly consider the neigh-
boring RPs to the target, we set a constraint over the weight
vn at each RP, i.e.,

wn �W; 8n 2 f1; . . . ; NRg; (23)

where W is a dynamic parameter determined by the maxi-
mum contour weight

W ¼ max DnPNR

n¼1 Dn

: (24)

Through Equations (22) and (23), we can jointly consider the
physical distances (denoted as fDng) and the contour
weights (denoted as fDng) in our formulation.

If there are indoor wall partitions in narrow space, we can
include map constraints in our basic formulation. Denote the
set of map constraints as E. For each edge e 2 E, we consider
the accessible area within themap constraints as

aebxþ bebyþ ce � 0; e 2 E; (25)

where ae, be and ce are the line parameters obtained from the
site map in our system initialization. The formula of map
edges can be easily found using the nearest map constraints.
Using the above, the localization problem can therefore be
formulated as a linear programming (LP):

Objective: Equation (22);

subject to: Constraints ð20Þ; ð21Þ; ð23Þ; ð24Þ; and ð25Þ: (26)

In other words, we opt to find the estimated position with
the smallest weighted physical distances to the contours
within the accessible area. INTRI returns the set of weights
assigned to RPs in R which minimizes the distances to con-
tours, i.e., the RPs which are closer to all contours are
assigned higher weights, and vice versa.

Using some commercial optimization solver (say, JOptim-
izer [33] for Android implementation or CVXOpt [34] for
server), we can solve the above LP efficiently [35]. The final
solution fvng is then used to estimate the target position with
Equation (20).We summarize INTRI inAlgorithm 2.

Fig. 5. Histograms ofNR before and after RP filtering (the airport data).
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4.3 Complexity Analysis

We here analyze the computational complexity of INTRI:

1) Forming contours with random signals: Given N RPs
and L APs, the complexity of finding signal contours
and calculating contour weights is given by O NLð Þ
(Sections 3.2 and 3.3).

2) Finding maximally connected components: Given NR

selected RPs, finding the maximally connected com-

ponent takes OððNRÞ2Þ [32] (Section 3.4).
3) LP-based localization: To prepare the objective func-

tion of LP, calculating the distances between R and

contours takes O NRLjClj� �
(Section 4.1). In Formula-

tion (26), there are OðNRÞ decision variables in fvng.
Thus, the LP in location estimation takes weak poly-

nomial time, i.e.,O ðNRÞ3
� �

[35] (Section 4.2).

To summarize, the overall online running time of INTRI is

O NLþNRLjClj þ NR
� �3� �

: (27)

After differentiating contours and finding maximally con-
nected components, we haveNR 	 N . Further computation
reduction can be via AP filtering and RP cluster mapping.
Then we can significantly reduce the number of APs and
RPs. In this way, INTRI can be integrated on existing on-
board LBS systems and further support mobile targets.

5 CROWDSOURCED PARAMETER ESTIMATION AND

DEVICE CALIBRATION

In this section, we study how to improve the accuracy of
INTRI with online crowdsourced inputs and device calibra-
tion. In Section 5.1 we first propose a novel particle filter for
parameter estimation of contour width. Then in Section 5.2,
we describe an efficient online calibration in order to
address device heterogeneity.

5.1 Crowdsourced Parameter Estimation

Offline training over z0 for suitable contour width may not
be scalable to online phase. Hence we consider as follows
online parameter estimation to find suitable z0. During the
parameter learning phase, INTRI finds the target location
based on some potential z0’s (say, from offline training sam-
ples or empirical studies). Then a crowdsourced input of
her current location can be obtained through certain techni-
ques like explicit user feedbacks or implicit sensor assis-
tance (say, an iBeacon). Given input locations and
corresponding RSSI vectors (say, in a batch), a particle filter
is used for parameter estimation, i.e., to find the most suit-
able z0’s which produces location estimations consistent
with those crowdsourced input ones. Gradually z0 gets
refined.

Note that we focus on the algorithmic design of contour
width parameter estimation given any crowdsourcing
schemes [6], [8]. The detailed input approach, related outlier
detection and further error filtering over user inputs are
orthogonal to our studies and can be referred to [6], [7], [36].
Their approaches can be easily applied as preprocessing of
our system for accuracy improvement. In our experiment,
we will also evaluate influence of crowdsourcing errors.

