
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024 11889

Online Path Description Learning Based on IMU
Signals From IoT Devices

Weipeng Zhuo , Shiju Li, Tianlang He , Mengyun Liu, S.-H. Gary Chan , Senior Member, IEEE,
Sangtae Ha , Senior Member, IEEE, and Chul-Ho Lee , Member, IEEE

Abstract—A user’s movement path can be precisely and concisely
described as a concatenation of straight lines having the user’s turns
as their end points. Learning such a path description or representa-
tion from inertial measurement unit (IMU) sensors enables various
mobile and IoT applications, as it allows efficient processing of the
movement path data. It is, however, non-trivial to learn a succinct
yet accurate path description from IMU sensor readings in the
mobile device of a moving user on the fly due to the dynamically
changing behaviors and the technical difficulty in detecting the
user’s turns. We propose PATHLIT, a novel online path description
learning system based on IMU signals. PATHLIT learns position
vectors of a user from IMU sensor readings by our custom-made
self-attention network model. Once each position vector is learned,
PATHLIT also decides whether or not to take it as a part of the re-
sulting path description by our efficient online algorithm developed
under the minimum description length principle, which essentially
detects the user’s turns along the path. We conduct extensive
experiments on two large datasets. The experiment results show
that PATHLIT achieves superior performance over state-of-the-art
algorithms by up to 50% in absolute trajectory error using only
15% of trajectory data points.

Index Terms—IMU, path recovery, online turn detection,
minimum description length.

I. INTRODUCTION

A MOVEMENT path of a user in the two-dimensional space
can be succinctly described by straight lines interspersed

Manuscript received 6 June 2023; revised 16 April 2024; accepted 13 May
2024. Date of publication 31 May 2024; date of current version 5 November
2024. The work of Weipeng Zhuo was supported in part by IRADS under Grant
2022B1212010006, Grant R0400001-22 and Grant UICR0700100-24. The work
of Sangtae Ha was supported in part by the NSF under Grant 1908910. The
work of Shiju Li and Chul-Ho Lee was supported in part by the NSF under
Grant 2209921 and Grant 2209922. Recommended for acceptance by A. Conti.
(Corresponding author: Chul-Ho Lee.)

Weipeng Zhuo is with the Guangdong Provincial Key Laboratory IRADS and
Department of Computer Science, BNU-HKBU United International College,
Zhuhai 519088, China (e-mail: weipengzhuo@uic.edu.cn).

Shiju Li was with the Texas State University, San Marcos, TX 78666 USA.
He is now with the Department of Computer Engineering and Sciences, Florida
Institute of Technology, Texas State University, Melbourne, FL 32901 USA
(e-mail: sli2015@my.fit.edu).

Tianlang He and S.-H. Gary Chan are with the Department of Computer
Science and Engineering, Hong Kong University of Science and Technology,
Hong Kong, China (e-mail: theaf@cse.ust.hk; gchan@cse.ust.hk).

Mengyun Liu is with the Institute of Artificial Intelligence, Guangzhou
University, Guangzhou 511370, China (e-mail: amylmy@gzhu.edu.cn).

Sangtae Ha is with the Department of Computer Science, University of Col-
orado Boulder, Boulder, CO 80309 USA (e-mail: sangtae.ha@colorado.edu).

Chul-Ho Lee is with the Department of Computer Science, Texas State
University, San Marcos, TX 78666 USA (e-mail: chulho.lee@txstate.edu).

Digital Object Identifier 10.1109/TMC.2024.3406436

Fig. 1. Acceleration signals from a phone held in hand while a user is walking.

with the user’s turns, which we refer to as a path description,
since people usually do not walk randomly. It is important to
learn the path descriptions efficiently “on the fly” from the
readings of inertial measurement unit (IMU) sensors in users’
Internet of Things (IoT) devices. For instance, path descriptions
can be leveraged for real-time applications such as augmented
and virtual reality applications [1], [2]. They can also be used to
enable smart city applications at scale, such as indoor pathway
learning [3], indoor navigation [4], and robot cleaning [5], due
to their succinct representations of movement paths that allow
efficient processing, storage, and transmission of the path data.

It is, however, challenging to learn such a path description
since we need to recover its movement path and detect its
associated user turns accurately on the fly. When recovering
the movement path of a user from IMU readings, a small change
in the user’s walking behavior, referred to as context, can lead
to substantial changes in the sensor readings. For example, the
walking context changes, when a moving user with a phone in
hand encounters and greets someone by waving the hand holding
the phone, as shown in Fig. 1. Thus, such a small context change
makes accurate path recovery non-trivial. This path recovery
problem has been studied in the literature, but existing solutions
still have their own limitations.

Earlier studies [6], [7], [8] focus on learning a simple linear
model for step length estimation from IMU readings since it boils
down to the step length estimation, assuming the direction of
each step can be estimated accurately. Observing that the model
parameters are specific to walking contexts, a few later studies
build different linear models for different walking contexts and
use an appropriate model by classifying the current walking
context [9], [10]. They, however, require a non-trivial process
of collecting IMU readings for different walking contexts (with

1536-1233 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1810-7071
https://orcid.org/0000-0002-4939-5993
https://orcid.org/0000-0003-4207-764X
https://orcid.org/0000-0001-5983-5430
https://orcid.org/0000-0002-4778-8996
mailto:weipengzhuo@uic.edu.cn
mailto:sli2015@my.fit.edu
mailto:theaf@cse.ust.hk
mailto:gchan@cse.ust.hk
mailto:amylmy@gzhu.edu.cn
mailto:sangtae.ha@colorado.edu
mailto:chulho.lee@txstate.edu

11890 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

manual context labelling). In addition, other recent studies [11],
[12], [13] leverage a long short-term memory (LSTM) model to
recover a movement path by obtaining a sequence of estimated
displacement or velocity vectors, without requiring any context
classification. Nonetheless, while the rationale behind the use
of the LSTM model is that the patterns in the IMU readings
would have strong temporal correlations, context changes in
users’ walking behaviors could make their IMU readings little
correlated.

On the other hand, when the movement path of a moving
user is recovered from a stream of IMU readings, it can be
wasteful and costly to store all the positional information for the
recovered path, which is a set of position vectors (or coordinates
of points along the path) that grows and expands over time. This
problem can be even more critical when it comes to IoT devices
with limited storage space. Thus, it is desirable to identify, in
real time, which position vectors are crucial for a succinct yet
accurate path description to represent the movement path that is
being recovered. It boils down to the problem of detecting the
user’s turning points on the path on the fly, but it remains largely
unsolved in the literature.

Prior studies [14], [15], [16] on the turn detection problem
generally focus on the offline scenario where user turns are
detected once the whole path information is available, i.e., after
the user’s movement is complete. Thus, they cannot be used for
detecting turns on the fly for real-time applications. In addition,
a thresholding method could be used to detect the user’s turns
by assuming that the user makes a turn if the directional change
is above a predefined threshold [17]. However, such a method
requires careful calibration of the threshold value, and it is also
prone to errors when the IMU readings are noisy. Others [4],
[18] leverage indoor maps for turn detection. It is, however,
impractical to require an indoor map for every indoor setting.

In this paper, we propose PATHLIT, a novel online PATH
description Learning system based on IMU signals from IoT
devices. PATHLIT learns a path description from a stream of
IMU readings by solving the problems of recovering a user’s
movement path and detecting the user’s turns from the path
simultaneously and on the fly. Here the resulting path description
is a sequence of position vectors for turning points. The salient
features of PATHLIT are that it is context-agnostic in the sense
that it does not require context classification or prediction,
and the path description is obtained in a principled manner by
optimizing the tradeoff between the preciseness and conciseness
of its representation without any predefined parameter.

PATHLIT first uses a multi-head self-attention network model
which is tailor-made to effectively learn a user’s movement path
from a stream of IMU readings without context inference. The
rationale behind the design of this model is to capture short-term
correlations within IMU signals rather than their long-term cor-
relations that have been mainly explored in the prior work [11],
[12], [13], since walking context changes make the IMU signals
less correlated in the long term, yet in an arbitrary manner. The
IMU readings are first divided into short sequences of equal
length. These sequences are then continuously fed into the model
to learn their corresponding velocity vectors, which are then
converted into displacement vectors and, eventually, position
vectors.

Fig. 2. Movement path versus path description.

While a concatenation of the learned position vectors rep-
resents the user’s movement path, it would not be a succinct
representation. Thus, whenever a new position vector is learned
by the self-attention network model, PATHLIT next decides
whether to keep this position vector as a turning point or dis-
card it, leading to a succinct and accurate path description that
consists of the position vectors chosen as turning points. This is
done by our online turn detection algorithm, which is developed
under the minimum description length (MDL) principle [19].
We empirically demonstrate that this online algorithm not only
results in a compact path description but also improves the
accuracy of the recovered movement path.

A path description is considered to be precise or have high
fidelity, when it contains all crucial user turns (and possibly a few
extra ones) that can recover the path without much deviation. It
is also considered to be concise or have low complexity, when it
contains as few turns as possible, possibly less than the number
of true turns. Our goal here is to find a path description that
strikes a balance between its preciseness and conciseness. We
thus leverage the MDL principle, which is to find the best (yet
unknown) model, i.e., the best path description, that optimizes
the tradeoff between the model’s complexity, i.e., path descrip-
tion length, and fidelity, i.e., deviations of the path description
from the path. See Fig. 2 for an illustration.

However, the MDL principle is not a method, which means
that it does not provide how to obtain the optimal model and
neither does it provide an explicit problem formulation. Thus, we
first introduce a notion of MDL cost to define the complexity and
fidelity of a model so that the optimal model can be properly de-
fined under the MDL principle. Because it still remains unknown
how to obtain the optimal model, we formulate the problem as
an MDL cost minimization problem. We then formally establish
that its offline optimal solution can be obtained by solving an
equivalent shortest-path problem on a weighted directed acyclic
graph when the whole path information is available. We finally
present MET, our MDL-based online turn detection algorithm. It
is an efficient online algorithm of time complexity O(αmaxN)
that allows us to find a succinct yet accurate path description
on the fly based only on the path recovered so far, where N
is the total number of points (position vectors) on a movement
path, and αmax is the largest number of points between two
consecutive turning points detected.

Our contributions can be summarized as follows:
� Context-agnostic path recovery: We develop a multi-head

self-attention network model to recover users’ movement
paths from IMU readings in their mobile devices while
being agnostic to how they carry the devices. The model is
judiciously customized to capture short-term correlations
in the IMU readings for accurate path recovery.

� Novel turn detection algorithm: We demonstrate that the
turn detection problem under the MDL principle can be

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

ZHUO et al.: ONLINE PATH DESCRIPTION LEARNING BASED ON IMU SIGNALS FROM IoT DEVICES 11891

solved by solving its equivalent shortest-path problem on a
weighted directed acyclic graph. This problem equivalence
allows us to obtain an (offline) optimal solution when the
complete path information is available. In addition, as an
integral component of PATHLIT, we develop an efficient
online algorithm named MET to detect turning points on
the fly based only on the path recovered so far, without
requiring any parameterization or calibration of threshold
values.

� Extensive experiments: We validate the effectiveness of
PATHLIT on the RoNIN open dataset and our campus
dataset. The datasets contain sequential IMU signals col-
lected for a wide range of path trajectories while having
different walking contexts, such as devices being used for
messaging or taking photos and devices being in bags or
pockets. Experiment results show that PATHLIT achieves
high accuracy in path recovery and outperforms state-of-
the-art algorithms significantly (by up to 50% in absolute
trajectory error while just maintaining around 15% of the
total location data points). Furthermore, we discuss the
feasibility of MET for trajectory compression by showing
its superior performance over state-of-the-art compression
algorithms on the Microsoft GeoLife dataset (by up to 25%
in absolute trajectory error).

The rest of this paper is organized as follows. We provide
a system overview of PATHLIT in Section II. We then present
how to recover user paths in Section III. We elaborate on the turn
detection problem under the MDL principle and our turn detec-
tion algorithm MET in Section IV. We next present illustrative
experiment results in Section V. We review the related work in
Section VI and further discuss how to incorporate measurement
data from other sensors and leverage more advanced orientation
estimation techniques in Section VII. Finally, we conclude in
Section VIII.

II. SYSTEM OVERVIEW

When a user is moving, six IMU sensor readings (three from
an accelerometer and another three from a gyroscope) are col-
lected in the user’s mobile device at a given sampling frequency.
Note that the IMU readings cannot be used as they are, as they
depend on the coordinate system of the mobile device, whose
orientation keeps on changing over time. The device coordinate
system is defined relative to the device’s screen, and the IMU
readings are collected with respect to this device coordinate sys-
tem, which can change due to the orientation changes. Thus, they
are always transformed into the global coordinate system, which
is aligned based on gravity and standard magnetic orientation
and used as a reference coordinate system.1

Given a set of six IMU sensor readings, PATHLIT first recov-
ers the corresponding segment of the movement path of the user
via a multi-head self-attention network model. Specifically, it
infers the velocity vector (speed and direction) of the segment
from which the coordinates of the ending point of the path
segment are obtained. PATHLIT then decides whether (or not)

1Note that the rotation of the device along x-, y-, z-axis is measured by pitch,
roll, and azimuth, respectively, which are available information in most mobile
devices and used for the transformation.

to keep the coordinates via our MDL-based online algorithm
MET. Thus, we obtain a path description, which is a collection
of the coordinates of the points along the path that are considered
‘turning’ points. These operations in PATHLIT are done on the
fly for every set of six IMU readings.

While the details of our multi-head self-attention network
model shall be explained in Section III, the model is trained
offline as follows. Given a movement path, or more specifically,
a stream of six IMU readings collected during the path trajectory,
it is first divided into smaller sequences of equal length, each
of which is associated with its (ground truth) velocity vectors.
We set each sequence to a two-second time window in this
work, while we also discuss the impact of different sequence
lengths on PATHLIT’s performance in Section V. The entire
set of sequences are then all taken into the model in parallel
instead of being taken sequentially. This way the model is able
to capture correlations between the signal patterns that appear
in different sequences, which are not necessarily right next to
each other, as it is one of the salient features of self-attention
networks compared to recurrent neural networks. The output of
the model is a set of estimated velocity vectors for the given
set of sequences per movement path. Thus, the model is built in
a way that minimizes the difference between the ground-truth
velocity vectors and the estimated velocity vectors.

As the output of its online inference, PATHLIT generates
an estimated velocity vector for a segment of the path, which
is then converted to the coordinates of the ending point of
the segment. PATHLIT next uses its turn detection algorithm
MET to decide whether to keep the coordinates. This online
algorithm is developed as an online counterpart of the offline
optimal algorithm to detect optimal turning points along the path.
Assuming that the whole (estimated) trajectory information is
available, we formulate a turn detection problem from the MDL
principle and formally demonstrate that it is equivalent to solving
a shortest-path problem on a weighted directed acyclic graph,
which naturally leads to the offline optimal algorithm. The
details of the offline optimal algorithm and its online counterpart
MET shall be explained in Section IV. Fig. 3 summarizes the
overall system architecture of PATHLIT.

III. CONTEXT-AGNOSTIC PATH RECOVERY

In this section, we explain the details of our multi-head
self-attention network model to infer the movement path of a
user from the IMU signals in the user’s mobile device. While
the multi-head self-attention network architecture was proposed
in [20], it was originally developed for NLP. We first provide a
brief introduction to the self-attention network and then explain
how a stream of IMU signals, which are time-series data, are
leveraged along with the self-attention network model for the
movement path recovery.

A. Preliminaries on Self-Attention Networks

The self-attention network takes in a sequence of inputs and
results in their corresponding output sequence. For instance, in
the translation task in NLP, it takes in a sequence of words
in one language and translates them into a sequence of words
in another language. The self-attention network commonly has

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

11892 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Fig. 3. System diagram of PATHLIT.

Fig. 4. Illustrating the attention mechanism on a sequence of signals under
different contexts. Thicker lines indicate higher attention.

an encoder-decoder architecture. Taking the translation task as
an example, the encoder first processes the input sequence of
words to learn the attention weights, or correlations, between
each pair of the words. The attention weights are then shared
with the decoder layers. In the decoder, the embedding of a
token that corresponds to a word is taken as an input at a time.
Together with the learned attention weights from the encoder, the
embedding is used to predict the next word in another language
until the translation is done or a predefined length is reached.
Details on the encoder-decoder architecture used in PATHLIT
shall be presented in Section III-C.

In PATHLIT, a sequence of IMU signals are taken into the self-
attention network to generate a sequence of their corresponding
velocity vectors such that the user path can be recovered ac-
curately. The sequence of IMU signals taken into the network
might be obtained while under different contexts, as shown in
Fig. 4, where the signals under different contexts are denoted
with different colors. Note that a window of IMU signals for a
short period of time can be thought of as a word in the translation
task. The network is then able to learn attention weights (or
pairwise correlation) between each pair of signal windows,
which allow us to capture which ones are similar to each other.
The signal windows under similar contexts would have higher
attention scores and thus lead to similar velocity vectors. Hence,
we leverage the attention mechanism in PATHLIT to infer the
velocity vectors under different contexts automatically, without
manually specifying the contexts beforehand or afterwards.

There are two main advantages of using a self-attention net-
work over a recurrent neural network network (RNN) for our
problem. First, the computation in the self-attention network is
done in parallel for a sequence of signals, making it much more
efficient compared with RNN which needs to process the signals

Fig. 5. Network inputs and outputs.

one by one in a sequential order. Second, the self-attention
network allows us to focus on signals under similar contexts in
predicting velocity vectors without attending to other patterns,
which improves the model performance substantially. However,
in RNN, as the signals have to be processed in order, the outputs
of RNN could be influenced by the earlier parts of signals that
might have been under distinct patterns, thereby possibly leading
to unsatisfactory prediction performance.

B. Network Inputs and Outputs

Recall that the IMU sensors in a mobile device are an ac-
celerometer and a gyroscope, each of which has three axes,
namely x-, y- and z-axis. Given a sampling rate, the two sensors
generate a total of six sensor readings at each sampling time.
Let s1, s2, and s3 be three d-dimensional column vectors to
represent streams of the accelerometer readings (or samples)
along the x-, y-, and z-axis, respectively, obtained while a user
is moving. Similarly, we define s4, s5, and s6 for the streams of
the three-axis readings from the gyroscope. Here the dimension
d of each vector si is the total number of readings during a user’s
path trajectory, which is the sampling rate times the total travel
time by the user for the trajectory.

As shown in Fig. 5, we first construct a d× 6 signal matrix
S := [s1 s2 . . . s6] as a horizontal concatenation of the six
vectors. In other words, this signal matrix S represents a stream
of six IMU sensor readings. We then divide the signal matrix S
into two-second sequence matrices of size ds × 6, where ds is

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

ZHUO et al.: ONLINE PATH DESCRIPTION LEARNING BASED ON IMU SIGNALS FROM IoT DEVICES 11893

the number of sensor readings collected for two seconds along
each sensor axis. In other words, the signal matrix S is divided
into �d/ds� sequence matrices. Let Sk := [sk1 sk2 . . . sk6] ∈
Rds×6 be the k-th sequence matrix, where ski indicates the
k-th ds-dimensional sequence vector obtained from si for i =
1, 2, . . . , 6 and k = 1, 2, . . . , �d/ds�.

Fix k. We next obtain an embedding matrix of size ds × dem
from each sequence matrix Sk via a linear transformation with
a learnable weight matrix WS ∈ R6×dem . We also introduce
positional encodings to account for the order of the embed-
dings obtained from the collections of six sensor readings. Each
position encoding is a representation of the position of each
collection of six sensor readings among the ds collections.
The dimension of this representation is the same as that of
each embedding. Specifically, for each sequence matrix Sk, we
define the following positional encoding matrixP ∈ Rds×dem to
encode the positions of rows in Sk, where each row corresponds
to a collection of six sensor readings at a sampling time. Each
entry of P is given by

P(i,2j)=sin
(
i/f2j/dem

)
, and P(i,2j+1)=cos

(
i/f2j/dem

)
,

where j is the index of the j-th dimension with 0 ≤ j < dem/2,
and f is some constant to control the cyclic pattern of each
sinusoidal function, which is set to 10000 as in [20]. To summa-
rize, we first have a d× 6 signal matrix S from the streams
of six sensor readings obtained during a user’s path trajec-
tory and divide S into ds × 6 sequence matrices. Then, from
each sequence matrix Sk, we finally have a ds × dem input
embedding matrix Λk := SkWS +P, which is obtained by a
linear transformation with WS and then by incorporating the
positional encoding matrix P.

While each input embedding matrix Λk can be used as an
input into the self-attention network model, we use a sliding win-
dow of ns input embedding matrices as an input. The rationale
behind this is to learn a better representation by capturing possi-
ble correlations between IMU signal patterns over a longer time
span, i.e., 2ns seconds, while still limiting to each two-second
sequence for inference. We use ns = 5 in this work. Let Uk be
the k-th sliding window of ns input embedding matrices, which
is defined as a vertical concatenation of the ns matrices, i.e.,
Uk := [Λk−ns+1;Λk−ns+2; . . . ;Λk] ∈ Rnsds×dem , where ‘;’
indicates the vertical concatenation of the matrices. Note that the
first ns − 1 sliding windows are constructed with zero-matrix
padding to match the dimension.

In addition, for a collection of six sensor readings at each
sampling time, the self-attention network model outputs its
corresponding estimated velocity vector v̂ := [v̂x, v̂y] in the
two-dimensional space. In other words, for each inputUk , which
is a sliding window of ns input embedding matrices, it outputs
a collection of estimated velocity vectors, i.e.,

V̂k :=
[
v̂(k−ns)ds+1; v̂(k−ns)ds+2; . . . ; v̂kds

]
∈ Rnsds×2.

On the other hand, for model training, we have a ground truth
velocity vi for the i-th collection of six sensor readings, which
is obtained by calculating the difference of two position vectors

Fig. 6. Training and inference of our self-attention network model.

of the user at two seconds apart, i.e.,

vi :=
xi+ds

− xi

2
, (1)

where xi and xi+ds
denote the location vectors of the

user at the i-th sampling time and the (i+ ds)-th sam-
pling time (two seconds later), respectively. Letting Vk :=
[v(k−ns)ds+1;v(k−ns)ds+2; . . . ;vkds

], we use the following loss
function for model training:

loss :=
∑
k

‖Vk − V̂k‖F , (2)

where ‖ · ‖F is the Frobenius norm. Note that all the velocity
vectors with negative indexes are again padded with zero vectors
for both ground truth and estimated ones. Fig. 3 depicts a
summary of the overall operation explained above.

When it comes to inference, we use the origin (0,0) as the
starting position x̂0. Whenever a new two-second sequence
of six sensor readings, i.e., Sk, is available, we construct
an input matrix Uk with historical data (padded with zeros
if there are not enough historical data), which leads to its
corresponding estimated velocity matrix V̂k. From V̂k, we
only take a new collection of the estimated velocity vectors
[v̂(k−1)ds+1; v̂(k−1)ds+2; . . . ; v̂kds

] that correspond to the new
two-second (input) sequence Sk. By noting that the velocities
do not change much within a two-second window, we use the
average of the estimated velocity vectors in inferring the position
of the user, which is given by

v̄k :=
1

ds

ds∑
i=1

v̂(k−1)ds+i. (3)

An illustrative example of the training and inference processes
is provided in Fig. 6.

For the k-th input sequence Sk, the displacement vector that
the user makes for two seconds can be estimated as 2v̄k. The
k-th position vector x̂k can then be estimated as

x̂k := x̂k−1 + 2v̄k. (4)

Therefore, the user’s movement path recovered based on N
two-second sequences of IMU signals is finally represented as
{x̂0, x̂1, . . . , x̂N}.

C. Network Structure

We develop a multi-head self-attention network model that
has an encoder-decoder architecture and is adopted from [20].
We first consider its encoder structure. Since each input Uk is
fed into the model independently and identically, we hereafter
drop the subscript k and use U to denote an input matrix for
brevity, unless otherwise noted.

Given an input matrix U ∈ Rnsds×dem , we extract feature
representations via linear transformations with three dem × dem

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

11894 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Fig. 7. Encoder of the multi-head attention network.

learnable weight matricesWQ,WK , andWM . Specifically, we
have the following nsds × dem matrices:

Q := UWQ, K := UWK , and M := UWM .

Here, rows of Q, K, and M are called queries, keys, and values,
respectively. We then obtain weighted sums of feature represen-
tations via the self-attention mechanism, which is defined by

Attention(Q,K,M)

:= softmax
(
QKT /

√
dem

)
M ∈ Rnsds×dem ,

where the scaling factor 1/
√
dem is introduced to avoid vanish-

ing gradients, softmax(·) indicates a row-wise softmax normal-
ization function, andT stands for the transpose operation. Recall
that each row ofU corresponds to a collection of six IMU sensor
readings at a sampling time. The scaled dot product between
the feature representations of two different collections (a row
of Q and another row of K) indicates their similarity score.
Thus, the self-attention leads to weighted sums of value feature
representations with the weights proportional to the similarity
scores.

To further improve the model performance, as shown in Fig. 7,
we adopt the multi-head attention mechanism to transform the
input matrix U into multiple representation subspaces. The
matrices Q, K, and M are first linearly projected to h different
subspaces. Each linear projection is done independently via
the same self-attention mechanism (yet with different weight
matrices). They are then concatenated horizontally and fed
into a linear layer (i.e., a linear transformation), which outputs
final nsds × dem representations of the input matrix U. The
multi-head attention mechanism is summarized as follows:

MultiHead(Q,K,M) := [head1 head2 . . . headh]WO,

with headi := Attention
(
QWi

Q,KWi
K ,MWi

M

)
,

where WO is a dem × dem learnable weight matrix, and Wi
Q,

Wi
K , and Wi

M are dem × dem/h learnable weight matrices for
i=1, . . . , h. This completes the operation of an encoder layer.
In this work, we use a stack of encoder layers, where each of
them has the same structure and takes the output of the previous
layer as an input (except the first/bottom layer). The number of
the encoder layers is a hyperparameter.

We next turn attention to the decoder structure. Since it is
similar to the encoder structure, we here focus on its main
structure. The decoder takes the output of the encoder, which
is the final representations of Uk, as an input and outputs its
corresponding predicted velocity matrix V̂k. The decoder has a
self-attention layer followed by an encoder-decoder attention

Fig. 8. Visualization of embeddings learned.

layer. The self-attention layer is the same as the one in the
encoder. While the encoder-decoder attention layer also works
based on the same self-attention mechanism, it takes in the
queries Q from the self-attention layer and the keys K and the
values M from (the last encoder layer of) the encoder. Since K
and M are the key and value representations of the input matrix
Uk (a sliding window of ns input sequences), this allows the
decoder to attend to all positions in the input sequences. As in
the encoder, we use a stack of decoder layers, where the number
of the decoder layers is a hyperparameter. The output of the last
encoder layer finally goes through the final linear and softmax
layers to obtain the velocity matrix V̂k.

Note that the velocity matrix V̂k is used along with the
ground-truth velocity vectors to calculate the loss in (2) and build
our model that minimizes the loss. When it comes to inference,
it is used to recover the user’s movement path as in (3) and (4).
The rest of the encoder-decoder architecture is the same as the
one in [20].

To demonstrate the effectiveness of our self-attention network
model, we carry out a small experiment to visualize the embed-
dings learned from our model and LSTM [13]. In the experiment,
a user is asked to walk along a path with a phone in the user’s
hand. While walking, the user first swings his arms and then
makes a phone call. Once the call is done, he swings his arms
again. Each posture lasts for about 20 seconds. As shown in
Fig. 8, our model is able to better separate the embeddings
of signals under different contexts because the self-attention
network focuses on learning patterns from the signals under the
same context, whereas LSTM can hardly avoid the influence of
historical signal data that were under a different pattern.

IV. MDL-BASED TURN DETECTION

In this section, we first explain the preliminaries of the MDL
principle. We then present the turn detection problem under the
MDL principle, assuming that the whole path information is
available. We formally establish its equivalence to a shortest-
path problem on a weighted directed acyclic graph. We finally
propose MET, an efficient greedy algorithm with linear time
complexity for real-time turn detection.

A. Two-Part MDL Principle

We first tackle the (offline) problem of detecting turning points
along a recovered movement path so that the path is described
by a concatenation of straight lines, whose end points are the
detected turning points, in a concise manner, i.e., low complexity,Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

ZHUO et al.: ONLINE PATH DESCRIPTION LEARNING BASED ON IMU SIGNALS FROM IoT DEVICES 11895

while keeping the description as precise as possible, i.e., high
fidelity. We assume, for now, that the set of position vectors for
the movement path is available. We will later explain how this
turn detection can be done on the fly while the movement path
is being recovered.

Let D := {x0,x1, . . . ,xN} be a movement path recovered
by the self-attention network model in PATHLIT, where xi indi-
cates the i-th position vector or the coordinates of the i-th point
on the path, andN is the total number of the points along the path,
except the origin x0. We here use xi instead of x̂i for brevity. In
addition, we refer to two end points of the path and turning points
along the path as path delimiters, or simply, delimiters. Define
a set of the indexes of the delimiters B := {b0, . . . , bm} such
that 0 = b0 < · · · < bm = N and bi ∈ {0, 1, . . . , N}. Note that
m = |B| − 1. Then, the problem here is to find the optimal
delimiter set B� under the MDL principle.

The idea is to transform this problem into a model selection
problem. Observe that B is the only unknown parameter of a
model f(·|B), which specifies how we represent or describe
a path by using the delimiter set B. For example, f(D|B)
represents path D by the delimiter set B. In this work, we
consider that f(·|B) is the sum of the euclidean distances
between two consecutive delimiters in B. Then, letting L :=
{1, 2, . . . , N − 1}, we define the class of the candidate models
asF := {f(·|B) : B\{0, N} ⊂ L}. For a path, there are 2N−1

models in total since each point along the path is either included
or excluded in a model while the two end points of the path
are always in the model. We hereafter use B to denote its
corresponding model f(·|B) and B� to denote the optimal
model f(·|B�) ∈ F for simplicity, unless a confusion exists.

For the model selection problem, Rissanen [21] suggests using
the code length as a means to compare two parts of different
models, namely model complexity and model fidelity. For a
model, the former indicates how long the code length of this
model is and the latter specifies how well this model encodes the
data. Here the best model is the one that describes the data with
the shortest code length (or the minimum description length).
The key idea is to split the representation of data into two parts,
i.e., the encoding length of a candidate fitted model and the
encoding length of the data given the model, as follows. Letting
L(“data′′) be the encoding length of the data, we have

L (“data′′) = L (“fitted model′′)

+ L (“data given fitted model′′) ,

where L(“data′′) is also called the MDL cost. The best model
is the one minimizing the MDL cost. This is the two-part MDL
principle. Note that it still remains unknown how to obtain the
best model.

In this work, we adopt this MDL principle to find the best
model B� that achieves the shortest description of a movement
path, which is the optimal solution to the original turn-detection
problem. For a path D, let L(D) denote the MDL cost of D. It
can then be decomposed into

L(D) = G(B) + Z(D|B), (5)

where G(B) and Z(D|B) represent the code length of the
model B that describes the path D and the one of the path D
given the modelB, respectively. In other words,G(B) indicates

Fig. 9. Model complexity versus model fidelity.

Fig. 10. An example path and a path description.

the complexity of the model B, i.e., the sum of the distances be-
tween two consecutive delimiters in B, and Z(D|B) indicates
the fidelity of B, i.e., how well the model B describes the path
D by preserving the shape and orientation of the path.

B. MDL Cost for Turn Detection

We next show how exactly the turn detection problem is
formulated as an MDL cost minimization problem. Note that
the MDL cost needs to be defined explicitly as the MDL
principle does not provide any such definition. Fig. 9 provides
an illustration of model complexity and model fidelity under
our problem. On one hand, a concise (low complexity) path
description requires as few delimiters as possible. The lowest
complexity is achieved when the model only contains the starting
and ending points of the path. On the other hand, a precise (high
fidelity) description requires as many delimiters as possible.
The maximal fidelity is achieved when the model contains the
coordinates of all the points along the path as delimiters. There
is clearly a tradeoff between complexity and fidelity, so it is
desirable to achieve the optimal tradeoff in describing a path.

Consider a path D. Let len(xi,xj) be the length of a line
segment with two end points being xi and xj for 0≤ i<j≤N .
We define the model complexity G(B) as the sum of the lengths
of the segments connected by two consecutive delimiters in B,
which is given by

G(B) :=

|B|−1∑
i=0

log2
(
len(xbi ,xbi+1

)
)
. (6)

For the most concise case, i.e., having the starting and ending
points of the path D as the only delimiters, we can see that it
minimizes G(B). This is due to the triangle inequality.

To measure the model fidelity Z(D|B), we first define two
types of distances, namely angular distance d∠ and perpendic-
ular distance d⊥. As depicted in Fig. 10, suppose that we have
two line segments si and ηj , where si is the segment connected
by two consecutive delimiters (e.g., x0 and x4 in the figure) and
ηj is the segment formed by the coordinates of two consecutive
points that appear between the two delimiters (e.g., x1 and x2

in the figure). Letting len(ηj) be the length of segment ηj , we

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

11896 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

define the angular distance between si and ηj by

d∠(si,ηj) := len(ηj) · sin (min{θij , 90◦}) ,
where θij is the angle between si and ηj in degrees. We also
define the perpendicular distance between si and ηj by

d⊥(si,ηj) :=
l2⊥1(si,ηj) + l2⊥2(si,ηj)

l⊥1(si,ηj) + l⊥2 (si,ηj)
,

where l⊥1(si,ηj) is the shortest distance from one end point of
ηj to si, and l⊥2(si,ηj) is the one from another end point of
ηj to si. It is the counter-harmonic mean between l⊥1(si,ηj)
and l⊥2(si,ηj), which penalizes more on the deviation from
the path than other mean measures [22]. Here we assume
that d⊥(si,ηj) = 0 if l⊥1(si,ηj) = l⊥2(si,ηj) = 0. Note that
limx,y→0(x

2 + y2)/(x+ y) = 0. Letting

d∠,⊥(si,ηj) := log2(d∠(si,ηj)) + log2(d⊥(si,ηj)),

we define the model fidelity Z(D|B) by

Z(D|B) :=

|B|−1∑
i=0

bi+1−1∑
j=bi

d∠,⊥
(
(xbi ,xbi+1

), (xj ,xj+1)
)
.

(7)
Note that when all points are selected as delimiters, the angular
and perpendicular distances between a segment and itself are
zeros, in which case Z(D|B) is minimized, i.e., the maximal
fidelity is achieved. Note that in the case of x = 0 for log2(x),
we use limx→0 log2(x) = −∞.

As mentioned before, there is a clear tradeoff between model
complexity G(B) and model fidelity Z(D|B). G(B) increases
with increasing size of the set B, while Z(D|B) tends to
decrease as B expands. Thus, our problem of finding the best
model (or the optimal delimiter set) B� now becomes the one of
achieving the optimal tradeoff, which is formally given by the
following MDL cost minimization problem:

P : B� = argmin
B

G(B) + Z(D|B).

C. Optimal Turn Detection

We are now ready to find the optimal solution B� to P . To
this end, we establish that the problem P is equivalent to a
shortest-path problem on a weighted directed acyclic graph.

Consider a path D={x0,x1, . . . ,xN}, where without loss
of generality we assume that the indexes of the points along
the path are ordered by their timestamps. The indexes of the
points used as delimiters in B are then also ordered. We first
construct a graph G of N+1 nodes, where node i corresponds
to point xi along the path D, and a directed edge eij is added
from node i to node j if xi appears before xj in D. Note that
this graph is directed and acyclic. In addition, letting Di,j :=
{xi,xi+1, . . . ,xj} be the path segment (the sub-path) between
xi and xj , and if xi and xj are the only two delimiters in Di,j ,
then we see from (5) that the MDL cost L(Di,j) between xi

and xj becomes

L(Di,j) := G({i, j}) + Z(Di,j |{i, j}). (8)

Then, we have the following result:
Theorem 1: Let wij be the edge weight of a directed edge

from node i to node j in G. If the edge weight wij is set to the

MDL cost in (8), i.e., wij := L(Di,j), then the problem P is
equivalent to the problem of finding the shortest path (or the
minimum-weight path) from node 0 to node N on G.

Proof: Fix B. Observe that (6) and (7) are additively sep-
arable. Thus, we see that L(D) can be written as the sum of
L(Di,j) over all the ordered pairs (i, j) of the indexes of two
consecutive delimiters in B. In addition, we observe that the
nodes on G that correspond to the delimiters in B form a path
on G, i.e., a sequence of nodes where each node in the sequence
has a directed edge into the node next to it, i.e., bi → bi+1. Thus,
since wij = L(Di,j) for each edge from i to j, the weight of the
path on G, which is the sum of the weights of the directed edges
comprising the path, becomes identical to L(D) for a given B.
Therefore, P is equivalent to finding the shortest path (or the
minimum-weight path) from node 0 to node N on G. �

It is worth noting that edge weights can be negative due to the
logarithm in (6) and (7). Thus, the shortest path problem can be
generally solved by Bellman-Ford algorithm [23]. Since it is a
shortest path problem on a weighted directed acyclic graph, it can
also be solved more efficiently by using topological sorting [24].

D. MET – An Efficient Online Algorithm

Observe that the shortest path algorithm is only applicable
offline, i.e., when the entire path information is available, as it
needs to calculate the MDL cost for every node pair. Thus, we
below propose an efficient online algorithm MET, to achieve
the real-time detection of turning points along the movement
path of a user. MET is an integral part of PATHLIT by allowing
PATHLIT to determine, in real time, whether to keep the coor-
dinates of each end point of a two-second segment learned by
the self-attention network model in PATHLIT.

We can see from (6) and (7) that once a point along the path
is accepted as a delimiter, the MDL costs up to the point remain
the same and all the points that appear before this point are not
needed for computing the MDL costs afterward. Suppose that
the last detected delimiter isxbi , and the user’s current position is
xk (bi < k). Note that no point is considered a delimiter (or turn)
in {xbi+1, . . . ,xk−2}. Our online algorithm is then to determine
whether xk−1 is a turn or not by considering the points between
xbi and xk.

Letting Dbi,k := {xbi ,xbi+1, . . . ,xk}, we decide whether
to accept or reject xk−1 as a turn (or delimiter). Let Ak−1 be
the event that xk−1 is accepted as a turn and Āk−1 be the event
that xk−1 is rejected as a turn. We then define two MDL costs
C(Ak−1) and T (Āk−1) by

C(Ak−1) := G({xbi ,xk−1,xk})
+ Z(Dbi,k|{xbi ,xk−1,xk}),

T (Āk−1) := G({xbi ,xk}) + Z(Dbi,k|{xbi ,xk}),

respectively. Then, if C(Ak−1) < T (Āk−1), xk−1 is accepted as
a turn and the position index k−1 is added as a new delimiter
into the setB. Otherwise, it is rejected. Upon the arrival ofxk+1,
we repeat the process to decide whether to accept xk as a turn.
The whole algorithm operation is summarized in Algorithm 1.
We have the following result on its time complexity.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

ZHUO et al.: ONLINE PATH DESCRIPTION LEARNING BASED ON IMU SIGNALS FROM IoT DEVICES 11897

Algorithm 1: MET.

Theorem 2: Consider a pathD={x0,x1, . . . ,xN}. Suppose
that k delimiters along the path D are detected by MET in
Algorithm 1. Let αi be the number of location points be-
tween two consecutive delimiters xbi−1

and xbi (inclusive),
i=1, 2, . . . , k, where xb0 = x0. The time complexity of MET
is O(αmaxN), where αmax :=max{α1, α2, . . . , αk}.

Proof: We first analyze the time complexity of MET in
Algorithm 1 when processing new points arriving after iden-
tifying the latest delimiter, say, xbi−1

, until after the next de-
limiter xbi is identified, i = 1, 2, . . . , k. Since αi is the total
number of points between the delimiters (inclusive), and the
delimiter xbi−1

has already been determined up on arrival of
xbi−1+1, it boils down to analyzing the time complexity of
executing the iterations in the while loop for αi − 1 points, i.e.,
xbi−1+2,xbi−1+3, . . . ,xbi−1+αi

. Note that the next delimiter xbi

is determined up on arrival of the point next to xbi , which is
xbi−1+αi

.
Observe that each iteration in the while loop is mainly gov-

erned by the operations of computing the MDL costs C(Ak−1)
and T (Āk−1) at Lines 3 and 4, respectively, because all the other
operations take constant time, i.e., O(1). Here, k=bi−1+j,
where j=2, 3, . . . , αi. In addition, from (6), we see that the
computations of G({xbi ,xk−1,xk}) and G({xbi ,xk}) take
O(1), since their corresponding set sizes of B in (6) are three
and two, respectively. Also, from (7), we see that the time
complexity of computing each of Z(Ds|{xbi ,xk−1,xk}) and
Z(Ds|{xbi ,xk}) is linearly proportional to |Ds|, which grows
from two toαi. Thus, the time complexity of executing the itera-
tions in the while loop forαi − 1points is

∑αi

j=2 O(j) = O(α2
i),

i = 1, 2, . . . , k.
Therefore, by noting that

k∑
i=1

α2
i ≤ αmax(α1 + · · ·+ αk) = O(αmaxN),

we see that the time complexity of MET is O(αmaxN). �
Remark 1: The time complexity of MET can be up toO(N2),

since αmax can be on the order of N . One such case is when
only one delimiter is identified, and it is done up on arrival of

the last point xN . However, in practice, αmax remains bounded
and independent of N . Thus, the time complexity of MET is
generally linear with respect to the number of points (position
vectors) on a movement path, i.e., O(N).

Remark 2: Unlike the shortest path algorithms that can only
be applied offline, MET is an online algorithm, which enables the
real-time detection of turning points along the movement path of
a user. In particular, the offline shortest path algorithms require
the graph G to be constructed a priori. In other words, the MDL
costL(Di,j) in (8) needs to be computed as the edge weight wij

for each pair of xi and xj (i < j). From (7), we also see that
it takes O(N) to compute Z(Di,j |{i, j}) for each pair. Note
that there are N(N + 1)/2 node pairs. Thus, it takes O(N3) to
construct the graph G. While the shortest path algorithms allow
us to find the optimal (offline) solution B� to P , the overall
time complexity of finding B� is at least O(N3) regardless of
the choice of the shortest path algorithm, e.g., topological sorting
for finding the shortest path on a weighted directed acyclic graph.
In contrast, the time complexity of our online algorithm MET is
O(αmaxN), where αmax often remains bounded.

V. EXPERIMENT RESULTS

In this section, we present extensive experiment results. We
discuss experiment settings and evaluate the system-level per-
formance of PATHLIT by comparing it with state-of-the-art
algorithms. We also study the impact of system components
and parameters on PATHLIT.

A. Experiment Settings

We conduct experiments on the RoNIN open dataset [13] and
our campus dataset. The sampling frequency of IMU sensors
for both datasets is 200 Hz.2 The RoNIN dataset contains 69
paths for training, 16 paths for validation and 64 paths for test,
collected by 100 different people with three different Android
devices, i.e., Asus Zenfone AR, Samsung Galaxy S9 and Google
Pixel 2 XL. Among the 64 test paths, half of them are collected
by people who also contribute to the training set, referred to as
‘test seen’ paths, since their walking patterns may have been
seen by the model. The other half are collected by people who
only contribute to the test set, referred to as ‘test unseen’ paths.

We use the ground truth velocity vectors provided in the
RoNIN dataset for our PATHLIT model training. They were
obtained based on a separate Tango mobile phone that was
bound to the chest of a user, in which case the coordinate
system is fixed and thus its moving direction can be simply
regarded as the heading direction of the user [13]. In other
words, the ground truth velocity vectors are used as the desired
output, while the input data is the IMU signals collected from
different Android devices and fed into the model to predict their
corresponding velocity vectors. Note that the IMU signals here
are transformed into the global coordinate system due to their
possible orientation changes.

2Note that the sampling frequency of 200 Hz for collecting IMU signals is
supported by most off-the-shelf mobile phones [13], [25], [26].

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

11898 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Fig. 11. Campus data collection with a phone held freely.

In addition, our campus dataset contains 48 test paths col-
lected by six people walking along four pathways with a phone
held freely (Fig. 11), using two different Android devices,
namely Huawei Mate 30 Pro and vivo Y50. We collect 12 paths
along each pathway. When a person is walking, another person
holds a camera to record the ground truth. Note that the recorded
video is not used for model training but for calculating estimation
errors only. Our campus dataset is also only used for inference
to evaluate ‘model generalization’, i.e., the ability of a model to
react to the new dataset obtained in a different environment.

We use the training data of 69 paths from the RoNIN dataset
to train our self-attention network model in PATHLIT and other
models in the state-of-the-art algorithms and then evaluate their
performance on all the test paths for inference, including our
campus dataset. Note that the performance of PATHLIT is based
on both the self-attention network model and MET. We present
the average results of the test seen, test unseen and campus paths
separately, unless otherwise mentioned. We consider the follow-
ing state-of-the-art algorithms for performance comparison:
� RoNIN [13]: It leverages sequential dependencies in IMU

signals obtained during a path trajectory and recovers the
movement path using an LSTM model.

� CNN [27]: It extracts features from IMU signals of each
step and estimates step lengths and directions with a one-
dimensional convolutional neural network (CNN) model.

� Pedestrian dead reckoning (PDR) [6]: It estimates the
user’s step lengths via a linear model and learns movement
directions using an Android API for device orientation.

� A3 [7]: It improves on PDR by continuously calibrating
the device orientation with IMU signals.

For PDR, A3, and RoNIN, we set their parameters as de-
scribed in [6], [7], and [13], respectively. For CNN, we build
a CNN model that has two layers of 1D convolution and two
layers of 1D max pooling with the ReLU activation function.
For our self-attention network model in PATHLIT, we set its
baseline parameters as follows. The encoder is a stack of two
encoder layers, where each layer has four heads. The decoder
also has the same structure. We use the learning rate with cosine
decay [28] where it increases to 0.008 in the first 100 epochs
and then decreases. The dropout rate is set to 0.2. We set the
embedding dimension dem to 64.

We use absolute trajectory error (ATE) and relative trajec-
tory error (RTE) for performance comparison. The ATE is the
root mean squared error (RMSE) between ground-truth and

estimated (complete) paths, defined as

ATE =

√∑N
i=1 ‖xi − x̂i‖22

N
,

where N is the total number of the coordinates of points on
a path, xi’s are the ground truth coordinates and x̂i’s are the
estimated coordinates for each point, and ‖ · ‖2 is the l2 norm.
The RTE is the average RMSE over a fixed time interval, which
is defined as

RTE =

√∑(N−ΔN)
i=1 ‖(xi+ΔN − xi)− (x̂i+ΔN − x̂i)‖22

(N −ΔN)
,

where ΔN is the number of the coordinates apart and is set to
30 (equivalent to one minute) in our experiments.

We also use precision, recall andF -score when it comes to the
performance evaluation in turn detection. Let Tp be the number
of true positives, which indicates the number of correctly de-
tected turns by a turn detection algorithm. Let Fp be the number
of false positives, indicating the number of extra points that are
detected as turns. Let FN be the number of false negatives, de-
noting the number of (true) turns that are not detected. Then, the
precision, recall, andF -score are given byP = TP /(TP + FP),
R = TP /(TP + FN), and F = 2PR/(P +R), respectively.

B. Overall Comparison With the State of the Art

We first present the ATE and RTE results of PATHLIT and
state-of-the-art algorithms on the two datasets in Table I to
demonstrate the superiority of PATHLIT in path recovery. We
also show the results of PATHLIT(–), which is PATHLIT without
MET, to see the performance improvement from each system
component of PATHLIT.

PATHLIT achieves the best performance in both ATE and
RTE for both datasets. The performance improvement comes
from both system components of PATHLIT, which are the
self-attention network model and MET. In other words, PATH-
LIT smooths out the recovered path by the former, leading to
further improvement. In addition, the superior performance of
PATHLIT in recovering the unseen and campus paths demon-
strates its better model generalization and readiness for practical
deployment. RoNIN has satisfactory performance. However,
the LSTM model may leverage irrelevant signal patterns for
prediction due to its sequential dependencies, resulting in lower
accuracy. The CNN model is less capable in learning temporal
correlations between signal patterns, thereby leading to worse
performance than that of RoNIN. A3 has a better calibration
of the device orientation compared to PDR, and thus exhibits
better performance than PDR for all the datasets. Nonetheless,
due to the dynamically changing behaviors of the mobile devices
of moving users, the orientation calibration in A3 can perform
poorly, hampering its accuracy.

In addition to its superior performance in ATE and RTE,
PATHLIT uses much fewer data points to describe a recovered
path compared to the other schemes, thanks to its effectiveness
in detecting the user’s turns correctly and using them for a path
description. For both datasets, PATHLIT requires only around
15% of the total data points to precisely and concisely describe a
movement path, while the others rely on all the data points along
a path. Our novel turn detection algorithm MET in PATHLIT

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

ZHUO et al.: ONLINE PATH DESCRIPTION LEARNING BASED ON IMU SIGNALS FROM IoT DEVICES 11899

TABLE I
PERFORMANCE COMPARISON WITH ‘MEAN (STANDARD DEVIATION)’ VALUE

Fig. 12. Path recovery results (RoNIN dataset).

Fig. 13. Path recovery results (campus dataset).

is able to detect the user’s turns along a path correctly on the
fly while the movement path is being recovered by the other
component in PATHLIT, the self-attention network model.

To demonstrate the effectiveness of PATHLIT in learning
path descriptions, we visualize a few representative recovered
paths by PATHLIT and other algorithms in Figs. 12 and 13. The
paths learned by PATHLIT best match the ground-truth paths.
While the paths recovered by RoNIN exhibit the second best
performance, they do not match the shapes and orientations of
the ground-truth paths as much as PATHLIT does. The CNN
model is able to recover the shapes of the paths roughly, but it
fails to estimate the orientations correctly. The paths learned by
A3 and PDR show poor recovery performance.

C. System Component Study

Turn Detection: We have demonstrated the superior perfor-
mance of PATHLIT, which comes from both the self-attention

network model and MET. To further illustrate the quality of
MET for turn detection, we show in Fig. 14 the turn-detection
performance of MET in PATHLIT and the thresholding method
with different threshold values. MET outperforms the others
significantly and performs consistently across different datasets,
exhibiting its capability of detecting turns correctly regardless
of the shapes of movement paths. However, the performance
of the thresholding method highly depends on the choice of its
threshold value. Higher threshold values tend to miss more user
turns, while lower ones tend to have more false positives. Thus,
it is deemed infeasible to choose an appropriate threshold value
for practical deployment. In contrast, MET does not require any
parametrization or a calibration of threshold values.

In addition, to better understand the quality of MET for
turn detection, we visualize the process of PATHLIT in de-
tecting turning points on Path a000_7 from the RoNIN open
dataset in Fig. 15. We can see that each time the condition for
C(Ak−1)<T (Āk−1) is satisfied (Line 5 in Algorithm 1), a turn

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

11900 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Fig. 14. Performance comparison of MET in PATHLIT and other threshold-based turn detection algorithms.

Fig. 15. Illustrating the MDL costs and turn detection in PATHLIT. The numbers in (b) represent path coordinate indexes in (a).

Fig. 16. Performance of models built with and without positional encoding (P.E.).

is accurately detected, showing the effectiveness of MET. Note
that the numbers right next to the detected turns in Fig. 15(b)
correspond to the coordinates’ indexes in Fig. 15(a).

Positional Encoding: We apply positional encoding to en-
force the temporal relationship within a sequence when building
our self-attention network model. To validate the effective-
ness of such an intra-sequence positional encoding, we show
the performance of PATHLIT with the model built with and
without the positional encoding in Fig. 16, where P.E. stands
for positional encoding. As can be seen from Fig. 16, the
positional encoding introduces around 10% improvement. This
is important since it enables the model to learn correlations
between signal patterns within and across sequences while
maintaining the sequential order of sensor readings within each
sequence.

Decoder: While our network model is built based on an
encoder-decoder architecture, it can also have an encoder-only

structure in which case we add a linear layer after having the final
representations from the encoder to predict velocity vectors di-
rectly. We are interested in how much performance degradation
PATHLIT would have with the encoder-only model. As shown in
Fig. 17, the performance degradation by removing the decoder is
insignificant (∼5.3%). However, the decoder doubles the model
size, i.e., the number of learnable parameters. Including the
decoder in the network increases the training time by more than
120% in our scenario, which is from around eight hours to 18
hours. Thus, when deploying PATHLIT in resource-constrained
IoT devices, e.g., Raspberry Pi, one can adopt the encoder-only
model as a relatively lightweight model.

D. System Parameter Evaluation

Time Window (Sequence Length): We use a short sequence
in the network model, which contains 400 readings for each

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

ZHUO et al.: ONLINE PATH DESCRIPTION LEARNING BASED ON IMU SIGNALS FROM IoT DEVICES 11901

Fig. 17. Performance of models built with and without decoder.

Fig. 18. Impact of different time windows (sequence lengths) in PATHLIT, where 200 samples are collected per second.

Fig. 19. Impact of different embedding dimension sizes (dem) in PATHLIT.

sensor. It corresponds to the number of readings collected for two
seconds. In Fig. 18, we show the impact of different sequence
lengths on PATHLIT’s performance. We can see that if it is too
short, each sequence would not be long enough to contain IMU
signal patterns from a walking context. In addition, if it is too
long, each sequence would have several walking contexts mixed
up, making it difficult to extract useful features.

Embedding Dimension: Each collection of six IMU sensors’
readings is first transformed into an embedding vector of size
dem in the network model. We here evaluate the impact of
different choices of dem on the performance of PATHLIT. As
shown in Fig. 19, both ATE and RTE tend to decrease and get
saturated under the test-seen data as dem increases, while they
also decrease but then increase slightly under the test-unseen and
campus data with increasing values of dem. Thus, it would not
be beneficial to keep increasing the dimension size dem since
it could make the model overfitted to the training data, thereby
hampering its model generalization.

E. Turn Detection as Trajectory Compression

Recall that our turn-detection algorithm MET in PATHLIT
outputs much fewer data points to describe a user path. Here

we further evaluate its feasibility as a compression algorithm
for path/trajectory compression, since both the turn detection
and trajectory compression problems are similar in the sense
that they find a compact set of trajectory data points. To this
end, we use the Microsoft GeoLife dataset [29], which is com-
monly used for the latter problem in the literature. The dataset
contains 17,621 trajectories from 182 users. The trajectories are
collected outdoors and consist of the GPS readings (latitudes
and longitudes) along the paths. The total travel distance is
about 1.2 M kilometers, and the total travel time is more than
48,000 hours. We compare MET with the following popular
online compression algorithms:
� OPW [30]: It keeps a new trajectory point if it is considered

important in comparison with the points in the buffer. This
decision involves a threshold.

� SQUISH [31]: It accepts all trajectory points until a fixed-
size buffer becomes full. Then, every new point replaces a
point in the buffer that is considered least important.

� STTrace [32]: It is similar to SQUISH, but with a slightly
different buffer replacement policy.

� Dead Reckoning [33]: It predicts the next trajectory point
based on recent ones. If the prediction error is greater than
a given threshold, its corresponding point is kept.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

11902 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Fig. 20. Performance comparison with state-of-the-art online trajectory compression algorithms by using MET in PATHLIT for trajectory compression.

Due to the large number of trajectories, we divide them into
four bins based on their lengths, which are given in the number of
the readings. The first bin contains the trajectories of lengths (in
terms of the number of readings) below one hundred. The second
one is for the lengths between one hundred and one thousand,
and the third one is for the lengths between one thousand and ten
thousand. The last one contains the rest. We also observe that
the algorithms considered here have all similar time complexity
on the dataset.

We show the ATE and RTE results in Fig. 20. We can see
that MET in PATHLIT outperforms all the other trajectory-
compression algorithms substantially in both ATE and RTE.
This demonstrates its feasibility and effectiveness for trajectory
compression. Note that ATE and RTE are measured based on
the latitudes and longitudes of trajectory data points, whose
units are in degrees. While having inferior performance, OPW
and Dead Reckoning require threshold values to be determined
based on the lengths and shapes of the trajectories, which are
hard to calibrate in practice. In addition, SQUISH and STTrace
need to choose the size of a fixed-size buffer, which holds a
limited number of trajectory data points, to be proportional to the
length of a trajectory. However, we observe that a non-negligible
error would be involved if the buffer size is small, since it
becomes more difficult to choose which points to be stored in the
buffer. Thus, their performance becomes unsatisfactory for short
trajectories. In contrast, MET does not require any calibration
of threshold values and is also not influenced by the trajectory
lengths.

VI. RELATED WORK

We review in this section three main categories of work
relevant to our system, namely path recovery, turn detection,
and trajectory compression.

A. Path Recovery

Multi-Sensor Approaches: Additional sensors [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48]
in the smartphone, in addition to IMU sensors, may be utilized to
facilitate path recovery. A fusion algorithm is proposed in [41]
to learn user paths from the signals from IMU and Bluetooth low

energy (BLE) sensors. After obtaining a raw position from IMU
sensors, it leverages a particle filter to adjust the raw position
with an extra location estimate provided by BLE. However, it
requires the installation of BLE beacon sensors on site. In [49],
the camera in the smartphone is also used together with IMU
sensors to improve the quality of location estimates. The es-
timation quality is improved by leveraging the aspect ratio of
the frontal wall that the camera faces, where all the aspect
ratios of walls are stored in a database in advance. Nonetheless,
keeping the camera turned on may drain the device battery
quickly and also introduce potential privacy concerns. In con-
trast, PATHLIT works based only on the IMU signals without any
additional infrastructure support while being non-intrusive to
users.

Leveraging Predefined Walking Contexts: There are several
approaches [8], [26], [50], [51], [52], [53] that require prior
knowledge of walking contexts (or behaviors). In [8], the user’s
mobile device is required to be placed in three postures, namely
in the pocket, in hand swinging and in hand holding. In addition,
user information such as user height is needed for path recovery.
TLIO [26] requires the IMU sensors to be mounted on the head-
set in which case the sensors are more or less stationary, i.e., the
sensor readings are much more stable. Other approaches focus
on extracting signal features from different walking contexts
using a two-stage learning process [9], [10], [54], where it first
classifies current IMU signals into a walking context and then
recovers the path under that specific context. However, these
techniques need to have a predefined list of walking contexts and
require manual labeling of the contexts for their corresponding
IMU signals in model training.

Leveraging Temporal Correlations: Recent data-driven tech-
niques [11], [12], [13], [55] attempt to recover user’s movement
paths in the wild by exploiting the possible temporal correlations
within IMU signals. They commonly use LSTM to learn a
displacement from the current IMU signals by assuming the
presence of long-term signal correlations. However, such an
assumption may not always hold in practice. For instance, the
posture and position of the user’s mobile device keep changing
over time, and the changes can also be quite drastic, leading
to totally different signal patterns. In contrast, PATHLIT is
designed to extract (implicit) context features from the IMU

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

ZHUO et al.: ONLINE PATH DESCRIPTION LEARNING BASED ON IMU SIGNALS FROM IoT DEVICES 11903

signals in a short period of time for path recovery, during which
the walking context is less likely to change.

B. Turn Detection

Turn detection is important for online path recovery and in-
door localization since it can be used to detect turns as landmarks
to reduce the noises or errors in their applications. In what
follows, we review recent online turn detection algorithms.

Map-Based Approaches: Indoor maps can be leveraged to
detect user turns [4], [11], [18], [56], [57], [58], [59], [60]. For
instance, Zee [4] takes advantage of map constraints to detect
user turns with a particle filter, which introduces additional
computation overheads. The proposed scheme in [58] uses the
map to refine a sequence of turns detected on the fly. In a
similar vein, the approach in [11] measures the traveled distance
between two consecutive turns on the map to decide whether the
(detected) turns are valid. However, the requirement of indoor
maps is not practically viable as property owners may not want
to share the maps. In contrast, MET in PATHLIT is purely based
on IMU signals without requiring indoor maps.

Threshold-Based Approaches: Prior studies identify user
turns with turning thresholds [17], [61], [62], [63], [64], [65].
In [62], a large amount of training data is collected to set
threshold values for both left- and right-turn angular velocities.
In [63], a threshold of 10 degrees per second for angular velocity
is used to detect whether there is a directional change. However,
it is challenging to set the threshold values properly, as users
may handle their devices freely while walking, leading to unex-
pected changes in angular velocity. In contrast, MET in PATH-
LIT achieves accurate online turn detection without requiring
any threshold values. We demonstrated in Section V (e.g.,
Fig. 14) that MET outperforms threshold-based approaches
significantly.

C. Trajectory Compression

We demonstrated in Section V-E the feasibility of our turn
detection algorithm MET as an online trajectory compression
algorithm as it aims to minimize the number of data points (i.e.,
turning points) to describe a user path accurately. Hence, we
below briefly review online trajectory compression algorithms.

OPW [30] maintains a buffer of points (path coordinates) that
constitutes the trajectory. Upon arrival of a new point, OPW
constructs a line segment using the incoming point and the
‘starting’ point in the buffer. It then computes the perpendicular
euclidean distance from each point in the buffer to the line
segment. If the maximum distance is larger than a predetermined
threshold, the new point is considered ‘important’ and kept in
the buffer. In addition, the point with the maximum distance is
used as a new starting point. In a similar vein, STTrace [32]
and SQUISH [31] build up a fixed-size buffer and replace a
point in the buffer if the new incoming point is considered more
important. Recently, reinforcement learning-based algorithms
are proposed in [66], [67] for online trajectory compression.
While they also maintain a fixed-size buffer of points, they now
train a neural network to identify and drop the least important

point in the buffer whenever a new point is available. However,
all the aforementioned algorithms need the parameters such as
buffer size and threshold value to be chosen judiciously. In
contrast, MET does not require calibration of any parameters
while demonstrating its feasibility as an online compression
algorithm.

VII. DISCUSSION

We below discuss the feasibility of extending PATHLIT to
leverage other measurement signals in different application sce-
narios. We also explain the rationale behind using the global or
world-frame coordinate system in PATHLIT and discuss how it
could be further improved.

A. Fusion With Different Types of Measurements

PATHLIT only leverages IMU signals for easy deployment,
but it can be readily extended to fuse with other measurements
to account for different application scenarios if they are readily
available. For instance, in indoor navigation, we can incorporate
geomagnetic signals or radio frequency (RF) signals such as
WiFi and BLE as the input (together with IMU signals) into
the self-attention network model to facilitate the path recovery
process. Geomagnetic signals can be appended to the input
vectors directly to provide additional features for learning as
its sensing frequency is usually the same as the one with the
IMU signals. For RF signals, however, the sensing frequency
may be much lower. To incorporate them into the model, we can
interpolate the signals between two consecutive measurements
or use one-hot vectors to just indicate the existence of sensible
access points in each measurement.

In addition, our turn detection algorithm MET can be inte-
grated into other location-based systems [3], [29], [30], [31],
[32], [33], [40], [68] in a seamless manner. In Section V-E, we
have demonstrated its feasibility as a trajectory compression
algorithm [29], [30], [31], [32], [33] when GPS measurements
are used. Here we point out that it can also be used in other
large-scale localization systems [3], [40], [68]. For instance, for
an automatic floorplan construction, we can leverage crowd-
sourced user paths to learn their corresponding pathways. Each
user path often only covers a small portion of a floor. Hence, we
first detect the user turns using MET and then use these turns as
anchor points to stitch the user paths together, from which the
pathways in the floorplan can be reconstructed.

B. Global Coordinate System

Note that PATHLIT is built upon the global coordinate system
provided by the operating system of a mobile device, which is
used to infer the current heading direction. While it is not our
main focus to improve the accuracy of the global coordinate sys-
tem itself, our results so far indicate its usability and feasibility
for IMU-based path learning. We expect that the improvement
in the accuracy of the global coordinate system would lead to
a further improvement in PATHLIT as the native application
programming interfaces (APIs) in the mobile operating system

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

11904 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

keep on evolving with the advances of orientation estimation
algorithms [69]. We below review how the global coordinate
system has been used in recent path-learning systems and discuss
state-of-the-art algorithms for better orientation estimations,
which can be incorporated into PATHLIT to further improve
the learning results.

Recent systems and algorithms [12], [13], [25], [37], [70]
that aim to achieve better path learning under arbitrary walk-
ing contexts usually rely on the orientation estimations from
mobile devices. For example, IONet [12] preprocesses raw
IMU signals to obtain linear accelerations by leveraging the
orientations provided by the mobile device. It then uses the
processed IMU values to train a deep neural network to predict
the path length and angle changes for each short-time interval.
In a similar vein, RIDI [25] adopts the APIs provided by the
mobile device to transform the mobile coordinate system to
the global coordinate system. It then implements the support
vector regression to obtain velocity values. RoNIN [13] utilizes
the orientations provided by the mobile operating system in a
testing phase and estimates the displacements using a trained
LSTM model. We see that the orientation estimations from
mobile devices are currently in a reasonable quality for (light-
weight) path recovery, although the quality of the path recovery
still depends on how the orientation estimations are effectively
used.

It is also worth noting that there are several recent algo-
rithms [55], [71], [72], [73], [74] that leverage neural networks
to calibrate the orientation estimations in a finer manner. For
instance, IDOL [72] attaches a LiDAR to a mobile device to
collect ground-truth orientation values. It estimates the orien-
tation of the mobile device using a separately trained LSTM
network, with IMU signals as an input and the corresponding
measurements from the LiDAR as a ground truth. The orien-
tation estimations are then improved with an extended Kalman
filter. In addition, AI-IMU [73] mounts an Asus Tango phone
on a human head to obtain the ground truth rotation matrix for
phone headings in order to train an MLP network for improved
orientation estimations. In testing, it leverages a multi-state
cloning Kalman filter and a graph optimization estimator to
further improve the estimations from the network. Note that
due to the high computational overhead, only ten key frames
every second are selected for the graph optimization. In light
of the system development and deployment, we believe that
PATHLIT can take advantage of the advances in the orientation
estimations for better path learning, which yet comes with a
trade-off between accuracy and system complexity.

VIII. CONCLUSION

We have presented PATHLIT, an accurate and efficient path
description learning system. Thanks to the carefully designed
self-attention network model and the MDL-based online turn-
detection algorithm MET, PATHLIT is able to recover each
segment of a movement path from a stream of IMU readings and
determine whether to keep its end points on the fly, which leads to
a succinct yet accurate path description. Extensive experiments
have shown the superiority of PATHLIT over state-of-the-art

algorithms for path recovery and the effectiveness of MET for
turn detection and trajectory compression.

REFERENCES

[1] Z. Yuan, D. Zhu, C. Chi, J. Tang, C. Liao, and X. Yang, “Visual-inertial state
estimation with pre-integration correction for robust mobile augmented
reality,” in Proc. 27th ACM Int. Conf. Multimedia, 2019, pp. 1410–1418.

[2] X. Xu et al., “HulaMove: Using commodity IMU for waist interaction,”
in Proc. CHI Conf. Hum. Factors Comput. Syst., 2021, Art. no. 503.

[3] G. Shen, Z. Chen, P. Zhang, T. Moscibroda, and Y. Zhang, “Walkie-Markie:
Indoor pathway mapping made easy,” in Proc. 10th USENIX Symp. Netw.
Syst. Des. Implementation, 2013, pp. 85–98.

[4] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee: Zero-
effort crowdsourcing for indoor localization,” in Proc. 18th Annu. Int.
Conf. Mobile Comput. Netw., 2012, pp. 293–304.

[5] V. Prabakaran, M. R. Elara, T. Pathmakumar, and S. Nansai, “Floor
cleaning robot with reconfigurable mechanism,” Automat. Construction,
vol. 91, pp. 155–165, 2018.

[6] A. Brajdic and R. Harle, “Walk detection and step counting on uncon-
strained smartphones,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous
Comput., 2013, pp. 225–234.

[7] P. Zhou, M. Li, and G. Shen, “Use it free: Instantly knowing your phone
attitude,” in Proc. 20th Annu. Int. Conf. Mobile Comput. Netw., 2014,
pp. 605–616.

[8] Q. Tian, Z. Salcic, I. Kevin, K. Wang, and Y. Pan, “A multi-mode dead
reckoning system for pedestrian tracking using smartphones,” IEEE Sen-
sors J., vol. 16, no. 7, pp. 2079–2093, Apr. 2016.

[9] A. Martinelli, H. Gao, P. D. Groves, and S. Morosi, “Probabilistic context-
aware step length estimation for pedestrian dead reckoning,” IEEE Sensors
J., vol. 18, no. 4, pp. 1600–1611, Feb. 2018.

[10] J.-D. Sui and T.-S. Chang, “IMU based deep stride length estimation with
self-supervised learning,” IEEE Sensors J., vol. 21, no. 6, pp. 7380–7387,
Mar. 2021.

[11] Q. Wang et al., “Personalized stride-length estimation based on active
online learning,” IEEE Internet Things J., vol. 7, no. 6, pp. 4885–4897,
Jun. 2020.

[12] C. Chen, P. Zhao, C. X. Lu, W. Wang, A. Markham, and N. Trigoni,
“Deep-learning-based pedestrian inertial navigation: Methods, data set,
and on-device inference,” IEEE Internet Things J., vol. 7, no. 5,
pp. 4431–4441, May 2020.

[13] S. Herath, H. Yan, and Y. Furukawa, “RoNIN: Robust neural inertial
navigation in the wild: Benchmark, evaluations, & new methods,” in Proc.
IEEE Int. Conf. Robot. Automat., 2020, pp. 3146–3152.

[14] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its carica-
ture,” Cartographica Int. J. Geographic Inf. Geovisualization, vol. 10,
pp. 112–122, 1973.

[15] S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, “�1 trend filtering,” SIAM
Rev., vol. 51, no. 2, pp. 339–360, 2009.

[16] C. Long, R. C.-W. Wong, and H. Jagadish, “Trajectory simplification: On
minimizing the direction-based error,” Proc. VLDB Endowment, vol. 8,
no. 1, pp. 49–60, 2014.

[17] S. Yang, P. Dessai, M. Verma, and M. Gerla, “FreeLoc: Calibration-free
crowdsourced indoor localization,” in Proc. IEEE INFOCOM, 2013,
pp. 2481–2489.

[18] Y. Zhao, W.-C. Wong, H. K. Garg, and T. Feng, “Pedestrian dead reckoning
with turn-based correction,” in Proc. Int. Conf. Indoor Positioning Indoor
Navigation, 2018, pp. 1–8.

[19] T. C. Lee, “An introduction to coding theory and the two-part minimum
description length principle,” Int. Stat. Rev., vol. 69, no. 2, pp. 169–183,
2001.

[20] A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2017, pp. 5998–6008.

[21] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14,
no. 5, pp. 465–471, 1978.

[22] P. S. Bullen, Handbook of Means and Their Inequalities. Berlin, Germany:
Springer, 2013.

[23] R. Bellman, “On a routing problem,” Quart. Appl. Math., vol. 16, no. 1,
pp. 87–90, 1958.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 2022.

[25] H. Yan, Q. Shan, and Y. Furukawa, “RIDI: Robust IMU double integra-
tion,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 621–636.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

ZHUO et al.: ONLINE PATH DESCRIPTION LEARNING BASED ON IMU SIGNALS FROM IoT DEVICES 11905

[26] W. Liu et al., “TLIO: Tight learned inertial odometry,” IEEE Trans. Robot.
Autom., vol. 5, no. 4, pp. 5653–5660, Oct. 2020.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[28] A. Lewkowycz, “How to decay your learning rate,”
2021, arXiv:2103.12682.

[29] Microsoft, “Microsoft geolife GPS trajectories,” 2012. [Online]. Avail-
able: https://research.microsoft.com/en-us/downloads/b16d359d-d164-
469e-9fd4-daa38f2b2e13/

[30] N. Meratnia et al., “Spatiotemporal compression techniques for moving
point objects,” in Proc. Int. Conf. Extending Database Technol., Springer,
2004, pp. 765–782.

[31] J. Muckell, J.-H. Hwang, V. Patil, C. T. Lawson, F. Ping, and S.
Ravi, “SQUISH: An online approach for GPS trajectory compres-
sion,” in Proc. 2nd Int. Conf. Comput. Geospatial Res. Appl., 2011,
Art. no. 13.

[32] M. Potamias, K. Patroumpas, and T. Sellis, “Sampling trajectory streams
with spatiotemporal criteria,” in Proc. 18th Int. Conf. Sci. Stat. Database
Manage., 2006, pp. 275–284.

[33] G. Trajcevski, H. Cao, P. Scheuermanny, O. Wolfsonz, and D. Vaccaro,
“On-line data reduction and the quality of history in moving objects
databases,” in Proc. 5th ACM Int. Workshop Data Eng. Wireless Mobile
Access, 2006, pp. 19–26.

[34] A. Conti, M. Guerra, D. Dardari, N. Decarli, and M. Z. Win, “Network ex-
perimentation for cooperative localization,” IEEE J. Sel. Areas Commun.,
vol. 30, no. 2, pp. 467–475, Feb. 2012.

[35] A. Conti, D. Dardari, M. Guerra, L. Mucchi, and M. Z. Win, “Experimental
characterization of diversity navigation,” IEEE Syst. J., vol. 8, no. 1,
pp. 115–124, Mar. 2014.

[36] X. Wang, L. Gao, and S. Mao, “CSI phase fingerprinting for indoor
localization with a deep learning approach,” IEEE Internet Things J., vol. 3,
no. 6, pp. 1113–1123, Dec. 2016.

[37] C. Luo, H. Hong, M. C. Chan, J. Li, X. Zhang, and Z. Ming, “MPiLoc:
Self-calibrating multi-floor indoor localization exploiting participatory
sensing,” IEEE Trans. Mobile Comput., vol. 17, no. 1, pp. 141–154,
Jan. 2018.

[38] W. Zhuo et al., “FIS-ONE: Floor identification system with one label for
crowdsourced RF signals,” in Proc. IEEE 43rd Int. Conf. Distrib. Comput.
Syst., 2023, pp. 418–428.

[39] W. Zhuo et al., “Semi-supervised learning with network embedding on
ambient RF signals for geofencing services,” in Proc. IEEE 39th Int. Conf.
Data Eng., 2023, pp. 2713–2726.

[40] J. Choi, G. Lee, S. Choi, and S. Bahk, “Smartphone based indoor path
estimation and localization without human intervention,” IEEE Trans.
Mobile Comput., vol. 21, no. 2, pp. 681–695, Feb. 2022.

[41] J. Chen et al., “A data-driven inertial navigation/Bluetooth fusion algo-
rithm for indoor localization,” IEEE Sensors J., vol. 22, no. 6, pp. 5288–
5301, Mar. 2022.

[42] J. Dong, M. Noreikis, Y. Xiao, and A. Yl ä-Jääski, “ViNav: A vision-based
indoor navigation system for smartphones,” IEEE Trans. Mobile Comput.,
vol. 18, no. 6, pp. 1461–1475, Jun. 2019.

[43] A. Conti, S. Mazuelas, S. Bartoletti, W. C. Lindsey, and M. Z. Win, “Soft
information for Localization-of-Things,” Proc. IEEE, vol. 107, no. 11,
pp. 2240–2264, Nov. 2019.

[44] C. Wu, F. Zhang, Y. Fan, and K. R. Liu, “RF-based inertial measurement,”
in Proc. ACM Special Int. Group Data Commun., 2019, pp. 117–129.

[45] B. Teague, Z. Liu, F. Meyer, A. Conti, and M. Z. