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Efficient Locality Classification for Indoor
Fingerprint-Based Systems
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Abstract—Locality classification is an important component to enable location-based services. It entails two sequential queries:

1) whether a target is within the site or not, i.e., inside/outside region decision, and 2) if so, which area in the region the target is located,
i.e., area classification. Locality classification is hence more coarse-grained and efficient as compared with pinpointing the exact target
location in the region. The classification problem is challenging, because fingerprints may not exist outside the region for training.
Furthermore, the target may sample an incomplete RSSI vector due to, say, random signal noise, momentary occlusion, or scanning
duration. The algorithm also has to be computationally efficient. We propose INOA, a scalable and practical locality classification
overcoming the above challenges. INOA may serve as a plug-in before any fingerprint-based localization, and can be incrementally
extended to cover new areas or regions for large-scale deployment. Its preprocessor cherry-picks only those discriminating access
points, which greatly enhances computational efficiency and accuracy. By formulating a “one-class” classifier using ensemble learning,
INOA accurately decides whether the target is within the region or not. Extensive experimental trials in different sites validate the high
efficiency and accuracy of INOA, without the need of full RSSI vectors collected at the target.

Index Terms—Fingerprinting, locality classification, area classification, inside/outside region decision, context-awareness

1 INTRODUCTION

N indoor fingerprint-based localization [1], [2], the RSSI

(received signal strength indication) vectors of wireless
signal are first collected at various locations of a region by
professional surveyors or through crowdsourcing [3]. These
RSSI vectors and their collected locations, the so-called fin-
gerprints, are then stored offline in a database. In the online
query phase, a user (or target) first samples an RSSI vector
at her/his spot. Given the fingerprint database, the vector is
then mapped to a location via a certain measure (say, the
minimum Euclidean distance of signal vectors [1]). Due to
its wide applicability in complex indoor environments with-
out making any assumption on the path loss model [4], fin-
gerprinting is practical and promising to deploy.

Beyond pinpointing exact locations of a target in a finger-
print region, the region may be partitioned into areas accord-
ing to layout or functionalities (accompanied by the region
boundaries), for example, floors, food court, zones, and the
like. In order to support fingerprint-based indoor location-
based service (ILBS), we hence need efficient locality classifica-
tion, which consists of the following two sequential queries:

1) In/Out region decision: Given any RSSI vector, is the
target within the boundary of the fingerprint region
or not?

2)  Area classification: If the target is within the region, in
which area (say, floors or zones) is he/she at?
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Efficient locality classification leads to better ILBS. It ena-
bles, for example, a context-aware service where indoor and
outdoor maps can be seamlessly switched for a roaming
user. Knowing the area the target is at, the search space
of fingerprints can be greatly reduced, leading to efficient
pinpointing of the target location. Yet another application is
indoor user analytics, where user density in a certain area
or shop can be studied.

Devising efficient and ubiquitously deployable locality
classification is challenging. This is because fingerprints are
often collected only inside a region of interest, with few or no
training fingerprints in the outside (exterior) region to differ-
entiate the interior ones. This is in stark contrast to traditional
multi-class classification algorithms, which usually require a
substantial amount of training data from both classes (i.e., the
presence of fingerprints both inside and outside the region).

Besides the absence of exterior fingerprints, the locality
classification algorithm must achieve a performance robust
enough to handle partially missing or noisy data. In a fin-
gerprint system, a target often cannot collect the full RSSI
vector at its location due to random missing signals arising
from, for example, signal noise, obstruction of access points,
scanning duration, and so on. Traditional one-class classifi-
cation algorithms [5], [6] cannot easily accommodate such
incompleteness in data, as they often assume a complete
vector. For a good user experience, the locality classification
should work despite missing signals, and vectors which
cannot be classified with high confidence (e.g., being at the
boundary of adjacent areas) should be rejected.

Computational efficiency is also an important concern for
locality classification. Previous localization approaches are
fine-grained by nature, searching over all fingerprints to
pinpoint a user location. This is not scalable to a large geo-
graphical region. The in-out decision and area classification,
due to their partitioning or coarse-grained nature, should
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Fig. 1. System modules and work flow of INOA.

be computationally efficient, scalable to a large region, and
incrementally extensible to new regions or areas. It may
also serve as a precursor to the fine-grained localization to
narrow the search space of fingerprints.

We propose INOA, a highly robust and efficient locality
classification system for inside/outside region decision and
area classification overcoming the above challenges. It is
applicable to various mobile devices (given automatic or
crowdsourced device calibration [6]), complementary to
any existing fine-grained localization system (including
state-of-the-art [1], [2], [3], [4]), and may serve as a universal
plug-in to enhance their localization efficiency. INOA con-
sists of the following novel and salient features:

e  Preprocessing for site adaptivity, classification accuracy &
computation efficiency: INOA consists of a preprocess-
ing module which is adaptive to different sites or
indoor structures. Via AP signal analysis, it conducts
clustering and signal compression to minimize
redundant or correlated APs. By retaining only the
discriminating APs, locality classification becomes
more accurate and computationally efficient.

e  Robustness against missing signals and incrementally
extensible to new areas: INOA is robust against missing
signals in the collected RSSI vector. We formulate the
in-out decision as a data description problem [5], which
classifies the signal patterns outside the region as out-
liers (novelties) versus those inside (regulars). We use
ensemble learning as a backbone design, where multi-
ple one-class classifiers are embedded in order to cap-
ture the signal patterns in different aspects of learning.
Our formulation is incrementally extensible to new
regions or areas, i.e., the region can be extended by
including additional sites without the need to retrain
the entire system or classification model.

e Rejection of unclassifiable signals: INOA consists of an
efficient rejection module which denies a vector if the
sampled (noisy) signals do not provide location results
with sufficient high confidence. In this way, INOA
identifies the credibility of signals for improved ILBS
result presentation and user experience.

We show in Fig. 1 the major modules in INOA. The mod-

ules are divided into offline and online phases. Each area in

the region is assigned a unique ID (indicating its area or
locality). In the offline phase, given the fingerprints and
their corresponding area IDs, we first perform fingerprint
preprocessing and construct a new signal space by eliminat-
ing non-discriminative and redundant APs. Then, we train
classification models for the in-out decision and area classi-
fication, and store their model parameters in the database.

In the online phase, the user samples an RSSI vector and
then requests his/her area. The unclassifiable signal rejection
module rejects the vector which cannot lead to a good result
with high confidence (due to excessive missing or noisy sig-
nals). Otherwise, the insidefoutside region decision module
first checks whether the user is inside the fingerprint region
or not. If so, the vector is then fed into the area classification
module to find and return the area the user is at.