Algorithm 2. Contour-Based Indoor Trilateration

Input: frng and ffng: set of N RPs and the set of RSSI vector
at each RP; g: target RSSI vector; z: threshold in deter-
mining MCC; r: range of RPs to be selected.

Output: bx: estimated locations of the target.
/* Construction of Signal Contours. */
1: Cl  fg; /* Set of RPs with Contours. */
2: for n 2 f1; . . . ; Ng do
3: Dn  0;
4: for l 2 f1; . . . ; Lg do
5: if �fl

n � gl � z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
slð Þ2þ sl

n

� �2q
and

�fl
n � gl þ z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
slð Þ2þ sl

n

� �2q
then

6: Cl  Cl [ fng;Dn  Dn þ 10
gl�Pl

0

10gl ;
7: end
8: end
9: Dn  Dn=L;
10: end
/* Selecting Dense Contours. */

11: R FindHighWeight VV; r; fDngð Þ;
/* RP Filtering Using Connectivity. */

12: R FindMaxComponentðR; zÞ;
/* Calculating Dist from Contours. */

13: for n 2 f1; . . . ; NRg do
14: for l 2 f1; . . . ; Lg do
15: form 2 f1; . . . ; jCljg do
16: dlnm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxn � xlmÞ2 þ ðyn � ylmÞ2

q
;

17: end
18: Dl

n g; fnð Þ ¼ minfdlnmg;
19: end
20: end
21: LP-based Localization Using Formulation (26);
22: bx PNR

n¼1 vnrn; /* Final Estimation. */

Specifically, uniform particle sampling within an interval
around basic z0 in Section 3.2 is first conducted. Then the
locations using different z0’s are calculated by INTRI. We
find the distance (or discrepancy) between estimated and
the input locations from users in order to evaluate the con-
sistency. Specifically, let cp be the euclidean distance

between estimated bxp and the input location xi, i.e.,

cp ¼ kbxp � xik; p 2 f1; . . . ; Pg: (28)

Then we calculate the weight up of each particle based on

the consistency between bxp and xi as

up  1ffiffiffiffiffiffi
2p
p

sw

exp � cpð Þ2
2s2

w

 !
; (29)

where sw is the sensitivity of the weight. Hence up repre-

sents the consistency between bxp and xi. In other words,
those width parameters whose location estimations are
closer to crowdsourced input ones get larger weights. Each

weight will then be normalized, i.e., up  upPP

p¼1 up
.

Through resampling, the parameters with low consis-
tency will be filtered due to the low weights [25]. The esti-
mated parameter bz0 is given by the weighted average of the
parameters generated from particles, i.e.,
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bz0  XP
p¼1

upz
p
0: (30)

Given the estimated locations, INTRI finds the variance
of particles, i.e., � ¼ VarðcpÞ. Then INTRI checks after each
time of estimation that if the variance of particles satisfies
� � h, where h indicates the predefined threshold, we can
conclude that the width parameter estimation converges.
Later INTRI is conducted based on the calibrated bz0 (i.e.,
P ¼ 1 and bz0 becomes constant).

We briefly analyze computational complexity of particle
filter here. Given P particles, the complexity of particle filter

is O P NLþNRLjClj þ NR
� �3� �� �

[25]. Further computa-

tion reduction can be conducted by AP filtering and RP
cluster mapping [37] to reduce the number of APs and RPs.
After calibration converges, P ¼ 1, z0 is fixed and online
localization complexity of INTRI hence becomes small.

5.2 Online Calibration for Heterogeneous Devices

Due to difference in Wi-Fi network interfaces, for the same
signal different smartphones may have different measure-
ment values [19]. If such signal difference issue is not
addressed, the contours (Section 3.2) cannot be found cor-
rectly. Leveraging such similarity, we present an efficient
algorithm to adapt to differentmobile devices as follows.

In this section we consider efficient and scalable online
calibration in order to reduce offline manual efforts. To this
end, we map the target signals g to the signal space in fin-
gerprint database. We first calculate the correlation between
the target RSSI vector and that of each RP. The RPs with
similar signal vectors can be leveraged for online signal cali-
bration. The vector comparison is based on the correlation
between g and fingerprint fn, i.e.,

corrðg; fnÞ ¼
PL

l¼1 gl � �g
� �

�fln � �fn
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL

l¼1 gl � �gð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL

l¼1 �fl
n � �fn

� �2q ; (31)

where �g ¼ 1
L

PL
l¼1 g

l and �fn ¼ 1
L

PL
l¼1 �fl

n. The above correla-
tion compares relative signal trend of different APs rather
than the absolute RSSI values. Based on Equation (31), we
can find the RPs with similar signal trend for calibration
and reduce the effect of device dependency.

To mitigate the effect of random noise, we find the top
several RPs with corrðg; fnÞ > h (h ¼ 0:95 in our experi-

ment) for linear calibration. For each target RSSI gl from AP

l, we find the corresponding fl
n at RPs. Given pairs of ½gl; fln�,

we conduct the linear regression and obtain the correspond-

ing a and b for target RSSI gl, i.e.,

egl ¼ agl þ b: (32)

Note that our online calibration approach is not restricted to
linear model, and is general enough to apply to any other
signal mapping model (e.g., [18]). Based on Equation (32)
we can conduct INTRI with calibrated egl. Given OðLÞ APs
and OðNÞ RPs, the correlation comparison takes OðNLÞ. Let
� (�	 N) be the number of RPs whose correlation
corrðg; fnÞ is greater than h, and linear regression takes

OðL2�2Þ. Therefore, the online computational complexity of

2-D linear regression is OðNLþ L2�2Þ [35].

6 EXPERIMENTAL EVALUATIONS

We have conducted extensive experimental trials of INTRI
in the Hong Kong International Airport (HKIA), our univer-
sity campus (HKUST) and the Hong Kong Cyberport
(HKCP). We first present our settings in Section 6.1. As the
measured AP signals are different in the three sites, we dis-
cuss the comparative studies over these differences in Sec-
tion 6.2. Then we illustrate the experimental results with
Wi-Fi and Bluetooth iBeacon (Section 6.3), followed by vali-
dation of crowdsourced user inputs (Section 6.4).

6.1 Experimental Settings

We use in our experimental studies the same state-of-the-art
algorithms and comparison metrics as follows. Besides, we
compare the device calibration scheme in INTRI with two
recent methods, signal strength difference (SSD) [19] and
signal ratio (SR) [20]. SSD utilizes the differences between
pairs of AP signal values as patterns. Similarly, SR calcu-
lates the ratio between pairs of AP signals as Wi-Fi finger-
prints. Both methods aim at compensating the signal
difference among heterogeneous devices.

Algorithm3.User-Assistance for Contour-Based Localization

Input: P : number of particles for consistency check.
gg and fffng: RSSIs at target and RPs.

Output: V: set of parameters for INTRI.
1: V f g; /* Initialization */
2: if NoParticles then
3: for p 1 to P do
4: zp0  RandSam(½zmin

0 ; zmax
0 �); Add zp0 into V;

5: end
6: end
7: fbxpg  Localization Using Formulation (26);
8: for p 1 to P do
9: cp  kbxp � xik2;

up  exp � cpð Þ2= 2s2
w

� �� �
=

ffiffiffiffiffiffi
2p
p

sw

� �
;

/* Particle Weight Recalculation */
10: end

/* Resampling of Width Parameter */
11: for p 1 to P do
12: fzp0; upg  Resample Vð Þ;
13: end
14: NormalizeðfupgÞ; /* Normalization */
15: bz0  PP

p¼1 upz
p
0; /* Parameter Estimate */

We compare INTRI with several state-of-the-art schemes:
1) EZPerfect (EZPerf) [13], [14]: a model-based Wi-Fi locali-
zation scheme which considers deriving signal propagation
model from fingerprint data. Given Wi-Fi fingerprints,
EZPerfect first finds the matching relationship between sig-
nals and distances from APs [13], and then locates targets
with a genetic algorithm solving trilateration problem [14].
2) KL-divergence (KL-div) [4], [11]: which utilizes the Kull-
back-Leibler (KL) divergence distance [4] between the sig-
nal distribution at an RP and target during comparison.
Then the top k RPs with the minimum KL-divergence are
utilized for final estimation. 3) Weighted k-Nearest Neighbors
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(WKNN [1], [12]): It computes the cosine similarity [12]
between the fingerprints and the target RSSI vector. Then it
finds the weighted average of k-Nearest Neighbors [1] of
highest cosine similarity to estimate the target location. 4)
Probabilistic algorithm (Horus [9]): It first calculates the prob-
ability distribution of the RSSI values at each RP. Given a
target RSSI vector, Horus computes the overall probability
of the vector at each RP and finds the top several ones with
the maximum likelihood as the target location. 5) iBeacon
fingerprinting (MAP [38]): For iBeacon fingerprinting locali-
zation, we also compare INTRI withMAP [38] in addition to
above algorithms. MAP leverages the maximum a-posterior
probability mapping over Bluetooth RSSI fingerprints.

Fig. 6 shows the corresponding survey floor plan of RPs
and targets in HKIA. In the 10;000 m2 site, we collect 340
RPs and 1;100 targets. We utilize HTC One X as the finger-
print collector and Lenovo A680 for target measurement.
The locations of RPs are predefined on the indoor map. To
balance between localization accuracy and survey cost, we
use 5 m grid density in fingerprinting. At each RP, signal
data is sampled from four different directions (north, west,
south and east). For each direction, 15 samples of RSSI vec-
tors are collected. The ground truth of the target locations is
also predetermined in grid form (in the testing, the sur-
veyors find the RP or target locations from the nearest pil-
lars, floor tiles and other noticeable indoor landmarks).
Note that the data sampling is conducted with people
around, and temporal fluctuation exists within the finger-
prints and target signals. The time interval between samples
in Wi-Fi scanning is 1 second.

Wi-Fi APs are officially pre-deployed. Their number,
locations and transmission power are already settled before
site survey. During preprocessing, we filter out the mobile
APs tethered by smartphones, and combine the signals of
virtual APs (VAPs). Overall 360 APs are detected (each RP
detects 47 APs on average). Part of these APs may be
installed outside the survey site since their coverage in our
site is relatively small and signals are globally weak. The
target samples are collected one month later than RP collec-

tion. For schemes like KL-divergence and Horus which are
device dependent, we utilize our scheme to calibrate the
signals.

In the HKUST campus and the HKCP shopping mall, fin-
gerprint collection, target sampling and data preprocessing
are the same as those in the airport. Fig. 7 shows the RPs
and targets on campus (100� 50m2). In campus corridor
environment, we collect 250 RPs and 475 targets. Fig. 8
shows the RPs and targets in the shopping mall

(150� 100m2). In the HKCP mall, we collect 680 RPs and
680 targets. In both the HKUST and HKCP, the blue dots
represent RPs and the red diamonds are targets. Similar to
the HKIA, we are given the officially deployed APs and we
cannot manually change their settings (installation locations
and TX power). In the site survey of campus corridor, over-
all 320 APs are detected (each RP measures 24 APs on aver-
age). In the site survey at shopping mall, overall 190 APs
are detected (average 28 APs at each RP).

We have also conducted extensive studies using iBeacon
(with TI CC2541) with INTRI on the HKUST campus hall
(as in Fig. 9a). We have deployed 7 iBeacons in the campus
hall. 135 targets and 506 reference points are collected on
Oct 27th, 2015 with Apple iPhone 6. As shown in Fig. 9b, we
have deployed iBeacons on walls and pillars of the campus
hall. Similar fingerprinting like Wi-Fi survey in Fig. 7 is also
conducted there. For each iBeacon, we set its transmission
power at default �12 dBm and the beaconing interval as
500 ms. Note that our system and device calibration can be
easily extended to scenarios when Wi-Fi and Bluetooth are
deployed together, as our contour approach does not need
to differentiate Wi-Fi from Bluetooth.

To evaluate the improvement by user inputs, we have
further collected new target RSSIs and user input data on
HKUST and HKIA. A user inputs current < location,

Fig. 6. Indoor map of a boarding gate at the HKIA. The survey grid size is 5m (survey conducted on July 8, 2014).

Fig. 7. Hall map of HKUST campus (survey conducted on Nov. 28,
2014). Fig. 8. Indoor map of HKCP mall (survey on Sept. 10, 2014).
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RSSI> when using INTRI at different locations. 140 par-
ticles are implemented for width parameter calibration. z0 is

initialized between ½zmin
0 ; zmax

0 � ¼ ½1:5; 4:5�. In HKUST, 80
users are introduced at each arrival, while in HKIA 110
users are introduced. After each time of particle filter esti-
mation, we evaluate their mean localization error. Mean-
while, we also present the batch offline updating given
manually-collected test data, which may serve as the
ground-truth comparison. We further evaluate the effect of
user-input variance (with the location error following

Nð0; s2
inÞ between the ground truth and the input one), and

at the baseline sin ¼ 3 m is introduced in crowdsourced
input locations. We also show the mean localization error of
INTRI without crowdsourced assistance as the benchmark
(with fixed z0 ¼ 2).

6.2 Comparative Studies of Different Sites

We first summarize the signals at the experimental sites as
follows. On average, each target can detect 16 APs on
HKUST and 22 APs in HKCP. In HKIA, each target can
detect 16 APs on average. Though targets in HKIA and
HKUST have similar detected AP number, the survey site
in HKUST is smaller and hence it has denser AP deploy-
ment. Moreover, the signal coverage of APs in our campus
corridor and HKCP is constrained by the wall partitions,
which helps differentiate the RPs. Therefore, we expect a
better localization performance on HKUST and HKCP than
in HKIA. Based on these detected APs, we evaluate the
effect of different received AP numbers. In our site survey,
we can also observe a smaller signal noise in HKUST and
HKCP than that in HKIA. It is because the airport boarding
area is large open space with many airline passengers,
which leads to higher signal uncertainty. Based on the
difference in signal noise, we adjust the parameter z0 in

Equation (10) for online localization. Further illustration of
the signals in the experimental sites can be referred to [5].

Fig. 10 shows the mean localization errors of INTRI in
three sites given different z0 in setting z0. In general, the
error first decreases and then increases. This is because the
localization error depends on two factors: signal noise and
RP fingerprint differentiation. When z0 is small, the tight
contours cannot accommodate the large measurement
uncertainty in target. Thus, the error is high. As z0 increases,
the contours can bound the target, and hence the error
decreases. As z0 further increases, the error increases
because, as contours become wide, the differentiation
between RPs becomes weak. Then more distant RPs are
included in localization. The result shows that without suffi-
cient RP fingerprint differentiation, wide contours would
not help. Compared with HKUST and HKCP, z0 is slightly
larger in HKIA due to higher signal variance in airport.
Thus, in our experiment, initially z0 ¼ 4 in HKIA, z0 ¼ 3:5
in HKCP, and z0 ¼ 2:5 on our HKUST campus. Further fine-
grained z0 is obtained through particle filter later (Section
6.4) to achieve online environmental adaptation.

Fig. 11 shows running time CDF of INTRI on targets at
different sites. We test INTRI on a server PC with i7 4790
(3:6 GHz) CPU. It shows that at the three sites, our INTRI
shows different computation time due to the difference in
RP numbers and detected AP number at target and RP. The
running time of INTRI at HKCP is much smaller than that
at HKIA and HKUST. It is mainly because many of detected
APs in HKCP are installed in the shop stores and have lim-
ited coverage (small contours) due to wall partitions, com-
pared with those in HKIA and HKUST. A target can be
quickly mapped to smaller areas and therefore the overall
computation becomes much smaller. For each INTRI com-
ponent, the computation time (percentage in the total time)
on average is as follows: finding and filtering the contours
(Section 3) takes 20.9 ms (18.19 percent) per query; the linear
programming (Section 4) takes 94.1 ms (71.81 percent) per
location query. The major online computation comes from
the contour finding and the linear programming. The parti-
cle filter (Algorithm 3) takes 13.32 s for each time of crowd-
sourced learning (80 users). Note that the particle filter can
be conducted at the backend server and therefore its influ-
ence over the user experience is minimum.

6.3 Experimental Evaluation with Wi-Fi & iBeacon

Fig. 12 shows the linear signal model of four different target
estimations in HKIA. Target data (x-axis) are collected using
Lenovo A680 while RP signals (y-axis) are from HTC One X.

Fig. 9. (a) Locations of iBeacons on HKUST campus environment.
(b) An iBeacon on a pillar (campus).

Fig. 10. Mean localization errors versus parameter z0 in three sites.

Fig. 11. Cumulative probability of INTRI running time on different sites.
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We obtain the calibrated signal strength, egl, for each given
target. We can see that the linear calibration scales up the
Lenovo A680 measurements (target).

Fig. 13 compares the cumulative errors of different
device calibration schemes in the airport. We use uncali-
brated signals in INTRI as the baseline case. The calibrated
INTRI improves from the uncalibrated scheme, and also
outperforms SSD and SR. It is mainly because our proposed
scheme jointly considers the relative trend and the RSSI
adjustment model when calibrating devices. Unlike SSD
and SR, our correlation scheme mitigates the errors in signal
values when INTRI calibrates target RSSI using fingerprints,
which is more robust under large signal noise in the airport.

Fig. 14 shows the localization error with and without
differentiating the contours using HKIA data. We consider
two scenarios using 5 m (default) and 10 m survey grid
size. Without using contour weights, we count the number
of signal contours and implement it into INTRI as the base-
line case. As shown in Fig. 14, simple contour counting
cannot discriminate the dispersed nearest neighbors (RPs)
with similar number of contours. In contrast, contour
weight discriminates the fingerprints by penalizing RPs
only with many weak signals. Then we mitigate the influ-
ence from the noise in the measurement. Thus, we have
shown using contour weights achieves better performance
than the unweighted scheme, especially under sparser
survey grid size.

Fig. 15 shows the mean localization errors against the
survey grid size. As the minimum grid size is five meters,
columns or rows of RPs are removed to form the grid sizes
with multiples of five. Clearly all five algorithms degrade
as grid size increases. We can observe EZPerfect achieves
slightly higher accuracy than WKNN, KL-divergence and
Horus under larger grid size. It is because for EZPerfect
additional distances from multiple APs constrain the tar-
get location and prevent large error. Compared with the
algorithms above, INTRI has much higher localization
accuracy at different grid sizes. It is because INTRI consid-
ers signal uncertainty in contours and constrains the target
estimation through joint optimization. Without relying on
accurate distance measurement, INTRI can still constrain
the target estimation by signal contours under large
grid size.

Fig. 16a compares the cumulative errors of five algo-
rithms in HKIA. Due to large measurement noise in the air-
port, WKNN’s accuracy is weakened by the dispersed
nearest neighbors. Horus assumes a certain distribution of
signal level at each RP and therefore cannot represent real
signal distribution under limited sampling. KL-divergence
also requires large data sampling and dense fingerprints in
signal distribution comparison. Therefore, it cannot adapt
to the noisy airport environment. The large signal noise also
degrades the distance accuracy of traditional trilateration in
EZPerfect. In contrast to above methods, INTRI jointly con-
siders the signal noise and distances to contours, and there-
fore reduces misestimation of the target.

Figs. 16b and 16c show the cumulative errors in HKUST
and HKCP, respectively. Compared with the HKIA, the fin-
gerprints and target signals in HKUST and HKCP carry less
signal measurement noise. Thus, we observe the increase of
localization accuracy in all the algorithms at these two sites

Fig. 12. Calibration of target RSSI from RP signals (HKIA).

Fig. 13. Performance of different device calibration methods in HKIA.

Fig. 14. Performance of INTRI with and without contour weights (HKIA).

Fig. 15. Mean localization errors versus site survey grid size (HKIA).
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compared with that in the airport. EZPerfect becomes
slightly better than WKNN as the distance measurement
becomes less noisy. Similar to Fig. 16a, INTRI achieves
higher accuracy than other algorithms since it considers the
signal variation in constructing contours and utilizes them
to reduce the dispersed nearest neighbors. INTRI is general
enough to work under different environments with
markedly higher accuracy. We also study the performance
of INTRI in the HKUST and HKCP extensively. As the con-
clusions are qualitatively the same, for brevity we will not
repeat them here.

Fig. 17 shows the cumulative probability of localization
error with iBeacon in our campus hall. Our INTRI outper-
forms other schemes as it constrains the location with con-
tours of Bluetooth signals, which jointly considers signal
strength and variance. Compared with Wi-Fi, our iBeacon
experiment on INTRI achieves higher accuracy, as the Blue-
tooth signals from iBeacon have smaller coverage, faster sig-
nal degrade and better differentiation than Wi-Fi on
campus. In practice, fusing Wi-Fi and iBeacon may be an
approach to resolve the accuracy and cost (infrastructure
and management) issue.

Fig. 18 shows mean error of iBeacon-based positioning
versus the survey grid size, which represents the fingerprint
signal density. Clearly, as the density decreases, localization
error decreases. With contour constraints, our scheme
achieves better accuracy under all survey density.

6.4 Experimental Evaluation on Crowdsourced
Inputs

Fig. 19 shows the mean localization error (upper figure) and
estimated width parameter z0 (lower figure) versus index of
user feedback arrivals. Note that the mean localization error
in fact has deteriorated from 4 m (see Fig. 10) to above 5 m
at the initialization without crowdsourcing inputs. At each
batch of user arrival, we introduce 80 user feedbacks. We

can observe that as more users are involved, the mean local-
ization error of all incoming users decreases. When a certain
number of feedbacks are provided (given two batches of
crowdsourced inputs, i.e., 160 users), the accuracy of INTRI
begins to converge due to sufficient calibration of the sys-
tem parameters. We can observe that INTRI with user assis-
tance achieves lower errors than without user feedbacks. It
is mainly because the fixed z0 which is trained offline may
not sufficiently reflect the online signals. We can also see
that the performance of the proposed crowdsourced learn-
ing closely matches with using the offline manually-col-
lected test data (i.e., batch offline updating).

Fig. 20a shows the mean localization error versus the
location input error (standard deviation sin in the user-
input locations). We can observe that as sin increases, the
localization error also increases due to misestimation of
width parameters. However, the trend of increase is overall
small even under large positioning errors. Our scheme is
robust towards the input noise, as the particle filter refines
and finds those width parameters which provides consis-
tent matching of locations given long-term user inputs.
Fig. 20b shows the mean localization error versus the num-
ber of particles. As more particles are used, INTRI gets bet-
ter calibrated and hence the localization error decreases.
Trade-off between location accuracy and computation effi-
ciency exists. For practical deployment, we choose a certain
number of particles (say, 140) as baseline in our experimen-
tal deployment.

We have also conducted extensive experimental studies
in HKIA. Fig. 21 shows the localization accuracy and the
estimated width parameter versus the user arrivals in the
airport. We can also see the localization error decreases as
more user feedbacks are used for parameter adaptation
and location accuracy improvement. Given certain number
of user feedbacks (say, 4 batches or 320 user inputs), the

Fig. 16. Cumulative probability of localization errors in (a) HKIA boarding gate, (b) HKUST campus, and (c) HKCP mall.

Fig. 17. CDF of localization errors with iBeacon (HKUST).
Fig. 18. Mean localization error versus survey grid size with iBeacon
(HKUST).
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localization errors already converge. As other results are
qualitatively similar to those in HKUST campus, for brevity
of description we do not repeat them here.

7 CONCLUSION

Traditional trilateration has achieved much success for out-
door localization. However, it does not work well indoors
due to non-line-of-sight measurement and signal fading.
Fingerprinting is a promising approach for indoor localiza-
tion, but its performance is vulnerable to signal noise. We
propose in this work INTRI, a highly accurate algorithm
which combines the advantages of both trilateration and fin-
gerprinting to achieve much better accuracy.

Based on the spirit of trilateration, for each measured AP
signal level, INTRI forms the corresponding contour, which
is the set of RPs with the same signal level subject to its statis-
tical fluctuation. The target is hence where the contour is. To
estimate target’s location, INTRI formulates a linear pro-
gramming to minimize the distance between the location
and these contours (i.e., following the spirit of trilateration).
To achieve higher accuracy, INTRI addresses device hetero-
geneity with an efficient and scalable algorithm based on the
correlation in RSSI for online signal calibration. In order to

adapt towards deployment environment we further imple-
ment crowdsourced inputs of < locations, signals> to esti-
mate the contour width parameter. A novel particle filter is
applied to achieve this. We have conducted extensive simu-
lation and experimental Wi-Fi and iBeacon trials on INTRI in
the Hong Kong International Airport, Hong Kong Cyberport
mall andHKUST campus. Comparedwith other approaches,
INTRI achieves significantly higher accuracy and robustness
under signal noise (often by more than 20 percent), and
adapts to environments with crowdsourced assistance.
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