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Abstract—In fingerprint-based indoor localization, fusing radio frequency (RF) and geomagnetic signals has been shown to achieve

promising results. To efficiently collect fingerprints, implicit crowdsourcing can be used, where signals sampled by pedestrians are

automatically labeled with their locations on a map. Previous work on crowdsourced fingerprinting is often based on a single signal,

which is susceptible to signal bias and labeling error. We study, for the first time, implicit multimodal crowdsourcing for joint RF and

geomagnetic fingerprinting. The scheme, termed UbiFin, exploits the spatial correlation among RF, geomagnetic, and motion signals to

mitigate the impact of sensor noise, leading to highly accurate and robust fingerprinting without the need for any explicit manual

intervention. Using clustering and dynamic programming, UbiFin correlates spatially different signals and filters effectively mislabeled

signals. We conduct extensive experiments on our campus and a large multi-story shopping mall. Efficient and simple to implement,

UbiFin outperforms other state-of-the-art crowdsourcing schemes to construct RF and geomagnetic fingerprints in terms of accuracy

and robustness (cutting fingerprint error by 40 percent in general).

Index Terms—Fingerprinting, site survey, implicit crowdsourcing, multimodal signals, RF, geomagnetic field, IMU

Ç

1 INTRODUCTION

FINGERPRINTING has emerged as a promising approach for
indoor localization [1], [2], [3]. Fingerprint-based locali-

zation generally consists of a training (site survey) phase
followed by an operation (location query) phase. In the
training phase, signals are recorded at different locations in
the feasible area of a map or floor plan. The signal values
and their labeled locations, termed fingerprints, form a data-
base. In the subsequent query phase, users are localized by
matching their sampled signals with the ones in the data-
base. Their locations are then indicated on the map.

Radio frequency (RF), such as Wi-Fi and Bluetooth, and
geomagnetic field are commonly used as fingerprint signals
due to their pervasiveness and location-based variation.
Combining them has been shown to achieve good localiza-
tion accuracy and robustness [4], [5], [6], [7]. However, the
training phases of both signals involve considerable manual
calibration efforts which are time-consuming and labor-
intensive. Site surveys for RF signals are often conducted
with dedicated surveyors traveling to every predefined
location to collect and label the signals [8], [9], [10], while
magnetic fields are usually collected by walking through all
paths multiple times [4], [11]. Furthermore, such surveys
have to be repeated frequently to keep the fingerprints up-
to-date so as to accommodate environmental changes.

To make the fingerprinting process more efficient, recent
works have explored implicit crowdsourcing [12], [13], [14],
[15]. They sample signals transparently from users’ mobile

devices (upon users’ approval, of course) and compute sig-
nal locations as labels at a server without any manual inter-
vention [16]. Despite prior works on RF and geomagnetic
crowdsourcing, they often study the signals individually
and separately [12], [14], [17]. This makes the fingerprinting
process vulnerable to signal noises. Furthermore, previous
approaches often consider user paths independently with-
out leveraging their correlation to mitigate signal noise and
estimation error [12], [17], [18]. Designing a robust, adap-
tive, and highly accurate fingerprinting system based on
implicit crowdsourcing for simultaneous RF and geomag-
netic fingerprinting remains a challenging open problem.

We propose UbiFin, a novel and robust approach for ubiq-
uitous joint RF and geomagnetic fingerprinting via implicit
crowdsourcing. To the best of our knowledge, this is the first
piece of work of such nature. UbiFin crowdsensesmultimodal
signals (including received signal strength or RSS of RF, mag-
netic fields, and inertial sensor measurements), and automati-
cally and efficiently constructs RF and magnetic fingerprint
databases simultaneously without the need for any user label-
ing. The floor plan, readily available from map services, is
used to constrain and calibrate effectively the crowdsourced
user paths. The joint RF,magnetic, andmotion design achieves
highly accurate fingerprints, more efficient survey, perfor-
mance robustness to large scale, applicability to constrained
and open space, and deployability of RF and magnetic fusion
localization. Note that thoughwe discuss UbiFin in the context
of fingerprinting for indoor localization, the labeled signals
and generated user trajectories would be useful in other appli-
cations such as Wi-Fi deployment optimization [19], compass
calibration, and crowd analysis [20].

UbiFin is based on the observation that RF, magnetic field,
and motion signals have strong spatial and complementary
features to mitigate fingerprinting errors, as presented below.
RF signal is an effective location indicator over a larger scale
(e.g., 5–10 meters) but shows less differentiability within a
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short range due to signal noises. Its sampling frequency is also
relatively low (one sample per second to tens of seconds,
depending on the app, operating system, anddevice state) [14].
The sparse data make it challenging to identify the exact land-
marks like turning points in a user path.1 In contrast, magnetic
field is less noisy and can be sampled at a much higher rate
(tens of samples per second). Often studied based on sample
sequence [17], it enjoys short-range differentiability but suffers
from global location ambiguity (a sequence may be matched
with multiple locations anywhere in the site). Motion signals
of acceleration and angular velocity provide excellent clues on
travel distance and turning direction for trajectory construc-
tion [12], [13]. However, the model suffers from user heteroge-
neity and cumulative error over time. By correlating the
multimodal signals from all users, UbiFinmitigates the impact
of signal bias and labeling errors, resulting in highly accurate
fingerprints.

We illustrate in Fig. 1 the system architecture of UbiFin.
When untrained pedestrians move freely in the venue, their
carried smartphones collect signals via embedded RF, mag-
netic, and inertial sensors (accelerometer and gyroscope). The
signal series are first preprocessed before being uploaded to
the server for fingerprinting. The server side has the following
three modules containing the major steps to construct the fin-
gerprint databases:

1) Junction detection in user paths: Junctions are the key
positions that connect different regions. The module
uses magnetic field and motion signals jointly to
detect the encountered junctions in each of the user
paths. By aligning user paths based on their mag-
netic fields, it critically examines the unique signal
patterns possibly at junctions, such as turnings and
path forking/merging, and accurately identifies
them with density-based clustering. User paths are
then segmented based on the recognized junctions.

2) User path mapping: Given a segmented path, the mod-
ule maps it onto the graph representation of the floor
plan. To achieve it, UbiFin puts the route in the
region which best matches its multimodal signals.
This is a joint signal consideration: the motion sig-
nals provide clues on user activities (e.g., turning
and walking distance) which fit on the map layout,

while the ambient signals (e.g., RF and magnetic
fields) correlate and constrain the path with the pre-
viously fingerprinted signals, if any. By formulating
the path mapping problem using dynamic program-
ming, UbiFin efficiently obtains the route on the map.

3) Fingerprint construction: The module generates fin-
gerprints by filtering out misplaced signals. The key
idea is that correct signals at a location are similar
and consistent with each other, and hence the mis-
placed signals can be easily detected as outliers. By
adopting clustering techniques to remove the possi-
ble placement mistakes in the path mapping process,
fingerprint databases can be constructed with high
accuracy.

The entire fingerprinting process works in an evolutionary
and incremental manner. Initially, there is no labeled signal
(i.e., fingerprint) in the site. As more signals are crowdsensed,
more RF and magnetic fingerprints are gradually formed.
They serve as references to improve the process of path map-
ping and fingerprinting. Furthermore, the evolutionary design
also makes UbiFin capable of updating outdated fingerprints
due to environmental changes in an onlinemanner.

We have implemented UbiFin and conducted extensive
experimental studies to validate its design and performance.
The experiments are carried out in two large-scale real-world
scenarios: one floor at our campus (around 14; 000m2) and a
two-story shoppingmall (around 46; 000m2). Our experimen-
tal results show that UbiFin substantially outperforms the
state-of-the-art approaches in terms of accuracy and robust-
ness (cutting fingerprint error by 40 percent in general).

The remainder of the paper is organized as follows. We
first discuss related work in Section 2, followed by the pre-
liminaries and data preprocessing in Section 3. In Section 4,
we introduce how to segment user paths based on junction
detection. We then discuss in Section 5 the efficient path
mapping algorithm to localize signals using dynamic pro-
gramming. Section 6 presents the technique of filtering mis-
placed signals and generating the fingerprint databases. We
present the experimental results in Section 7, and conclude
in Section 8.

2 RELATED WORK

Prior works have studied using explicit crowdsourcing to
reduce the effort of site surveys. Different from implicit
methods, explicit crowdsourcing relies on users’ manual
inputs, such as location labels and error feedbacks [21], [22].
Though these schemes are able to ease the survey burden to
some extent, the need for manual input still brings inconve-
nience to naı̈ve users and negatively affects user participa-
tion. By contrast, UbiFin is designed in an implicit manner
where the process of data collection and fingerprinting is
entirely transparent to users.

There has also been a large body of works studying fin-
gerprint database construction under implicit crowdsourc-
ing. A common method is to recover user trajectories based
on inertial measurement units (IMU) and then label signals
with locations accordingly. Prior works devote much effort
to accurate estimation of walking distance and heading for
better trajectory inference [23], [24], [25]. However, it is
inevitable to face severe issues of error accumulation,

Fig. 1. The system architecture of UbiFin.

1. In this paper, we refer to the term “path” as the actual trip of a
user, while “route” and “trajectory” are referred to the estimated path
on the floor plan.
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especially in long paths. To address that, other works pro-
pose to recognize special signal patterns to calibrate trajecto-
ries or model parameters, such as stationary devices [26],
user turnings [12], and signal landmarks [27]. As a compari-
son, UbiFin treats user movements as regional features and
learns trajectories by seeking the most compatible route on
a floor plan. Furthermore, benefit from the implicit calibra-
tion at discovered junctions, UbiFin is also able to effectively
mitigate the accumulated trajectory errors.

Many works explore the correlation of ambient signals,
such as RF and magnetic field, to construct fingerprints [14],
[26], [28]. They leverage the location-dependent nature of
ambient signals to infer the correspondence among different
user paths. However, they usually rely on a single signal,
lacking robustness against signal bias. Meanwhile, most of
them are designed dedicatedly for certain targeting signals
and hence cannot be easily adapted to others. UbiFin, on the
contrary, considers multimodal signals available on com-
mercial smartphones. By fusing the complementary charac-
teristics of different signals, UbiFin effectively mitigates
signal bias and is robust against heterogeneous devices and
environmental changes.

Integrating floor plans is not a burden for crowdsourcing
systems because map resources are accessible frommap ser-
vice providers (e.g., Google Maps and Baidu Maps) or site
owners. There have been many works that enhance finger-
printing accuracy based on map information. Some works
leverage the betweenness of signals to construct latent
graphs, and then align the graphs with map layouts [14],
[29], [30]. However, they are vulnerable to signal noises
since the generated signal graph may not be homeomorphic
to the floor plan, resulting in erroneous fingerprints. Other
works use layout information to constraint user movements.
For instance, MapCraft [31] discretizes the floor plan and
adopts conditional random fields (CRFs) to estimate user
trajectories. Zee [12] applies a particle filter to model the
nonlinear location distribution within the accessible regions.
Those works all require high computational power and are
apt to be influenced by signal noise. In UbiFin, we design an
effective floor plan representation and propose a dynamic
programming algorithm to efficiently localize user paths.

Other techniques such as simultaneous localization and
mapping (SLAM) and signal reconstruction have also been
studied to eliminate or reduce the cost of site surveys. Some
works employ SLAM to correlate opportunistic signals with
motion patterns [32], [33], [34]. They yet rely on high-precision
sensors to calibrate trajectories, while UbiFin does not have
assumptions on sensors or user paths. On the other hand,
exponential moving average (EMA) [35], Gaussian process
regression (GPR) [36], and matrix completion [37] have been
applied to reconstruct or update fingerprint databases based
on partially sampled signals. TuRF [38] introduces a path-
based fingerprint collection method in which signals are col-
lected while users are walking along predefined paths. The
works in [30] and [39] apply transfer learning to adapt the
outdated fingerprint databases to the current environment.
Although the above works alleviate the workload of site sur-
veys, prior knowledge of signals, and manual intervention is
still required. In UbiFin, we construct and update fingerprints
via implicit crowdsourcing with neither existing fingerprints
nor explicit user participation.

3 PRELIMINARIES AND PREPROCESSING

In this section, we present the preliminaries and the prepro-
cessing module of UbiFin. We introduce the modeling of
fingerprints and crowdsourced signals in Section 3.1. In Sec-
tion 3.2, we present the graph representation of a floor plan.
Finally, we discuss in Section 3.3 the signal preprocessing
before uploading signals to the processing server. The major
notations used in the paper are summarized in Table 1.

3.1 Fingerprint and Signal Modeling

A fingerprint refers to the signals associated with a specific
location (known as a reference position or RP). Let the set of
RPs in the area of interest be L ¼ flli j 1 � i � ng, where n is
the total number of RPs. The fingerprint database that con-
tains all the fingerprints is denoted by D ¼ fhlli; uuii j lli 2 Lg,
where uui is a fingerprint signal at RP lli. In this work, we dis-
cuss the construction of the RF (mainly Wi-Fi) fingerprint
databaseDR and the geomagnetic field databaseDB. Specifi-
cally, the Wi-Fi signal at lli is an RSS vector rri ¼ hri1; ri2; . . .i,
where rij is the RSS from the jth AP at lli; the magnetic signal
at lli is an attitude-invariant feature vector bbi ¼ hbis; bivi,
where bis is the magnetic field intensity, and biv is the vertical
component of the field along with the gravity direction. It is
worth noting that different types of signals may correspond
to different RP sets because of their diverse sampling rates
and spatial distributions.

Signals in UbiFin are collected via implicit crowdsourcing,
in which untrained users carrying their sensing devices roam
in the site and record signals without manual operation. We
refer to the location series of a user trip as a path PP . Multi-
modal signals collected along PP form a bundle of signal series2

SS ¼ fAA;VV; RR;BBg, whereAA, VV, RR, andBB are the time series of
accelerations, angular velocities, Wi-Fi RSS vectors, and geo-
magnetic field features, respectively. Please note that the loca-
tions of signal samples in SS are not labeled by users during
the collection and hence need to be determined in thework.

3.2 Floor Plan Representation

We model an indoor space as a composition of multiple
regions. From hundreds of indoor maps examined, we classify

TABLE 1
Major Notations Used in UbiFin

Notation Definition

L Set of RPs
lli Coordinate of the ith RP
DR RF fingerprint database
rri RF RSSI vector at lli
DB Magnetic field fingerprint database
bbi Magnetic feature vector at lli
PP User path
SS Signal series bundle in a user path
ssi The ith signal series segment in SS
G Floor plan graph
VV Vertex set in G
vi The ith vertex in G
EE Edge set in G
MM Path mapping

2. For the sake of simplicity, a “signal series bundle” is sometimes
called a “signal series”.
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themajority of regions into two categories, namely TYPE-I and
TYPE-II. A TYPE-I region is an abstraction of 1-D space where
people within always travel along a single line (see Fig. 2a
for example). For instance, corridors and hallways can be
regarded as such type (the width of a TYPE-I region is usually
less than 3m and there is no intersection or turn in themiddle).
In addition,we also viewcertain traffic facilities (e.g., staircases
and escalators) as TYPE-I regions since usermovements inside
are generally constrained. TYPE-II regions correspond to
broader spaces such as squares, atrium, and rooms (see Fig. 2b
for example), where pedestrians can move in any direction.
We practically treat all the regions other than TYPE-I as TYPE-
II. To describe the connectivity between regions, we abstract
the locations that connect neighboring regions as junctions.
Junctions are often corners, cross-sections, doors, and so on.

Based on the region definition above, we formally model
the floor plan as an undirected graph G ¼ VV ;EEð Þ, where VV
andEE are the sets of vertices and edges, respectively. A vertex
vi 2 VV represents a region in the map (either TYPE-I or TYPE-
II). An edge ðvi; vjÞ 2 EE indicates the connectivity between
two adjacent regions vi and vj. According to the definition of
junctions, each edge is associated with a junction. Note that
there can bemultiple representations of a floor plan due to dif-
ferent interpretations of region types. However, it does not
affect path mapping performance much because UbiFin can
always find themost compatible routes in the given floor plan
graph (details are explained in Section 5).

We show in Fig. 3 an illustrative example of a floor plan
and its graph representation. Fig. 3a shows the layout and its
region partition (for the sake of simplicity, our illustration
involves only the public area). The space is divided into eight
TYPE-I regions (the orange lines labeled fromA toH) and one
TYPE-II region (the green area labeled as I). We mark the
junctions as red stars. The constructed graph is demonstrated
in Fig. 3b, where vertices correspond to the regions with the
same labels in Fig. 3a and edges indicate their connectivity.

3.3 Signal Series Preprocessing

Crowdsourced data are generally noisy due to the diverse
and unpredictable user behaviors. Preprocessing is thus
required before feeding them to the later modules of UbiFin.
To achieve this, UbiFin filters signal series by recognizing
user activities and device attitudes.

User Activity Recognition. UbiFin expects the signals col-
lected while users are walking naturally in the venue. How-
ever, unpredictable user activities, such as making phone
calls or shaking phones, distort regular signals and lead to
incorrect junction detection and erroneous path mapping.
To mitigate the influence, we apply classification techniques

to detect whether a segment of signal series is under normal
walking status. The classifier is implemented based on the
support vector machine (SVM) [40], [41]. Both time- and fre-
quency-domain features are extracted from acceleration
series of a 10 seconds. We collect a set of offline data from
12 users to train the model. By performing recognition on
the segments of crowdsourced signal series, UbiFin trun-
cates the paths and keeps only the continuous parts col-
lected while walking (with a duration of at least 20 seconds).

Phone Attitude Recognition. Users have diverse preferences
for placing smartphones. For instance, some people are used
to holding their phones in hand, while others prefer to put
them in pockets or handbags. Different phone attitudes and
positions result in inconsistent signal measurements, even at
the same location. In thiswork,we are interested in the signals
collectedwhenusers hold smartphones in front of their bodies
(as the normal position of reading text or viewingmaps). Such
attitude provides stable signal measurements and is consis-
tent with the application scenarios of location-based services
(e.g., using a navigation app). InUbiFin, we adopt a simplified
implementation ofA3 [42] to estimate device attitude based on
gyroscope and accelerometer. The method employs a Butter-
worth filter [43] to filter out high-frequency noise. Attitudes
are then derived by continuously integrating angular veloci-
ties and opportunistically calibrated by gravity readings.
Given accurate device attitudes in terms of pitch and roll, we
retain the series with desired poses (�90� � pitch � 15� and
�15� � roll � 15�) [23].

4 JUNCTION DETECTION IN USER PATHS

Users generally have common behaviors at junctions, such
as turning or entering new regions. It inspires us to recog-
nize junctions according to such patterns. In this section, we
introduce a novel and robust junction detection method by
correlating magnetic fields and motion patterns in multiple
user paths. We discuss in Section 4.1 how to find the com-
mon sections in paths using magnetic fields. In Section 4.2,
we then present the robust junction recognition algorithm.

4.1 Correlating Paths Using Magnetic Fields

Commercial off-the-shelf smartphones can measure mag-
netic fields at much higher rates (�50Hz) than RF (�1Hz)
due to the characteristics of sensors and the restriction of
operating systems. The high-frequency measurements pro-
vide fine-grained signal dynamics in paths. UbiFin hence
leverages magnetic fields to correlate different paths, i.e., to
identify their common sections in paths.

Fig. 2. Typical examples of the two types of regions.
Fig. 3. An illustrative example of the floor plan representation.
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Speed variation and device heterogeneity are two major
challenges in matching magnetic series. The variation of
speeds causes shape distortion on magnetic series, such as
stretching (i.e., sample insertion due to a low speed) and com-
pression (i.e., sample deletion due to a high speed) [44]. The
heterogeneity of devices, on the other hand, results in mea-
surement offsets at same locations. These make it difficult to
perform series comparisons directly. To address the above,
UbiFin applies a modified Smith-Waterman (SW) algorithm
to extract the local alignment of matched sub-series [44], [45].
The alignment between magnetic samples reflects their loca-
tion correspondence (and thus the commonpath sections).

Given two series of magnetic fields (Fig. 4b as an exam-
ple), the algorithm first constructs a scoring matrix WW using
dynamic programming [44]. At each step (say, comparing
the pair of bbi in the first path and bbj in the other path), SW
considers the possible cases of sample matching, insertion,
or deletion, and records in WWij the maximum score of
potential alignments ending there. In particular, we employ
a re-scaled Gaussian kernel to represent the score between
two matched samples, i.e.,

fðbbi; bbjÞ ¼ 2 exp � bbi � bbj
�� ��2

s2

 !
� 1, (1)

where the kernel width s controls the degree of similarity.
We also empirically designate the gap penalty of -0.4 for the
case of sample insertion or deletion.

To address the device heterogeneity issues in terms of
measurement offsets, we consider replacing the magnetic
vector bb in Equation (1) with a mean-removed vector bb0, i.e.,

bb0 ¼ bb� �bb, (2)

where �bb is the mean magnetic vector in the past 5 seconds.
Fig. 4c visualizes an example of the constructed scoringmatrix.

Generally, a pair of matched sub-series corresponds to a
series of successive sample alignments and hence generates
a segment of monotonically increasing scores, as demon-
strated in Fig. 4d. We thus search the scoring matrix W for
paths with increasing scores to obtain possible matchings.
Specifically, we start from the highest score in WW and trace
back towards the previously highest scores (the dotted line
in Fig. 4c). Note that the obtained scores along the traced
path may contain unmatched portions because of the slow
decay in scores. Plus, due to signal fluctuation and speed
variation, even the matched segment may not be strictly

monotonically increasing. To take these into consideration,
we adopt sliding window techniques and extract the seg-
ment (the solid line in Fig. 4d) whose gradient is greater
than a predefined threshold (say, 0.8 of the overall gradi-
ent). The corresponding coordinates in W thus form the
alignment between two series.

4.2 Junction Recognition

Given the common sections in different user paths, UbiFin
correlates specific activity patterns to recognize junctions. On
one hand, users usually take turns at junctions (Fig. 5a). At
any junction, there should be many paths turning at a similar
location. Otherwise, it may be a false positive such as entering
a room or avoiding obstacles. On the other hand, junctions are
usually the positionswhere path forking ormerging happens.
Path forking means that common path sections diverge
(Fig. 5b), while path merging indicates that different paths
begin to follow the same way (Fig. 5c). We can thus recognize
junctions based on turning, path forking, and pathmerging.

Fig. 6 demonstrates a toy example to explain the above
idea. The example consists of three connected corridors
(Fig. 6a). Three different user paths, labeled as PP 1, PP 2, and PP 3,
pass through the area. We can easily recognize turnings by
detecting the drastic change in the angular velocities (Fig. 6b).
However, it cannot find all the junctions in PP 2 and PP 3. On the
other hand, magnetic series can be used to correlate different
user paths. By recognizing the common sections amongpaths,
it cross-verifies the first turnings of PP 1 and PP 2 are actually
taken at the same junction, and so do the last turnings in PP 1

and PP 3. Besides, magnetic fields reveal the forking andmerg-
ing points in paths. For instance,PP 1 and PP 2 have similarmag-
netic fields until encountering B, which indicates that B is a
forking point. Likewise, junction A is a merging point for PP 1

and PP 3. By combining the above, we can learn that, besides
the turning points, PP 2 also passes by junction B and PP 3

encounters junctionA.
Algorithm 1 presents the major procedures of detecting

junctions in the pathPP �. We useVVi andBBi to denote the series
of angular velocities and magnetic fields of SSi, respectively.

Fig. 4. An illustrative example of correlating paths using Smith-Waterman (SW) algorithm. Fig. 4a shows two paths with a common section. Fig. 4b
demonstrates their magnetic field series. Fig. 4c visualizes the scoring matrix constructed by SW. Fig. 4d plots the scores along the selected trace in
the scoring matrix (the dotted line in Fig. 4c).

Fig. 5. Illustrations of typical behaviors at junctions.
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The set TT � contains the timestamps at which potential junc-
tions are detected inPP �. Wefirst identify turnings by applying
the conventional peak-detection method which compares
points with neighboring values to find significant local max-
ima in the angular velocities of the Z-axis [46] (lines 1 and 3).
From line 2 to line 9, we convey the junction information from
other paths by correlating their magnetic fields. Let Hi be the
alignment between BB� and BBi obtained by the modified SW
algorithm (Section 4.1), where HiðtijÞ represents the time-
stamp of which the magnetic sample inBB� corresponds to the
sample in BBi at t

i
j (line 4). If there is a turning at tij in SSi, we

believe that a turning is also possible at the corresponding
timestampHiðtijÞ in SS� and hence addHiðtijÞ to TT � (line 6). On
the other hand, the endpoints of each pair of matched sub-
series may indicate merging or forking points. We also add
the timestamps of them to TT � (line 8). Finally, we employ the
DBSCAN clustering [47], [48] on TT � (line 10) to merge the
redundant potential points and eliminate false-positive detec-
tions. DBSCAN is a density-based method that groups ele-
ments close to each other. We employ DBSCAN because it
does not require the number of clusters in advance and is
effective to find outliers. The centroids of the resulted clusters
CC are regarded as the timestamps of encountering actual
junctions (line 11).

Algorithm 1. Junction Detection

input: A signal series SS� of path PP � and a batch of signal
series S ¼ fSS1; SS2; . . .g

output: The set of timestamps when encountering junctions
in the path PP �

1 TT �  TurningDetectionðVV�Þ;
2 foreach SSi 2 S and SSi 6¼ SS� do
3 TT i  TurningDetectionðVViÞ;
4 Hi  SmithWatermanðBB�; BBiÞ;
5 foreach tij 2 TT i andHiðtijÞ 6¼ ; do
6 AddHiðtijÞ to TT �;
7 end
8 Add the first and the last timestamps of each matched

segment in SS� to TT �;
9 end
10 CC  DBSCANðTT �Þ;
11 return the centroids of the clusters in CC;

Given the above, UbiFin partitions a path PP into multiple
path segments according to the detected junctions. The corresp-
onding signal series SS can be segmented into fssi j 1 � i � mg,

where ssi is the signal segmentbetween two consecutive junctions
andm is the number of segments.

5 USER PATH MAPPING

We present in this section a novel and efficient path map-
ping algorithm that localizes the segmented signal series on
the given floor plan using dynamic programming (DP) [49].
We first describe the path mapping problem in Section 5.1.
In Section 5.2, we introduce in detail the cost function which
measures the mapping error between a signal segment and
a region. Finally, we present in Section 5.3 the DP imple-
mentation for computing the optimal route with the mini-
mummapping cost.

5.1 Path Mapping Problem and Formulation

Wefirst introduce the pathmapping problemand its formula-
tion. Recall that signal segments are designed to be associated
with vertices in the floor plan graph, and junction points cor-
respond to edges. To map the path PP (that is, finding a route
on the floor plan), we can equivalently find a subgraph in the
graph Gwhich best matches its signal segmentsSS.

Formally, we state the path mapping problem as: given a
series of signal segments SS ¼ fssi j 1 � i � mg and a graph
of floor plan G ¼ VV ;EEð Þ, we look for a mapping f : SS ! VV
such that the total mapping cost

P
i Dðssi; fðssiÞÞ is mini-

mized, where Dð�; �Þ denotes the cost function that evaluates
the incompatibility between a signal segment and a vertex.

The objective in the path mapping problem is to minimize
the totalmapping cost

P
i Dðssi; fðssiÞÞ. However, themisdetec-

tion of junctionsmay cause the segmentation inconsistent with
the floor plan and hence degrades the overall accuracy. To
address this, we considermapping a concatenation of q (q � 1)
consecutive segments in the mapping process. Specifically, we
attempt to find a matched vertex for the segment concatena-
tion ssi�qþ1:i in the programming, where ssi�qþ1:i denotes the
concatenation of segments hssi�qþ1; ssi�qþ2; . . . ; ssii. Therefore,
the optimal value function inDP is formulated as

Ji ¼ min
q;j

Ji�q þ Dðssi�qþ1:i; vjÞ
� �

, (3)

where Ji is the optimal mapping cost after mapping the sig-
nal segment concatenation ending with ssi.

To effectively reduce the computational complexity in
DP and improve mapping accuracy, we further discuss
some constraints in the formulation. Note that the mapped

Fig. 6. An illustrative example of junction detection. A and B are two junctions. PP 1, PP 2, and PP 3 are three walking paths. The circled letters indicate the
time of encountering corresponding junctions.
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vertices in two consecutive stages correspond to two succes-
sive signal segments (or concatenations of signal segments)
in a user path. To make sure the path continuity, we require
that ~v and vj are connected, i.e.,

ð~v; vjÞ 2 EE, (4)

where ~v is the vertex mapped in the previous stage.
UbiFin encodes turning direction as an indication to

reduce the ambiguity of similar paths. Let ffð�; �Þ be the path
angle between two neighboring regions, and uð�; �Þ be the
walking direction change between consecutive signal seg-
ments. ffð�; �Þ is usually obtained from the given floor plan
based on basic geometry, while uð�; �Þ can be estimated by
integrating the horizontal angular velocities over a turning
period. The direction constraint can be expressed as

jffð~v; vjÞ � uðssi�q; ssi�qþ1Þj < Q, (5)

where Q is the tolerance of angle difference. Considering
the precision of the gyroscope and common indoor layouts,
we empirically set Q ¼ 30� to adapt to the majority of cases.

For efficiency concern, we limit the length of segment
concatenation q by setting up an upper bound Q, i.e.,

1 � q � Q. (6)

In UbiFin, we set Q ¼ 2 to balance complexity and accuracy.

5.2 Mapping Cost Functions

The mapping cost function Dð�; �Þmeasures the dissimilarity
between a signal segment (or a concatenation of signal seg-
ments) and a vertex. Since a single type of signal is vulnera-
ble to signal bias and environmental changes such as the
adjustment of APs’ antennas and the magnetization of met-
als, we consider a multimodal model to evaluate mapping
costs, including motion (in terms of displacement), RF (typi-
cally Wi-Fi RSS), and geomagnetic field. Specifically, we
define the mapping cost function Dðss; vÞ as a linear combi-
nation of the costs from individual signals, i.e.,

Dðss; vÞ ¼ �DDðss; vÞ þ aDRðss; vÞ þ bDBðss; vÞ, (7)

where ss is a signal segment (or a concatenation of consecu-
tive signal segments) and v is a vertex in the floor plan
graph; DD, DR, and DB measure the mapping costs on dis-
placement, RF, and geomagnetic field, respectively; �, a,
and b are their corresponding weights. We further require
�þ aþ b ¼ 1 to normalize Dðss; vÞ.

In the following, we introduce how to obtain the map-
ping costs of different modalities.

Displacement. DDðss; vÞ compares the estimated displace-
ment according to the inertial measurements in the signal
segment ss with the physical dimensions of the region corre-
sponding to the vertex v.

Let DD be the estimated destination of the signal segment.
We employ pedestrian dead reckoning (PDR) techniques to
computeDD. That is, given the initial states (i.e., the initial posi-
tion and walking direction), user locations are estimated by
integrating their walking directions and speeds over time [23].
The initial position is the junction between the previous region
and the current one v, while the initial heading can be obtained
from the geometric relationship between the previous and

current regions in the floor plan. When moving in the region,
user’s walking direction is determined according to the gyro-
scope measurements, and walking speed can be obtained
through a pedometer [50] or supervised learningmethods [51].
On the other hand, the actual destination should be one of the
exit junctions through which users can leave the region (and
enter another). As the exit is unknown beforehand, we treat
the onewith theminimumdistance toDD as the expected desti-
nation (see Fig. 7a as an illustration). Let XXk be the coordinate
of the kth exiting junction in v. The displacement error is repre-
sented by

d ¼ min
k
kDD�XXkk2, (8)

where k � k2 is the euclidean norm of a vector. Note that the
influence of accumulated error commonly seen in PDR is
rather limited in our cases since UbiFin performs PDR only
in a small area [27], [52].

Particularly, in a TYPE-I region where users have only
one degree of freedom to move, the computation of dis-
placement error can be further reduced to walking distance
error (see Fig. 7b). It helps mitigate the error introduced by
walking direction estimation. In such a case, the displace-
ment difference in a TYPE-I region can be represented as

d ¼ jd� xj, (9)

where j � j denotes the absolute value, d is the estimated
walking distance, and x is the physical length of the region.

Finally, the displacement cost can be normalized by

DDðss; vÞ ¼ min
d

d
; 1

� �
. (10)

RF.DRðss; vÞ reflects the dissimilarity between RF series
in ss and the region of vertex v. We compare the RF signals
along the path segment with those existing fingerprints in
the region.

Recall that we have obtained the PDR trajectory in the
region when computing DDðss; vÞ. Given the starting and
ending points (i.e., the entrance and exit), we further cali-
brate the trajectory by rotating and scaling the trajectory to
fit the region. For each RSS vector rrk in the path, we com-
pare it with its nearest fingerprint rrfprðkÞ (with respect to the
calibrated trajectory) if rrfprðkÞ has been generated and their
distance is within 5m. We introduce a binary indicator func-
tion fðrru; rrvÞ to determine whether two RSS vectors rru and
rrv match, i.e.,

Fig. 7. Illustrations of the displacement difference in two types of regions.
The solid gray lines show the ground-truth paths. The dotted blue lines
are the estimated trajectories.
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fðrru; rrvÞ ¼ 0, if rru � rrvk k2=NAP � �R,
1, otherwise,

�
(11)

where k � k2 is the euclidean norm of the vector, NAP is the
number of APs appeared in both rru and rrv, and �R is a
threshold standing for the maximum difference between
two RF signals at the same location [14]. We use the empiri-
cal setting of �R ¼ 3 dB in UbiFin.

Let F be the index set of the RSS vectors that have valid
neighboring fingerprints. The normalized RF cost function
is thus defined as

DRðss; vÞ ¼ 1

jFj
X
k2F

fðrrk; rrfprðkÞÞ, (12)

where jFj is the cardinality of F.
Geomagnetic Field. DBðss; vÞ measures the dissimilarity

between the signal segment ss and the vertex v in terms of
geomagnetic field. A similar method to RF cost can be
applied to computing the magnetic cost. Specifically, the
indicator function of magnetic field is defined as

cðbbu; bbvÞ ¼ 0, if bbu � bbvk k2=2 � �B,
1, otherwise,

�
(13)

where k � k2 is the euclidean norm of the vector, �B is the
threshold controlling the maximum difference between two
matched magnetic signals (�B ¼ 3mT in the paper) [45]. The
cost of magnetic field DBðss; vÞ becomes

DBðss; vÞ ¼ 1

jCj
X
k2C

cðbbk; bbfprðkÞÞ, (14)

where bbfprðkÞ is the nearest magnetic fingerprint to bbk,C is the
index set of the samples whose neighboring fingerprints are
availablewithin 1m, and jCj is the number of elements inC.

Algorithm 2. User Path Mapping

input: A segmented signal series SS ¼ fssi j 1 � i � mg and a
floor plan graph G ¼ ðVV ;EEÞ

output: Path mappingMM
/* Compute the minimum mapping cost.*/

1 J0  0;
2 for 1 � i � m do
3 for 1 � q � Q and i� q � 0 do
4 vði;qÞ  argminjfJi�q þ Dðssi�qþ1:i; vjÞg, subject to the

constraints (4) and (5);
5 Ji;q  Ji�q þ Dðssi�qþ1:i; vði;qÞÞ;
6 end
7 qðiÞ  argminqJi;q;
8 vðiÞ  vði;q

ðiÞÞ;
9 Ji  Ji;qðiÞ ;
10 end

/* Recover the path mapping.*/

11 MM  ;;
12 g  m;
13 while g � 1 do
14 Add hssg�qðgÞþ1:g ; vðgÞi toMM;
15 g  g � qðgÞ;
16 end
17 returnMM ;

5.3 DP Implementation

Given the above, we can implement the efficient path map-
ping algorithm using DP techniques. Algorithm 2 illustrates
the major procedures.

The algorithm first conducts a forward pass to compute
the optimal mapping cost (from line 2 to line 10). A vector J
is used to store the optimal values in different stages, where
Ji represents the total minimum cost till the ith stage. In
particular, we impose an initial value J0 ¼ 0 for bootstrap-
ping. Based on the recurrence relationship in Equation (3),
the optimal costs can be determined stage by stage. Mean-
while, we cache the optimal choices of the segment concate-
nation length and the matched vertex in each stage, denoted
by qðiÞ and vðiÞ for the ith stage, respectively. Formally

qðiÞ; vðiÞ ¼ argmin
q;vj

Ji�q þ Dðssi�qþ1:i; vjÞ
� �

, (15)

subject to the constraints (4), (5), and (6). qðiÞ and vðiÞ act as
the backward pointers that lead us to the previous optimal
states efficiently. Note that our DP can easily adapt to the
case where a user manually inputs opportunistic positions
in the path by setting the corresponding mapping costs to 0.

Once obtaining the optimal mapping cost, UbiFin
employs a backtracking process to get the path mapping
(from line 11 to line 16). Starting from the last mapping (i.e.,
the one from ssm�qðmÞþ1:m to vðmÞ, where m is the number of
segments), UbiFin follows the cached qðiÞ and vðiÞ to find the
preceding mappings iteratively. More generally, the opti-
mal mapping is represented as

MM ¼ fhss
gk�qðgkÞþ1:gk ; v

ðgkÞig, (16)

where gk is the index of DP stage in the kth backtracking
iteration with g1 ¼ m and gk ¼ gk�1 � qðgk�1Þ when k > 1.

6 FINGERPRINT CONSTRUCTION

In this section, we discuss the construction of fingerprints
based on the mapped paths. Section 6.1 presents a cluster-
ing-based approach to filter out misplaced signals at each
RP. In Section 6.2, we introduce the comprehensive algo-
rithm for constructing RF and magnetic fingerprint data-
bases. Finally, we discuss the adaptation to environmental
changes in Section 6.3.

6.1 Filtering Out Misplaced Signals

An inevitable challenge in constructing fingerprints is that
the path mapping results may contain inconsistency and
errors due to misplaced paths and signal fluctuation. To
mitigate such influence, we propose a clustering-based
approach to filter out outlier signals and aggregate the cor-
rect signals.

Given the resulting mapping of a crowdsourced signal
series SS, we assign the signal samples (either RF or magnetic
field) to their nearest RPs. At each RP, a set of signals are
assigned after multiple paths pass through it. Intuitively,
signals at the same RP are similar to each other if they are
correctly assigned, and, conversely, misplaced signals are
sparsely distributed and become outliers. We hence adopt
the density-based clustering method DBSCAN [48] on the
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assigned signal set to distinguish between the correctly
mapped signals and outliers. We regard the cluster with the
most members as the correct one and use its centroid to rep-
resent the fingerprint.

6.2 Fingerprint Database Construction

Algorithm 3. Fingerprint Database Construction

input: A batch of signal series S ¼ SS1; SS2; . . .f g, a floor plan
graph G, and previously generated RF and magnetic
fingerprint databases DR and DB (if existed)

output: RF fingerprint database DR and magnetic fingerprint
database DB

1 for each SSi 2 S do
2 Segment SSi by junction detection (Section 4);
3 Initialize SSi:attempts ¼ 0;
4 end
5 Initialize Q  ;;
6 Sort S according to the estimated traveling distances in
descending order and then insert them to Q;

7 while Q 6¼ ; do
8 SS�  PopFrontðQÞ;
9 if SS�:attempts � V then
10 continue // Discard

11 end
12 Map SS� to G and obtain the mapping MM with cost J

(Section 5);
13 if J=jMMj � k then // Accept

14 Assign signals in SS� to corresponding RPs, and generate
fingerprints (Section 6.1);

15 else // Reject

16 PushBackðQ; SS�Þ;
17 SS�:attempts SS�:attemptsþ 1;
18 end
19 Generate remaining fingerprints using GPR;
20 return DR, DB;

Algorithm 3 summarizes the overall workflow of construct-
ing fingerprint databases given a batch of crowdsourced
signal series S ¼ SS1; SS2; . . .f g. The algorithm first detects
junctions in each path and segments them accordingly
(line 2). To better manage the processing order of multiple
user paths, we introduce a queue Q that contains the signal
series ready to be mapped. We sort signal series by their
estimated walking distances and put them into Q (line 6).
This is because longer paths usually contain more topologi-
cal information and thus have better mapping accuracy
when few ambient fingerprints are available.

For each path in Q, we apply the path mapping module
to determine its route on the map (line 12). We use the aver-
age mapping cost (J=jMMj) to evaluate whether the mapping
fits the floor plan and previously generated fingerprints
(line 13). If the cost is lower than the predefined threshold k,
we accept the mapping (line 14). We assign signals in the
path to corresponding RPs and filter out misplaced ones.
Otherwise, the mapping is not considered trustworthy. We
postpone processing the signal series and put it back into Q
(line 16). As the process goes on, more fingerprints are avail-
able in the databases. We thus have more knowledge of
ambient signals in the site and are able to map previously

rejected paths with more confidence. A further study on the
impact of kwill be discussed in Section 7.2.

To ensure that the algorithm ends, we tag the number of
attempts on each signal series. If a signal series has been
rejected more than V times, we consider it to be incompati-
ble with the floor plan and/or the existing fingerprints and
thus discard it (line 10). In our prototype designing, we set
V ¼ 3 empirically.

At the locations where few users visit, we do not have
sufficient signals to generate fingerprints. To obtain full fin-
gerprint databases, we apply Gaussian process regression
(GPR) to interpolate the signal values according to their sur-
rounding fingerprints [36], [47].

6.3 Discussion on Environmental Change
Adaptation

Fingerprints usually vary over time due to environmental
changes, for example, modification of network configura-
tions, movement of network devices, renovation, etc. [36].
UbiFin is capable of adapting to the changes, and keeps the
databases up-to-date. The reasons are twofold. On the one
hand, UbiFin is robust against signal noise and partial sig-
nal changes. Recall that UbiFin leverages multimodal sig-
nals to map user paths to the floor plan. Local signal
changes do not affect much on the mapping accuracy. On
the other hand, UbiFin is designed in an incremental mode.
As time goes by, more and more users walk through the
region and contribute the latest signals to the changed fin-
gerprints. In an affected fingerprint, updated signals gradu-
ally gather to form a new cluster. It eventually becomes the
dominant cluster and replaces the outdated fingerprint.

7 EXPERIMENTAL EVALUATION

UbiFin is simple to implement. In this section, we evaluate
UbiFin through extensive experiments. We introduce the
implementation details and experimental settings in Sec-
tion 7.1, followed by illustrative results in terms of crowd-
sourcing localization accuracy and fingerprinting accuracy
in Section 7.2. In Section 7.3, we further discuss the position-
ing performance resulted from various indoor positioning
applications using the generated fingerprints.

7.1 Experimental Settings

Implementation & Devices. Our implementation of UbiFin
consists of a client app built on smartphones and a process-
ing server running on a PC. The client app is developed on
Android (API level 21). It gathers sensor readings at the
highest sampling frequency, including accelerations, angu-
lar velocities, Wi-Fi RSS values, magnetic fields, and the
like. We have tested it on various models of devices and dif-
ferent versions of operating systems. Specifications of some
selected experimental devices are listed in Table 2. The
server is implemented on Python 3. It receives crowd-
sourced data from clients and constructs fingerprint data-
bases of both RF and geomagnetic fields.

Experimental Environments. We conduct experiments in
two large-scale indoor environments of different character-
istics. The first venue is a floor in the academic building of
our campus, named campus (Fig. 8). The venue consists
mainly of corridors of different widths, with a total area of
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around 14000 m2. The second site is a two-story shopping
mall building, short for mall (Fig. 9). It contains lots of wide
corridors, a large atrium, and two escalators through which
users can reach the other floor. The complex venue covers
an area of approximately 46000m2.

Data Collection. The experimental data are collected by
multiple volunteers over several days. Participants carry
their smartphones and roam freely in the venues. They can
walk at their own pace without pre-planning. In total, there
are 95 paths of signals collected by 8 participants on the
campus, and 223 paths are collected by 15 users in the mall.
Note that we have no restriction on how users carry their
phones (e.g., holding, putting in pockets, etc.). In the experi-
ments, we adopt the preprocessing techniques described in
Section 3.3 to filter appropriate user activities and phone
attitudes for fingerprint database construction.

To record the true locations of user paths for evaluation,
participants are required to label locations on the app when
passing landmarks (e.g., junctions, counters, etc.). Besides,
we conduct additional site surveys to obtain ground-truth
fingerprints. Surveyors stand still at each RP for 10 seconds
and record Wi-Fi RSS values or geomagnetic fields. Both the
labeled locations and the surveyed signals are used only for
performance evaluation.

Evaluation Metrics. In the experiments, we adopt the fol-
lowing performance metrics:

� Crowdsourcing localization accuracy: We use crowd-
sourcing localization error to evaluate the accuracy of
estimated routes. Specifically, we take samples every
5 seconds along each path. For a sampled point, the
error is defined as the euclidean distance between
the estimated location and its true position.

� Fingerprinting accuracy: We use the metrics of RF fin-
gerprint error and magnetic fingerprint error to evaluate
the correctness of generated fingerprints, respec-
tively. For each RP, RF fingerprint error is defined as
the mean absolute error (MAE) of the generated RF

fingerprint against the site-surveyed one, and mag-
netic fingerprint error is the MAE between the gener-
ated magnetic fingerprint and its actual fingerprint.

Comparison Schemes. We compare UbiFin with the follow-
ing state-of-the-art schemes:

� GROPING [17]: The work leverages both crowd-
sourced magnetic fields and opportunistic location
labels to construct fingerprint databases. Different
user paths are associated according to their magnetic
correspondence. To make a fair comparison, we inte-
grate floor plans into the system so that user paths
can be associated with the floor plan directly.

� UnLoc [27]: The work employs clustering techniques
to discover landmarks with unique signal patterns
(e.g., Wi-Fi, magnetic field, acceleration, etc.). The
estimated locations of landmarks are then used to
calibrate walking directions and stride lengths of dif-
ferent users in PDR trajectories.

� LiFS [14]: This work considers a shared latent struc-
ture between the fingerprint space and the physical
space (represented by a stress-free floor plan). It
adopts multidimensional scaling (MDS) to align the
spaces and thus fingerprints Wi-Fi signals. Note that
LiFS detects doors as anchors for space alignment,
while they are not available in our scenarios. To
adapt to our experiments, we manually label all the
signals at junctions, which have similar density and
distribution to the door case.

Default Parameters. Unless otherwise stated, we use cam-
pus as the default testing venue. In both sites, we adopt the
supervised learning based speed estimation [51] in the PDR

TABLE 2
Specifications of Selected Devices in the Experiments

Model Operating System Wi-Fi Sampling Interval (Frequency) Magnetic Sampling Interval (Frequency)

Google Nexus 5 Android 5.1 910.3ms (1.10Hz) 16.8ms (59.58Hz)
Sony Xperia Z2 Android 6.1 5178.3ms (0.19Hz) 20.1ms (49.65Hz)
Redmi 4a Android 7.1 10023.8ms (0.10Hz) 5.0ms (198.58Hz)
Samsung Galaxy S8 Android 8.0 3050.4ms (0.33Hz) 20.0ms (50.02Hz)
Vivo Y50 Android 10 3445.5ms (0.29Hz) 9.9ms (100.84Hz)
Redmi Note 9 Android 10 18238.4ms (0.05Hz) 10.0ms (100.00Hz)

Fig. 8. The floor plan of one floor in our campus building. Fig. 9. The floor plan of a two-story shopping mall.
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implementation. The default system parameters are a ¼ 0:4,
b ¼ 0:3, and k ¼ 0:1.

7.2 Illustrative Results

Performance of Junction Detection. Junction detection is an
important component in UbiFin as it segments user paths to
correlate them with the floor plan graph. In Fig. 10, we com-
pare crowdsourcing localization errors under different junc-
tion detection approaches, i.e., the proposed method (labeled
as UbiFin) and the classic turning detection using gyroscope
(labeled as Gyro. Detection). We can observe a significant
improvement in UbiFin compared with the traditional way.
This is because UbiFin leverages user behaviors in multiple
paths to cross-verify the recognized junctions and hence
achieves accurate and robust detection. By contrast, the tradi-
tional method is prone to the influence of unexpected user
activities and sensor noise.

Performance of User Path Mapping. We show in Fig. 11
crowdsourcing localization errors among different schemes
at the campus site. Benefit from the multimodal nature, Ubi-
Fin gains the lowest mean error (3.08 m) and outperforms
the others by a large margin. By contrast, UnLoc fails to
identify accurate locations of landmarks while GROPING
suffers from inaccurate segmentation and error accumula-
tion. We also observe a long tail in the CDF caused by occa-
sional incorrect mapping decisions. However, it has limited
influence on fingerprinting because the majority of paths
can be mapped accurately (the 95th percentile is 3.60 m),
and the proposed clustering mechanism can further recog-
nize the misplaced signals as outliers (Section 6.1).

Fig. 12 compares the crowdsourcing localization perfor-
mance in the mall. Likewise, UbiFin achieves a satisfactory
accuracywith amean error of 4.97m and significantly outper-
forms the competitors. Compared with the case on the cam-
pus, the localization accuracy in the mall is degraded to some
extent due to noisier signals andmore complex environments.
Among them, LiFS shows the most serious drop (
70%) since
the ambiguity of RF signals disturbs the stitching accuracy
among different paths. However, the performance of UbiFin
remains satisfactory and exceeds the others substantially, vali-
dating its robustness against heterogeneous environments.

Accuracy of Fingerprint Databases. We evaluate the accu-
racy of the generated RF and magnetic fingerprint databases
on the campus. Fig. 13 shows the CDFs of RF fingerprint
errors under different schemes. UbiFin achieves the mini-
mum RF fingerprint error (3:48 dB) and greatly outperforms
the others (cutting the error by 24 to 48 percent). Fig. 14
plots the CDF comparison of magnetic fingerprint errors.

Note that we have not involved LiFS here because LiFS does
not guarantee the continuity of signals and hence does not
apply to fingerprinting magnetic fields. The results show
that UbiFin achieves the lowest fingerprint error (1.78 mT),
which is at least 40% less than GROPING and UnLoc. The
remarkable fingerprinting performance comes mainly from
the accurate path mapping (also illustrated in Fig. 11) and
the effectivemisplaced signal filtering.

We also evaluate the fingerprint accuracy in the large shop-
pingmall. Fig. 15 shows the CDFs of RF fingerprint errors.We
can see the lowest RF fingerprint error (4:45 dB) and the short-
est tail achieved by UbiFin. Similar to the previous results on
the campus (Fig. 13), the accuracy ofUbiFin exceeds the others
by a large margin. Fig. 16 presents the CDF plots of magnetic
fingerprint errors. Unsurprisingly, the magnetic fingerprint
error of UbiFin is the lowest (3.44mT) among all the evaluated
schemes, outperforming GROPING by 38.8% and UnLoc by
52.5%. The stable results also prove the applicability of UbiFin
in diverse scenarios.

Impact of System Parameters. We study the impact of signal
weightsa, b, and� in themapping cost function (Equation (7)).
The weights reflect our trust towards different signal modali-
ties, i.e., RF (controlled by a), geomagnetic field (controlled by
b), and displacement (controlled by � ¼ 1� a� b). Fig. 17
shows the distribution of mean crowdsourcing localization
errors over different weight settings. On the one hand, we can
observe a high localization error when ambient signals are
missing (i.e., both a and b are set to 0). Without any ambient
signal, UbiFin maps crowdsourced paths based on mobility
information and floor plans only. This results in severe route
ambiguity, i.e., a path may be mapped to multiple possible
routes in the floor plan, leading to large localization errors in
the experiments. On the other hand, the error bars on the diag-
onal (i.e., aþ b ¼ 1) demonstrate that lack of displacement
information leads to high localization errors (with only ambi-
ent signals such as RF and geomagnetic fields without motion

Fig. 10. CDF of crowdsourcing localization errors with different junction
detection approaches.

Fig. 11. CDF of crowdsourcing localization errors (campus).

Fig. 12. CDF of crowdsourcing localization errors (mall).
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information). In this case, errors usually occur when mapping
paths in the area without adequate previous fingerprints. The
above shows that either signal modality alone is not sufficient
to accurately determine path trajectories. By contrast, with
both ambient (RF andmagnetic field) andmotion signals, Ubi-
Fin achieves low localization errors, as shown in the middle
region where a 6¼ 0, b 6¼ 0, and � 6¼ 0. In practice, we set a ¼
0:4, b ¼ 0:3, and thus � ¼ 0:3, to balance the importance of sig-
nalmodalities and hence achieve robust performance.

Fig. 18 demonstrates the impact of acceptance threshold k

(Algorithm 3) on crowdsourcing localization errors and map-
ping rejection rates (the percentage of mapping that cannot be

accepted for fingerprinting). The threshold controls whether a
mapping result is trustworthy or not. A small k tightens up
the requirement of mapping confidence, and vice versa. We
observe a large localization error when k is very small (say,
0.05). This is because the strict threshold rejects a large num-
ber of paths and results in insufficient ambient information
for later mapping. On the other hand, a loose value (i.e., large
k) fails to recognize the incompatible mappings and hence
cannot yield satisfactory accuracy either. With a proper
threshold k ¼ 0:1, UbiFin achieves extraordinary mapping
accuracy in both sites where over 90 percent of paths are cor-
rectlymapped.

Impact of Heterogeneous Devices. Fig. 19 compares the per-
formance of junction detection among different devices
(Table 2). In the experiment, we consider a detected junction
to be correct if the time difference between the detection
time and the actual encountering time is less than 3 s. We
use precision to reflect whether detected junctions are correct
and recall to describe whether all junctions are detected. F-
score is the harmonic mean of precision and recall, which
gives an overall evaluation. Benefit from the robust mag-
netic matching (Section 4.1) and clustering-based junction
recognition (Section 4.2), UbiFin achieves satisfactory per-
formance on all the devices (most precisions are greater
than 0.95 and all recalls are greater than 0.9).

We study in Fig. 20 the crowdsourcing localization perfor-
mance on heterogeneous devices. The CDFs show that all the
devices achieve similar localization performance. Over 90% of
the paths collected by each device are accurately located with
low errors (less than 5 m). Surprisingly, we notice that two
smartphones with Android 10 (i.e., Vivo Y50 and RedmiNote
9) perform slightly worse than the others. This is possibly
because of the scanning restriction (e.g., reduced Wi-Fi scan-
ning frequency) on the Android platform of a higher ver-
sion [53]. Despite the low RF sampling rate on certain devices,

Fig. 13. CDFs of RF fingerprint errors (campus).

Fig. 14. CDFs of magnetic fingerprint errors (campus).

Fig. 15. CDFs of RF fingerprint errors (mall).

Fig. 16. CDFs of magnetic fingerprint errors (mall).

Fig. 17. Impact of signal weights a and b on crowdsourcing localization
errors.

Fig. 18. Impact of acceptance threshold k on crowdsourcing localization
errors and mapping rejection rates.
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UbiFin takes advantage of multimodal signals and hence
shows robustness against device heterogeneity.

Performance of Environmental Change Adaptation. UbiFin is
capable of adapting to environmental changes and updating
fingerprints accordingly. To validate this, we design an
extra experiment to evaluate system performance under
environmental changes. Specifically, we treat the same cam-
pus site after 12 months as a changed environment. There is

no obvious change on the floor plan. However, due to the
partial renovation and the upgrade of network facilities,
both Wi-Fi and magnetic fields in much of the region have
been changed. We gather another set of signal series via
crowdsourcing (157 paths collected over several days) and
apply UbiFin on top of the outdated databases (constructed
by the previous crowdsourcing).

Figs. 21 and 22 demonstrate the RF and magnetic finger-
print errors before and after performing UbiFin, respectively.
Due to signal changes in the environment, the previous finger-
print databases deviate from the current true fingerprints by a
large margin (5:93dB in RF and 7.57 mT in magnetic fields on
average). After applying UbiFin, the fingerprint databases are
gradually updated and the fingerprint errors are greatly
reduced (cutting the RF error by 32.3% and themagnetic error
by 59.5%).

To have a close look at the process of the environmental
adaptation, we further present the RF and magnetic finger-
print errors over the number of mapped paths in Figs. 23 and
24, respectively. As time goes by, more paths are correctly
mapped andoutdated fingerprints are replacedwith the latest
ones, and thus both the errors steadily decrease. We also
notice that the RF errors converge at a slower pace. This is
mainly because of the much lower sampling frequency of Wi-
Fi and higher dimensionality in RSS measurements. By con-
trast, since magnetic fields can be measured densely along
paths, more magnetic RPs are thus updated and the finger-
print errors drop rapidly in the initial 60 paths.

7.3 Indoor Positioning Applications Based on the
Generated Fingerprints

To verify the effectiveness and compatibility of our gener-
ated fingerprint databases, we further investigate the posi-
tioning accuracy under the following mature indoor
positioning applications:

� RADAR [8]: This is a pioneeringWi-Fi fingerprint posi-
tioning algorithm that utilizes the K-nearest neighbor
(KNN) algorithm. Cosine similarity is applied to

Fig. 19. Junction detection performance among heterogeneous devices.

Fig. 20. CDFs of crowdsourcing localization errors among heteroge-
neous devices.

Fig. 21. CDFs of RF fingerprint errors before/after adaptation to environ-
mental changes.

Fig. 22. CDFs of magnetic fingerprint errors before/after adaptation to
environmental changes.

Fig. 23. RF fingerprint errors over the number of mapped paths in envi-
ronmental change adaptation.

Fig. 24. Magnetic fingerprint errors over the number of mapped paths in
environmental change adaptation.
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compute the similarity between any two RSS vectors.
We setK ¼ 3 in our implementation.

� Horus [9]: This is a probabilistic Wi-Fi fingerprint
positioning scheme that assumes RSS values follow
Gaussian distributions. The algorithm aims to find
the fingerprints which have the maximum likelihood
of the observed RSS vectors. A weighted K-nearest
neighbor (WKNN) algorithm is then used for precise
location estimation (K ¼ 3 in our implementation).

� Magicol [4]: The algorithm exploits dynamic time
warping (DTW) on sequences of magnetic fields to
compare the observed signals with the given finger-
print database. It also adopts a particle filter to fur-
ther improve positioning accuracy.

We evaluate the positioning errors under the fingerprint
databases generated by UbiFin and by an ordinary site sur-
vey, respectively. Fig. 25 shows the errors on the campus.
We can see that UbiFin performs well in both Wi-Fi and
magnetic field positioning applications. It yields competi-
tive positioning accuracy compared with the time-consum-
ing site survey among all the schemes. The error difference
between UbiFin and the site survey is less than 0.4m. We
also plot Fig. 26 the performance comparison in the shop-
ping mall. Though the positioning errors in the mall are
generally larger than those on the campus due to noisy sig-
nals and complex environments, UbiFin achieves similar
results to the campus case where the positioning accuracy is
close to (and sometimes even better than) the site survey.
This fully validates the effectiveness of UbiFin in practical
positioning applications.

8 CONCLUSION

In this paper, we propose UbiFin, a novel and robust finger-
printing scheme based on the implicit multimodal crowd-
sourcing of RF, magnetic, and motion (acceleration and

angular velocity) signals. By correlating and analyzing these
signals among different user paths, UbiFin mitigates signal
bias and path mapping error to construct fingerprints of both
RF and geomagnetic fields simultaneously. As far as we
know, this is the first piece of work considering multimodal
correlation for joint RF and geomagnetic fingerprinting.

UbiFin first employs a junction detection algorithm based
on themotion and geomagnetic signals. It partitions user paths
into multiple segments indicated by the junction points in the
floor plan. Using a dynamic programming formulation, Ubi-
Fin then efficiently maps the segments as user trajectories in
the floor plan. It subsequently detects and filters out thosemis-
placed fingerprints to construct highly accurate fingerprint
databases of both RF and geomagnetic field. We have imple-
mented UbiFin and conducted extensive experiments on our
campus and a multi-story shopping mall. The experimental
studies show that UbiFin outperforms other state-of-the-art
crowdsourcing schemes in terms of accuracy, robustness, and
scalability (cutting fingerprint error by 40 percent in general).
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