We have implemented INOA, and conducted extensive
experimental trials in various sites (our university campus,
a premium shopping mall named Hong Kong Harbor City,
and a business building named Hong Kong Cyberport). For
concreteness, we consider Wi-Fi RSSIs in our expositions
and experiments, though INOA is applicable to any existing
or emerging fingerprint signals such as Bluetooth [7] or
channel state information [8]. Our study shows that INOA
outperforms state-of-the-art algorithms substantially (more
than 20 percent in most of our study) despite many incom-
plete signals. Moreover, INOA performs far more efficiently
than our state-of-the-art comparison schemes [6], [9] and
hence can scale to a large site in its practical deployment.

The remainder of this paper is organized as follows. After
briefly reviewing related works in Section 2, we discuss the fin-
gerprint preprocessing module of INOA in Section 3. Section 4
presents our locality classification algorithms in terms of
inside/outside region decision and area classification. We dis-
cuss unclassifiable signal rejection and device calibration in
Section 5. Illustrative experimental results are presented in
Section 6, followed by concluding remarks in Section 7.

2 RELATED WORK

Fingerprint-based algorithms for indoor localization [10],
[11] have been extensively studied for decades, pioneered
by RADAR [1], Horus [2] and PCA [12]. The works either
utilize some similarity metrics between reference point (RP)
fingerprints and target signals, or assume a certain probabi-
listic model on the RSSI. Though the results are impressive,
they mainly focus on the fine-grained pinpointing of user
location, and have not studied large-scale and more effec-
tive coarse-grained locality classification. Our paper investi-
gates such a problem and proposes an algorithm serving as
a plug-in for the above state-of-the-art systems to improve
their computation efficiency and accuracy.

(1) Insidefoutside Region Decision. Locality classification
begins with identifying the targets inside the fingerprint
region (i.e., inside/outside region decision). As INOA is the
first work addressing the generic in-out decision problem in
ILBS, we review the indoor/outdoor detection problem, a
common application of the in-out decision, instead.

o  Signal thresholding: A straightforward way is to set
thresholds as decision boundaries. The work in [13]
considers the target is outdoor if more than 3 satellites
are received in the GPS signals, while [14] uses the
accuracy drop of GPS indoors as an indicator. [15]
and [16] enhances the detection accuracy by using the
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fusion of multiple sensors (inertial sensors, light detec-
tors and magnetometers) to monitor abrupt environ-
mental changes. They define several thresholds (e.g.,
the light intensity) in different scenarios to make the
decision. Nevertheless, time (daytime or nighttime),
weather (cloudy or rainy) and nearby skyscrapers may
affect GPS detection and sensor readings (e.g., the sun
is blocked by the clouds). To capture the transition
from outdoors to indoors, or vice versa, the work
in [17] installs iBeacon near the entrances of the build-
ing and keeps monitoring the number of beacons
received by the target. Then, they determine whether it
isindoor or outdoor by jointly considering the GPS sig-
nals. However, installing iBeacon introduces extra
effort/costs and may not be feasible in many spacious
sites.

o Advanced learning techniques: Due to the simplicity and
imperfection of thresholding, more advanced learning
models have been studied. The scheme in [18] lever-
ages LTE Measurement Data to train a supervised
learning model for indoor/outdoor classification.
Training data from both environments is required,
and hence is labor-intensive. The work in [19] pro-
poses a semi-supervised learning model using read-
ings from multiple sensors. It still requires labeled
data from both environments to achieve a good perfor-
mance. The work in [20] uses cameras to detect the
scenes (indoor/outdoor) from a set of training images
using machine learning algorithms. However, contin-
uously enabling the camera significantly and rapidly
consumes power in mobile devices.

INOA is more versatile than all the existing works, applica-
ble to scenarios beyond simply indoor/outdoor. It makes in-
out decisions in any context (e.g., room, floor, building, etc.)
as it differentiates between inside and outside regions with
only radio frequency (RF) signal patterns and does not rely on
abrupt environmental changes. Also, INOA does not require
fingerprints outside the region, which is an essential feature
to serve as a plug-in for any existing fingerprint-based ILBS
where only inside fingerprints are available.

(2) One-Class Classification with Missing Data. We formulate
INOA as a one-class classification problem, making it applica-
ble to any context beyond indoor/outdoor. As briefly men-
tioned, missing data is often a serious problem for one-class
classifications. In fingerprint-based ILBS, missing data (sig-
nals) is inevitable due to measurement imperfection and
incompleteness. Hence, simply applying existing one-class
classification techniques does not work. Here, we briefly
review some recent works on handling missing data from a
machine learning perspective.

e  Data imputation: The typical way to address missing
data is to replace it by a default value [21] (e.g., the
weakest signal intensity in our case), so-called
data imputation. Recently, some approaches have
attempted to model the non-missing data to predict
the missing ones based on some distributions. The
authors in [22] leverage Bayesian Multiple Imputation,
while [23] introduces a combination of K-nearest
neighbor and self-organizing map. However, the
unique characteristics of RF signals make data imputa-
tion difficult. RF signals can be missing either at ran-
dom or deterministically (e.g., if the source is too far

away from the target). If we improperly impute data
into the signals which are not missing at random, the
resultant signal pattern will be contaminated.

o  Feature transformation: The works in [24] and [25] lever-
age the negligible change in (dis)similarity measures
when a few data (say, dimensions or features) are miss-
ing. To make an in-out decision, one-class classification
is conducted in a similarity space by transforming RP
fingerprints and target signals using a certain similarity
measure. The transformation process is tedious as
every RSSI vector should be compared against all RP
fingerprints. Hence, in large-scale deployment, its off-
line training and online querying complexities are
intractable. Also, similarity-based classification is not
scalable as the system should be retrained from scratch
whenever an area is added or removed.

In contrast, INOA does not require data imputation, and
it addresses missing data from a new perspective. It
employs ensemble learning and creates multiple simple
models in 2-D space. INOA handles missing signals effec-
tively and efficiently, and is scalable without the need of
retraining the entire system.

(3) Area Classification. Given the user is within the region,
we conduct area classification to locate the target. Here, we
overview the recent approaches focusing on either floor/
room localizations (the most common application) or gen-
eral area classifications.

o  Signal thresholding and pattern recognition: The works
in [26] and [27] utilize an accelerometer to achieve
floor localization by detecting walking patterns,
while [28] and [29] differentiate floors by significant
air pressure differences. They require initial location
input and constant calibration over time as the dis-
tance errors accumulate with the accelerometer, and
barometer readings may be affected by thermal
changes. On the other hand, room-level classification
using sound [30] and light [31] has attracted much
attention. In general, the intensity change or signal
reflection by dividing walls [32] is utilized to differ-
entiate rooms. However, tedious calibration or modi-
fication over smartphones for the above signals is
often inevitable. None of the above works are appli-
cable to general areas without explicit wall partitions
or a large difference in elevation.

o Advanced learning techniques: The schemes in [33]
and [34] respectively leverage a probabilistic model
and clustering techniques to identify areas. While the
above works seem promising, they do not consider
the impact of missing data due to measurement
error [35]. The work in [36] leverages K-means and
Kohonen layer to compress the fingerprint database,
and an artificial neural network to estimate the floor.
Despite its extendability to area classification, the sys-
tem is not scalable as offline computation time in
training the Kohonen layer and neural network is
usually heavy due to the tedious training process and
random parameter initialization. Also, the parame-
ters (e.g., number of neurons) should be learned from
scratch when an area is added to or removed from the
system. The work in [37] proposes a probabilistic
framework and some heuristics to find the significant
APs. However, it works only for floor detection.
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e  Nearest neighbor search: The scheme in [38] searches
against the entire Wi-Fi fingerprint database of dif-
ferent rooms and buildings to find the nearest one,
which is identical to fine-grained localization and
hence computationally expensive for large-scale
deployment. The work in [39] proposes a K-nearest
neighbor approach. Despite its efficiency given the
database construction scheme, it assumes that signal
sources are uniformly distributed, and is highly sen-
sitive to the number of sources available and the
quality of signal measurements.

Different from the above schemes, area classification in
INOA is not restricted to floor/room localization scenarios. It
is applicable to the classification of any area even without
explicit partitions or a large difference in terms of elevation.
INOA also proposes a preprocessing module that not only
reduces the impact of missing signals in area classification
and target localization, but also offline training and online
querying time.

A preliminary version of this work has been reported in [6].
We advance it in the following major ways: 1) The previous
work has not comprehensively studied inside/outside region
decision. The problem is challenging, and we propose an
algorithm under the paradigm of novel ensemble learning,
which achieves an excellent performance; 2) The previous
work has not considered the case of incomplete signals due to
missing AP detection. We propose an algorithm which is
more robust to signal loss; 3) We present effective fingerprint
preprocessing to reduce the time (computation) and space
(storage) complexity; 4) We conduct more extensive experi-
mental studies to validate the performance of INOA.

3 OFFLINE FINGERPRINT PREPROCESSING

We consider formulating locality classification into a stan-
dard classification problem in machine learning. Each AP is
viewed as a feature, and the total number of APs determines
the size of the feature (signal) space. Such a number may be
very large in reality. For example, on our university campus,
we have detected a total of 1,498 APs in only two out of thir-
teen floors of a building. Having a huge feature space often
leads to heavy computation and over-fitting [40] in practice.
Due to such high redundancy, it is intuitive to expect that
not all of the APs should be kept for locality classification. To
improve computational efficiency and accuracy for both off-
line training and online querying, the preprocessing module
retains only those discriminating APs.

This section is organized as follows. We first introduce the
preliminaries of this work in Section 3.1. Then, we discuss
how to select the discriminating AP subset in Section 3.2
based on information theory, and how to cluster their salient
features in Section 3.3. After that, the process to compress the
RSSI vectors from the original signal space to the new feature
space is presented in Section 3.4.

3.1 Preliminaries
The major symbols used in this paper are summarized in
Table 1. The site survey may be conducted at predefined ref-
erence points (RPs). Each fingerprint is assigned with an
area ID, which can be given by simple region characteristics,
say the floor, zone or the building.

Let N be the number of RPs, and L be the total number
of detectable APs. To mitigate the random effect, we collect

TABLE 1

Major Symbols Used in INOA
Notation Definition
N Number of RPs in fingerprint database
L Number of APs
7o Mean RSSI at RP 7 from AP [ (dBm)
f,(n) # sth RSSI sample at RP n from AP [ (dBm)
5™ Number of RSSI samples collected at RP n from AP

F") RSSI vector received at RP n

RSSI vector received at target

Set of area IDs

Percentage of APs extract in AP subset selection

kth AP cluster

Threshold of minimum intra-cluster correlation

Set of AP clusters obtained by feature clustering
Preprocessed RSSI vector at RP n

Mean RSSI from APs in the kth cluster at RP n (dBm)

Preprocessed RSSI vector at target

Base learner for clusters C; and C;

Upper bound of error fraction in training dataset
Tuple of RSSIs from clusters C; and C; at target
Subset of base learners involved in online query
Threshold of minimum target vector length
Threshold of minimum area classification probability
Threshold of area classification probability difference
Optimal size of the new space in PCADD

fOT nH

T e e
[ < SS

~€ ™ ="

multiple RSSI samples to form an RSSI vector at each RP.

The mean RSSI fz at RP n from AP [ is given by
S(ﬂ)
fl(m (n Z fl " "7 @
S,
where f"* IS the sth RSSI sample (in dBm) at RP n from

AP [, and Sz is the number of RSSI samples collected. The
RSSI vector at RP n is defined as

R VN S ®

By definition, if AP [ is not detected at RP n (i.e., Sl(”) =0),
the signal strength is stored as 0. The measured RSSI vector
of the target is similarly denoted as T

aELL 3)

where {; is the mean RSSI from AP I.

Let A be the set of area IDs to be classified (also known as
classes in machine learning). For each F™), we have the cor-
responding area ID 7" € A. Similarly, for each target RSSI
vector T measured inside the fingerprint region, we denote
its area ID as y € A, which is to be identified in our area
classification study.

T=[i1.b,...

3.2 AP Subset Selection
In locality classification, we prefer APs whose signals are
the most useful for discriminating between locations. To
cherry-pick the APs with such a property, we exploit an
information theory approach [41] in the first preprocessing
strategy, namely AP subset selection, which retains only the
important APs with high information gain.

The information gain of AP ¢, denoted by /G, measures
its discriminative power across the entire fingerprint region
and is given by

IG, = H(RP) — H(RP|AP,), 4
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(a) Signal heatmap for AP 4 (F4-0F-1B-93-A4-F3)

Fig. 2. Visualization of two highly correlated APs discovered on the campus.

where H(RP) = — Z;Yzl P(RP,)log P(RP,) is the entropy
of the RPs when the RSSI from AP ¢ is unknown. H(RP|
AP) = -, N P(RP,, AP, = v)log P(RP,|AP; = v) com-
putes the conditional entropy of RPs given AP ¢’s RSSI val-
ues, and v is one possible value of RSSI from AP ¢. Here, we
denote RP, and AP, = v as the events of locating at RP n
and receiving an RSSI value v from AP ¢ respectively. By
assuming a user can be equally likely to be at any location
(i.e.,, P(RP,) is a constant for all n), we can further simplify
Equation (4) and use only the negative of the conditional
entropy as the discriminative power.

In the AP subset selection, we compute the discrimina-
tive power for each AP, and the top u% of APs with the
highest value are selected. Our experimental results show
that this strategy improves not only the computational effi-
ciency, but also the classification accuracy, since the signals
considered in the following modules originate from the APs
which are the best at providing spatial discrimination.

3.3 Feature Clustering
After AP subset selection, clustering is performed to further
reduce dimensionality by combining highly correlated fea-
tures. Figs. 2a and 2b visualize the signal heatmaps of two
APs on the campus, while Fig. 2c illustrates the relationships
of their signals by a scatter plot. These plots show that some
APs resemble each other, implying redundancy within
the feature space. One potential reason is that some signal
sources are co-located within a small region, and signals
broadcast from them should be highly correlated. In our
experiments where signals from public APs are utilized, we
observe some APs (e.g., the two in Fig. 2) are almost identical.
This is because setting multiple virtual APs in the same phys-
ical device (AP) is a common practice. Their signals originate
from one exact location and therefore are roughly the same.
Duplicated information does not provide extra spatial
discrimination, and introduces unnecessary computation.
To eliminate redundant computation and reduce model
complexity, we propose a clustering as preprocessing tech-
nique to transform groups of highly correlated APs into
new features. In other words, each new feature is defined as
a group of correlated APs. Specifically, we assign AP [ to
cluster Cy, if the intra-cluster correlation satisfies

1 S = H) (7~ Hy)

m - - — = > €, (%)
’ 7<Cr \/Zn(fl(n) o Hl)Q\/Z”(‘f](n) o HJ)Q

where 7, =LY 7" and € is the minimum required
correlation where an AP belongs to a particular cluster.
All clusters C subsequently constitute a new feature space,
which is concise and comprehensive.

(b) Signal heatmap for AP j (F4-0F-1B-93-A4-F5)
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(c) RSSI plot for APs i and j

3.4 Fingerprint Compression

After obtaining clusters of APs C, the original raw fingerprints
should be projected into the new space of fewer features so as
to reduce model complexity. For each RP fingerprint, we take
the average RSSI from the APs in the same cluster to be
the feature value, and hence the fingerprint F™) is trans-
formed into F™) = [f {M’ f ém, ey ffé’l)] where

st
J

Petoyyat o

)
2jec,Sj eG =1

Similarly, the target RSSI vector should also be converted to
T. After fingerprint compression, the physical meaning of a
new “feature” becomes the average signal strength of a
group of highly correlated APs. As our experimental trials
show that |C| < L, the new space is much more compact
and representative of the signal patterns inside the region.

As indicated in Equation (6), a feature value in the new
space comprises one or more AP. As long as any AP in the
same cluster is detected, the corresponding signal value can
be derived, making the feature much less likely to be null.
This reduces the chance of experiencing missing signals
which arise from measurement randomness or obstruction.
As a result, its impact on area classification and fine-grained
target localization can be reduced by our preprocessing
module. We further show its benefit in the experimental
evaluation. In the following discussion, we assume the RSSI
vectors are preprocessed unless otherwise stated, and the
terms cluster and feature are used interchangeably.

4 ONLINE LOCALITY CLASSIFICATION

Beyond the fingerprint preprocessing, in this section we pres-
ent how to classify the locality of the target given the signals
collected. We first verify that they are being measured inside
the fingerprint region by using the inside /outside region deci-
sion algorithm (Section 4.1). Then, area classification (Section
4.2) is conducted to determine in which area the target is.

4.1 Inside/Outside Region Decision

To support the in-out decision, we formulate it into a one-class
classification or the so-called data description problem, as we
are usually not given fingerprints outside the region due to
large survey costs. The goal of one-class classification is to dis-
tinguish between a set of known objects and all other possible
ones. In our context, given a set of inside-region fingerprints,
we find a data description to model them. If the target RSSI
vector resembles the data description, it is likely to belong to
the inside-region, and we can conduct area classification to
localize the target. Otherwise, it is likely to be an outlier or
novelty sampled outside the region.
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Fig. 3. lllustration of a base learner I'; 5.

In contrast to traditional approaches using a single data
description to model the entire feature space which is vulner-
able to missing values (signals), INOA employs a set of base
learners under the ensemble learning paradigm. Each base
learner is a data description which captures the patterns of a
feature pair. We devise a hierarchical combination scheme to
determine the novelty of the target RSSI vector given the clas-
sification results of the base learners. The rationale is that, if
the target RSSI vector is sampled inside the region, the non-
missing signal pairs should resemble the patterns captured
by the corresponding base learners. Breaking a single data
description problem into multiple ones ensures that all base
learners contributing to the final in-out decision are given
complete inputs. Otherwise, they will not be invoked.

Specifically, each cluster pair C; and C; is associated with
a base learner I';;, which distinguishes their patterns sam-
pled outside the region from those inside. Each base learner
I';; is formulated as a v-support vector data description
(v-SVDD) [42] with the learning problem

1 N
2 4 (n)
Byt im ot

|DE) —ay|” < R+ €0, v,

minimize
Rij @)

subjectto

where 132(7) =( fi(m, fj(-")), ¢ is the non-negative slack vari-
able for the nth fingerprint; ®(-) is a feature map which can
be computed by the RBF kernel; while a;; and R;; are the
center and the radius of the hypersphere respectively.
v-SVDD finds, in principle, a small hypersphere that enclo-
ses as many training samples as possible. As illustrated in

Fig. 3, the base learner I';; is a highly interpretable 2-D

Base Learners I'

problem capturing all valid patterns of C; and C;. Target sig-
nals T;; = (t;,1;) located outside the decision boundary (.e.,
the solid line) will be regarded as a novelty. The upper
bound of the error fraction v for all the base learners helps
to exclude some noisy data in the training process. In this
way, we may get a more robust classifier.

After solving the above optimization problem with the
Lagrange technique, we obtain the model parameter 0;;
which should be stored in the database for online queries.
Then, the base learner can be represented as

- 1, if g(T;|0;) < 0
1"1.. Ti" — ’ Z‘]. i )
i(Tij) { 0, otherwise, ®

where g(-|6;;) = 0 is the decision boundary for I';;, and the
base learner set

will be used throughout the online classification.

Given a target RSSI vector, only a subset of base learners,
[y = {I'y; | t;,t; # 0}, participate in predicting the novelty of
T. An illustrative example of an online query is presented in
Fig. 4. We design a two-layer combination scheme. After get-
ting a prediction from the base learners, we estimate the nov-
elty of each cluster C;. This can be done by using the
predictions gssociated with cluster C; and all clusters C;
received in T. Instead of using simple and uniform majority
voting, we use a weighted voting scheme which prefers predic-
tion from clusters with a strong RSSI in T. The intuition is that
a strong intensity in RSSI is more likely to be observed at loca-
tions around the APs than those far away [43], showing a
potentially high confidence in pinpointing the locations. Spe-
cifically, in the first layer, to calculate the novelty of cluster C;,
we assign weight w; to the base learner I';;. In the second
layer, we determine the novelty score ¢ of the target vector by
performing a similar weighted voting process on the results
from the first layer. We assign a higher weight to the interme-
diate voting result (say, cluster C;) from the first layer with a
stronger RSSI #;.

The novelty score ¢ given the preprocessed target RSSI
vector T is formulated as

4 L

S ; Z Z w;T's; (Tij )|

= W;
[q ! IC|
Dot Wi Zj:l Wy j=1

where w; is the weight assigned based on the RSSI #; from
cluster C; and is given by

(10)

Fig. 4. Simple example of inside/outside region decision with three received RSSIs.
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12 e i
w; = { (fl) ) lf t'L 7é 0 (11)

0, otherwise.

Then, the inside/outside region decision algorithm con-
cludes that the target is inside the fingerprint region if
¢ < 0.5 (i.e., the majority are not novelties).

4.2 Area Classification

After verifying that the target RSSI vector is measured
inside the fingerprint region, we can proceed and determine
in which area the target is. In one-class classification, the
model (e.g., the solid line in Fig. 3) sometimes suffers from
over-fitting or under-fitting since our training dataset is
imbalanced (e.g., only inside-region fingerprints are pro-
vided in the in-out problem), and hence we have a lack of
knowledge to get the optimal decision boundary separating
two classes (i.e., regulars and outliers). Different from the
inside/outside region decision, the existing fingerprint sys-
tems naturally provide fingerprints in different areas.
Hence, instead of using only fingerprints in an area to train
a single data description for each of them, we can leverage
all fingerprints in the entire site to learn a more robust
model by using binary-class classification techniques.

We formulate the problem into a well-known ”one-
against-all” form. For each area, we find a probabilistic sup-
port vector machine (SVM) model [44] to distinguish its
unique signal patterns from the others, which are together
considered to be a single class [45]. Specifically, the SVM
model for, say, area ¢ is to compute the probability
pi(r) = o(wl 'z + b;) given an RSSI vector = where o(-) is the
sigmoid function. The parameters can be trained by the
optimization problem

1 2 al (n)
b + 03¢l

minimize
w; (12)
subject to 7" (wl B +b;) > 1— ¢, ¥n,
where C is a regularization parameter, g(:”) is the non-

negative slack variable for the nth fingerprint at area ¢, and
7" = 1if r( = j and #") = —1 otherwise. In total, | A| SVM
models are tralned for the site with |A| areas and their
parameters (i.e., {(w;, b )} 1) are stored in the database.
During an online query, each SVM model finds the prob-
ability that the target RSSI vector is in this area against the
others. Given |.A| probabilities, we then find the area with
maximum probability and return its ID y to the user

y = argmax p;(T) = argmax o(w!'T +b;). (13)

Besides that, the probabilities can be further used for signal
rejection or probabilistic localization.

5 SIGNAL REJECTION AND DEVICE CALIBRATION

To further improve accuracy, in this section we discuss how
to reject unclassifiable signals (Section 5.1) and calibrate het-
erogeneous devices (Section 5.2).

5.1 Signal Rejection

As noted before, some target RSSI vectors may not be classi-
fiable (due to high measurement noise, significant missing
signals or target at area junction). We hence design a signal

rejection scheme to reject the vector which does not lead to
good classification results with sufficiently high confidence.
Specifically, we first define T is classifiable only if

1Tl > i min(|[EYJg, ..., [FY]],), (14)

where ||x||, is the [)-norm counting the total number of non-
zero elements in x, and « is the predefined threshold param-
eter. Target RSSI vectors violating the above fingerprint
length requirement, are likely to be collected far from the
fingerprint region. INOA labels them as unclassifiable out-
liers and rejects them without further classification.

In addition, due to measurement noise, RSSI vectors may
be similar across different areas which would lead to incorrect
results. Through our deployment experience, we have
observed that the decision probabilities of the area classifica-
tion algorithm may be similar in different areas. If the decision
is highly uncertain (unclassifiable), rejecting this signal can
prevent misclassification and improve the user experience.
During area classification, we reject T if all of the probabilities
{pa(T) | a € A} calculated are less than a predefmed thresh-
old, or the dlfference between the largest (T ) ) and the sec-
ond largest (p(T)'?)) probability is less than a certain value.
Specifically, we reject the target RSSI vector T if

Va, pa(T) < B, 0r p(T) — p(T)® < gp(T)V.

The rejection parameters f and ¢ can be determined via
empirical studies over offline-collected data.

For those ILBSs capable of identifying the target (e.g.,
client-based navigation), we can leverage the historical locali-
ties to predict the label instead of discarding the unclassifiable
target vector directly. In the experimental evaluation, we
demonstrate the effectiveness of a history-based INOA using
a simple sliding window.

(15)

5.2 Device RSSI Calibration
For the same RSS], different smartphones may have different
measurement values due to their Wi-Fi network interface
differences [46]. For each target RSSI #; from AP [, a linear
shift d from the true RSSI #; (i.e., the RSSI captured by the RP
fingerprints) using a different device [47] has been reported,
ie., &, = {; + d. We consider a scalable online calibration in
order to reduce offline manual effort. We first calculate the
similarity between the target RSSI vector and each RP finger-
print. After that, the RPs with similar signal vectors can be
leveraged for online signal calibration in order to get d. RSSI
vector comparison uses cosme similarity [48], denoted as cos
(T, E™), between T and F™). The cosine similarity compares
the relative signal trends of different APs rather than the
absolute RSSI values. For each t; € T, we find the corre-
sponding f{"’s at RPs from AP . Given pairs of [f;, "], we
conduct the linear regression [49] and obtain the correspond-
ing offset d for target RSSI ¢;. To mitigate the effect of random
noise, we find the top several RPs with cos(T, F™) > ¢ (say,
¢ = 0.95 in our experiment) for linear RSSI calibration [50].
The device calibration can be conducted in a crowd-
sourced manner. We can leverage the ILBS user data for cal-
ibration and store those d’s for different phone models. At
the beginning, given the MACs and Wi-Fi interface vendors,
some smartphones are calibrated online and their RSSI off-
sets are stored in the database. The same smartphone mod-
els of later users can then benefit from those crowdsourced
parameters.
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Fig. 5. Maps of HKUST-The campus and a validation trajectory.

6 EXPERIMENTAL EVALUATION AND ILLUSTRATIVE
RESULTS

We have conducted extensive experimental trials in several
spacious sites to evaluate INOA. In this section, we first pres-
ent the experimental settings (Section 6.1), followed by the
evaluation of the inside/outside region decision (Section 6.2)
and area classification (Section 6.3). Then, we analyze the
complexity of different schemes (Section 6.4) and discuss the
deployment of INOA (Section 6.5).

6.1 Setting and Metrics
We conduct trials in the following venues, spanning a wide
range of characteristics:

e HKUST: The university campus (Fig. 5) where we col-
lect 3,874 fingerprints (3 m grid size) from the public
areas of two floors (more than a 4, 000 m?* area). A patio
(outdoor) and an exit are located on the 2nd floor. This
serves as a case study where the site consists of both
indoor and outdoor environments. Since outdoor fin-
gerprints are usually unavailable due to survey cost
limitations, we have to first ensure the target is indoors
by making the in-out decision. Then, area classification
is conducted to deduce which floor the target is on.

e Harbor City (HKHC): The premium shopping mall
(Fig. 6) where we collect 8,044 fingerprints (3 m grid
size) from three floors (more than 10,000 m? area).
This site mainly consists of corridors, and we con-
sider that fingerprints are unavailable in one of the
premium stores on the 2nd floor. If a target is esti-
mated to be outside of the store, we then determine
which floor the target is on by the area classification.

e Cyberport (HKCP): The premium business building
(Fig. 7) where 826 fingerprints (4 m grid size) are col-
lected from two floors (more than 50,000 m? area).
This site has a multi-storey lobby, which is a popular
design in many modern buildings and makes locality
classification and target localization difficult. We con-
sider that the ILBS does not cover the 4th floor and
therefore the fingerprint regions are on the 2nd and
the 3rd floors. If the target is estimated to be outside
of the 4th floor where ILBS is not provided, we then
conduct the area classification to determine the floor.

The above venues are representative of commonly visited
ILBS sites (i.e., campuses, shopping malls and business build-
ings) with various typical structures (i.e., a mixture of indoors
and outdoors, corridors and often a multi-storey lobby). Dur-
ing the site survey, we utilize different smartphones, includ-
ing HTC One X, Coolpad F1, Lenovo A680, Samsung S3 and

2nd, 3" Floor

Fig. 6. Maps of HKHC-Mall.

Fig. 7. Maps and photos of Hong Kong Cyperport-Business.

Mi for RP fingerprint and target data collection. At each RP,
we collect fingerprints from four different directions (north,
south, west and east) to reduce the effect of human bodies on
signals, with a scanning duration of 15 seconds to ensure all
receivable signals are collected. Before the site survey, we
have no knowledge of the AP locations and their exact num-
ber. Wi-Fi fingerprint and target data collection is conducted
during working hours and therefore we do not exclude the
cases when there are people (crowds) nearby.

We evaluate the inside/outside region decision and area
classification based on the following performance metrics:

e True positive rate (TPR): evaluates the ability to
correctly identify the target inside the fingerprint
region. TPR is given by TPR = TP/(TP + FN). TP
denotes the number of true positives while FN
denotes the number of false negatives.

o  True negative rate (INR): evaluates the ability to reject
the target outside the fingerprint region. TNR is
given by TNR =TN /(TN + FP). TN denotes the
number of true negatives while FP denotes the num-
ber of false positives.

e True rate (TR): gives a performance measure to over-
view the robustness of the in-out decision, and is
given by TR = (TPR+ TNR)/2. An unbiased one-
class classifier should have high TPR and TNR such
that TR ideally approaches 1. TR = 0.5 means that
the biased classifier always chooses either a regular
or an outlier to be the prediction.
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TABLE 2
Baseline Parameters of INOA Used in All Trials

Phases Parameter Empirical Value
. nw 80
Preprocess (Section 3) . 0.85
Base Learner (Section 4) v 0.1
y 0.005
B 0.6
Rejection (Section 5) %) 0.3
K 0.3

e  Classification accuracy: is the number of correct area
classifications over that of all the classifiable sam-
ples. It characterizes the robustness under different
building structures and signals noise levels.

o  Online querying time: calculates the mean prediction
time of each target. The less time the calculation
takes, the less energy the mobile device consumes
and the shorter time the users have to wait.

We utilize TPR, TNR and TR for the in-out decision where
“positive” corresponds to inside signals, while “negative”
corresponds to signals outside the region. To evaluate the in-
out decision algorithm fairly, we collect the same number of
targets inside and outside the region to form the test dataset.
120 targets are sampled on the campus, while 112 and 88 tar-
gets are obtained in the mall and the business building. Simi-
larly, we also collect the same number of targets in each area
to test the performance of area classification. For each area
inside the campus, the mall and the business building, 59, 89
and 50 targets are sampled respectively. All targets in the
test dataset are for performance evaluation only and not
used to conduct parameter tuning.

We evaluate the preprocessing scheme by comparing it
with the Fisher criterion- (FC) [51] and online optimization-
based (OOPT) [52] approaches. For the in-out decision,
we compare it with the support vector data description
(SVDD) [5] and the PCA data description (PCADD) [6], which
perform comparatively well in our previous study. Also, (dis)
similarity-based data description (SBDD) [25], which aims at
classifying instances with missing data, is included. For area
classification, we compare it with artificial neural network
(ANN) [6], signal heuristic classification (SHC) [9], nearest
neighbor (NN) [38] and deep belief network (DBN) [53] to
evaluate our area localization ability in different sites after fil-
tering away targets outside the fingerprint region.

We have empirically studied the parameters for INOA,
and the detailed settings are summarized in Table 2. They are
used in all sites without being individually fine-tuned. In the
in-out decision, at most 10 percent of the training data can be
noisy (v = 0.1), and the selected RBF kernel width (y = 0.005)
makes the model flexible enough for different sites. For the
comparison schemes, although we assume signals outside the
region are unavailable, we still collect them to find the optimal
parameters using grid search for each site. In SVDD, the
upper bound of the error fraction and the choice of kernel are
selected. We have to select different parameters for different
sites as they are highly sensitive to the problem dimensional-
ity (i.e., AP number). In PCADD, the optimal size Y of the
new space is first selected, followed by finding the optimal
threshold of the reconstruction error. The magnitude of the
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Fig. 8. Histogram of detected AP number at RPs and targets (mall).
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Fig. 9. Fraction of an RSSI vector detected versus scanning duration
(mall).

reconstruction error highly depends on Y, which is site-
dependent. In SBDD, the similarity measure is chosen. The
parameters and the characteristics of SBDD are similar to
those of SVDD as SBDD trains an SVDD model after trans-
forming the RSSI vectors into the similarity space. All RP fin-
gerprints are used to train the in-out decision models. In area
classification, we conduct 5-fold cross validation to train the
optimal model parameters. We construct a typical four-layer
ANN. The first hidden layer has 20 neurons, while the second
has 3. In DBN, the number of training epochs is set to 1,000,
with 3 hidden layers. The sigmoid function is applied in its
neural network classification.

6.2 Inside/Outside Region Decision

In a practical deployment of fingerprint-based ILBS, the num-
ber of detected APs in the targets is usually less than those in
RP fingerprints, which is shown in Fig. 8. A smartphone needs
to provide an instant scanning result of the detected APs, and
hence the scanning duration for a target RSSI vector is limited.
Fig. 9 further shows the fraction of an RSSI vector collected
with different scanning durations. Based on our deployment
experience, we can afford at most one-second scanning dura-
tion to ensure that the ILBS is real-time and user-friendly. As a
result, only about 60 percent of the APs are detected and form
the target RSSI vector. In practice, many more signals are miss-
ing due to other reasons such as infrastructure change or sig-
nal obstruction. This accounts for the observation that the
maximum number of detected APs in the targets (around
59 APs) is less than that in the RP fingerprints (around 81 APs)
in Fig. 8. Based on the above, by default (baseline scenario) we
use only half of the complete target RSSI vector (i.e., 50 percent
RSSIs are randomly removed) in the following evaluation.

To evaluate the classification robustness in the presence of
missing signals, we randomly remove the RSSIs from the tar-
get vectors and use the model which is trained based upon
complete (i.e., originally collected) RP fingerprints for online
locality queries. For each target, we repeat RSSI removal and
locality classification 100 times to simulate the randomness of
missing signals and get the average performance. The TR
using different preprocessing approaches for the proposed
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Fig. 10. TR of different preprocessing algorithms (campus).

in-out decision algorithm is illustrated in Fig. 10 where
R-INOA represents the proposed scheme without performing
fingerprint preprocessing. The smaller the fraction of the tar-
get RSSI vector required for a correct decision, the more
robust the classifier. In general, INOA achieves higher TR
than FC and OOPT. We find that FC cannot effectively classify
targets outside the region since evaluating the Fisher criterion
of APs over anchor points in the region of interest may not be
reliable in this case. Although OOPT achieves better TR than
R-INOA, it has a heavy computational burden during online
queries. On the contrary, INOA requires only offline prepro-
cessing and significantly reduces the computational effort.
Based on the above, we only consider INOA with preprocess-
ing in the following evaluation.

Fig. 11 shows the TR of different algorithms in all sites. The
TR of all algorithms generally increases with the fraction of
the target vector. When the target vector is complete, it con-
forms more to the patterns captured by the model. Hence, the
performance is usually better if the scanning duration is lon-
ger, resulting in a more complete target vector.

Specifically, INOA converges at a high TR much faster than
the others and it only needs a surprisingly small portion (0.3 to
0.4) of the complete target vector to get a high TR (over 0.85).
This explains why we define ¥ = 0.3 in the signal rejection
module. The main reason, which has led to such a significant
improvement, is that we classify the target vector by examin-
ing the novelty of the non-missing feature pair individually.
This strategy ensures that our algorithm is remarkably robust
against missing signals and the curse of dimensionality. More-
over, the preprocessing module can effectively filter out non-
discriminative APs and cluster salient features, leading to a
performance boost. The experimental results validate the
inherent redundancy where we only need to use a small por-
tion of an RSSI vector to make our decision converge. Extra
RSSIs do not actually alter the final voting result.

To the contrary, other classification schemes are not
robust enough against signal missing, especially on the
campus and in the mall. They require a sufficient amount of
RSSIs in order to achieve a high TR though most of them
can handle conditions when a few of the signals are missing.
In SVDD, the location of the target vector in the feature
space changes significantly when some RSSIs are missing.
Even if the RSSI vector is collected inside the fingerprint
region, the location estimation may fall outside the decision
boundary since the model expects a complete target vector.
In SBDD, although signal transformation into similarity
space can reduce the impact of missing signals, the similar-
ity score changes significantly when a large number of sig-
nals are missing. Moreover, in an open space without an
explicit wall partition, the signal patterns become similar.
Regulars transformed into similarity space may be similar
to those collected outside the region. This accounts for the
unsatisfactory performance of SBDD in the mall where no
explicit partition has been provided between the corridor
and the stores. In PCADD, which depends on a reconstruc-
tion error threshold, the missing signals make it inappropri-
ate to differentiate outliers from regulars.

Experimental results also show that the accuracy impro-
vement of INOA over the others is much more compelling
in the sites where a large number of APs are discoverable
(high dimensionality). In the campus (1,498 APs) and the
mall (3,083 APs), INOA can accurately predict the novelty
of target RSSI vectors with only a tiny portion (about 0.3) of
the full vector, while other algorithms always bias towards
one of the outcomes until more than half of the target vector
is received. In order to differentiate the signals from one
another, many feature values should be available, especially
in high dimensional signal space. Otherwise, misclassifica-
tion occurs easily due to the signal ambiguity.

Fig. 12 shows the TPR and TNR of different in-out deci-
sion algorithms on the campus and in the mall given half
target vectors. This shows that INOA is stable overall and
obtains both high TPR and TNR in a practical scenario (i.e.,
lots of signals are missing). Other algorithms tend to bias
towards one of the outcomes. As illustrated in the experi-
ment, INOA maintains a similar performance until almost
all RSSIs are missing (say, more than 70 percent in our case).

We also conduct an experiment on the campus to evalu-
ate the online device calibration scheme. Fig. 13 shows the
TR of INOA using different devices before and after apply-
ing the calibration. The RP fingerprints used in this experi-
ment are collected using Mi. We can observe a higher TR
among different devices after the proposed RSSI calibration.
This is mainly because the proposed scheme successfully
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Fig. 11. TR of inside/outside region decision algorithms given different fraction of target RSSI vector.
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Fig. 12. TPR and TNR of different in-out decision algorithms with stan-
dard deviation given half target RSSI vectors.

adjusts the RSSIs among different devices, enhancing the
scalability in practical deployment.

Providing a stable performance under different scenarios
is important for practical deployment. Fig. 14a shows the TR
of different schemes with a different portion of deployed APs.
We remove APs randomly in each site and repeat the experi-
ment 100 times to get the average performance. INOA and
other algorithms are shown to be stable with different por-
tions of deployed APs, which is a good property for fast ILBS
deployment. Fig. 14b shows the TR versus the fingerprint sur-
vey grid size. The performance of INOA and SVDD is overall
stable when the grid size is within a reasonable range, because
they retrieve support vectors from the remaining signals after
fingerprint reduction, which is less sensitive to the training
sample number. When the survey grid size is too large, the RP
fingerprints cannot capture all signal patterns inside the
region and therefore all algorithms eventually approach the
0.5TR (i.e.,random guessing). Fig. 14c shows the performance
of INOA with different base learner size k. Only having 1-D in
each base learner is not appropriate because the model
ignores all relationships between APs. Although increasing
the base learner size can theoretically encode the patterns
from more APs, the results show that the improvement is not
significant. To balance between classification accuracy and
computation efficiency, we choose k = 2 in our settings.

6.3 Area Classification

To evaluate the area classification after fingerprint prepro-
cessing, Fig. 15a shows the accuracy of all area classification
algorithms given different fractions of target RSSI vectors.
SHC suffers from missing signals as it largely relies on a
strong RSSI to differentiate the areas. The complex structure
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Fig. 13. TR of INOA using different devices (campus).

of the hidden layer in ANN successfully encodes the key fea-
tures of the signal patterns. Missing some input in the hidden
units does not alter the activated output of the hidden layer
significantly. Multiple stacked restricted Boltzmann machines
in DBN introduce a deep structure and extract good features
from the fingerprints, making it less sensitive to signal loss.
Through optimization, the support vectors in SVM can pre-
serve the differentiation of areas after signal removal.

As discussed in the inside/outside region decision, the
robustness of an algorithm is important. Fig. 15b presents area
classification accuracy versus survey grid size. All algorithms
degrade in accuracy when the survey grid size increases. The
accuracy of SHC degrades under a large grid size, because
some strong signal measurements are lost under RP removals.
Overall, SVM performs with better accuracy than other algo-
rithms. Similar to SVDD, SVM retrieves support vectors from
the remaining signals. DBN decreases in classification accu-
racy as the trained belief network largely relies on sufficient
signal patterns in order to encode the fingerprint map.
Fig. 15c shows the area classification accuracy of all algo-
rithms given a different portion of deployed APs. Similar to
the in-out decision, we remove APs randomly and repeat 100
times to get the average performance. The results indicate that
the area classification algorithms generally do not deteriorate
significantly. SHC is less accurate because it depends on find-
ing the APs with strong RSSIs.

Fig. 16 summarizes the area classification accuracies
using different algorithms. We observe that they all achieve
high accuracy on the campus, mainly because there are
many wall partitions in the building to differentiate the sig-
nals, which matches the observations in [9], [54], [55]. How-
ever, some algorithms achieve lower accuracy in the mall
and the business building because of noisy signals there.
SVM achieves robust performance in all sites, as it finds the
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Fig. 14. Performance (TR) comparison of different inside/outside region decision algorithms with different settings.
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Fig. 15. Performance comparison of different area classification algorithms with different site settings.

support vectors which can effectively differentiate the RSSI
vectors in the sites.

6.4 Complexity Analysis

The offline training and online querying time complexities
of different algorithms are summarized in Table 3. To be an
efficient in-out decision algorithm, its online querying time
complexity must be independent of the RP fingerprint num-
ber N and AP number L. Otherwise, the computation time
increases with the scope of the ILBS. SBDD and PCADD
depend on the above factors as the target vector should be
compared with every training sample and is therefore inap-
propriate for making responsive decisions. SVDD is the
most efficient because the time complexity is only propor-
tional to the number of support vectors Qsvpp in the model.
However, due to its simplicity, the performance is unsatis-
factory as discussed previously. For INOA, it depends on
the number of APs detected by the target and the average
number of support vectors Qmoa in the base learners. In
practice, |T| is always limited (the averages in our experi-
ments are 27 on the campus, 26 in the mall and 47 in the
business building). Also, we find that Qmos and Qsypp are
often much less than L. Therefore, the in-out decision algo-
rithm in INOA is highly effective, efficient and applicable
for large-scale deployment.

To empirically study the efficiency of INOA, we first
show in Fig. 17 the running time reduction of locality classi-
fication before and after applying fingerprint preprocessing.
The running time on the campus is reduced by half because
AP subset selection and feature clustering significantly reduce
the number of APs from 1,498 to 846 (about 56 percent). In the
business building, 72 out of 280 APs (about 26 percent)
are removed by preprocessing. In the mall, the improvement
is not as much as the others because only 652 out of 3,038 APs
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Fig. 16. Area classification accuracy of all algorithms in different sites.

(about 21 percent) are removed. Then, Fig. 18 presents the
online querying time of different algorithms on the campus.
This site is challenging in terms of efficiency due to the large
fingerprint database (3,874 RPs). The quantitative results vali-
date that our scheme offers an accurate but rapid response
to the users. For PCADD and SBDD, we can observe that
the online querying time is unacceptably long. Computation
time is expected to increase when more areas (e.g., class-
rooms) are added to the ILBS.

6.5 Deployment Discussion

Historical localities of each user, if available, can be used to
further improve the performance and avoid signal rejection.
We have implemented a sliding window of size 3 to smooth
out the results by outputting the majority of the last three
decisions. Fig. 19 summarizes the TR of the in-out decision of
the target vectors collected along the trajectory on the cam-
pus depicted in Fig. 5 with different scanning durations. At
first, the TR of the history-based INOA is significantly better
than the one without considering historical localities. In
addition, we observe that the TR starts declining when scan-
ning duration takes longer than 1,600 milliseconds. Given a
long scanning duration, the target can move from one loca-
tion to another, and the RSSI vector formed can therefore be
ambiguous. For area classification, the improvement is simi-
lar, and we omit the results. Hence, if INOA is applied to the
applications (e.g., client-based navigation) where we can
memorize the localities of each user, we recommend using
histories to provide a better user experience.

The current trend of indoor localization is to keep
crowdsourcing the signals from the users walking freely
inside the target site and improving the localization per-
formance over time [56]. Crowdsourcing is beneficial to
INOA as new RP fingerprints, which replace the deterio-
rated ones, can be used to update the base learners peri-
odically. At the beginning (cold start) stage of INOA, the

TABLE 3
Offline Training and Online Querying Time Complexities
for In-Out Decision Algorithms

Algorithm Offline Training Online Querying
INOA O(N?L + N*C[) O(IT| + | T|*Qmvoa)
SVDD O(N*L) O(Qsvop)
SBDD O(N?L?) O(NL?)
PCADD o(Y?) O(L + NY?)
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Fig. 18. Online querying time on the campus.

empirical parameters can be applied to train a coarse
model. The base learners with APs received in the crowd-
sourced signals (both regulars and outliers) are enhanced
by re-training them using the crowdsourced signals and
RP fingerprints.

To extend INOA to new areas or regions, we can add or
re-train only those base learners with APs detected in the
newly collected RP fingerprints. This avoids re-training the
entire system when only a set of RP fingerprints is added,
which is a practical and common scenario. Moreover, we
highly recommend further reducing the computation
through parallel programming because our design is
extremely easy to parallelize. The predictions of base learn-
ers in the in-out decision and the predictions of SVM mod-
els in the area classification are all independent and can be
delegated to different processors.

7 CONCLUSION

We design the locality classification for indoor fingerprint-
based systems. Such a mechanism entails two queries, inside/
outside region decision and area classification. Due to the
measurement noise, some signals may not be received by the
target, and hence an RSSI vector is always incomplete in terms
of feature numbers compared with the RP fingerprint. How-
ever, traditional one-class classification algorithms for the in-
out decision often suffer severely from missing values. To
address this problem, we propose INOA, a highly efficient
and scalable locality classification algorithm.

INOA is capable of handling missing or noisy signals
and can be incrementally extended to new regions or areas.
It may also serve as a plug-in to any indoor localization sys-
tem for efficiency enhancement. INOA exploits the para-
digm of ensemble learning and decomposes the in-out
problem into multiple subproblems in the form of base
learners. We utilize them to formulate an algorithm which
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Fig. 19. TR of INOA with/without considering historical results (campus).

significantly mitigates the impact arising from missing sig-
nals. We further present a novel fingerprint preprocessing
module. It removes redundant information and combines
salient features to speed up the computation. We have
implemented INOA and conducted extensive experimental
trials in several different sites. Compared with other exist-
ing approaches, INOA is shown to be efficient and remark-
ably robust against incomplete target RSSI vectors. Only a
small portion (about 30 percent) of the RSSIs in the target
vector are needed to offer a highly accurate prediction.
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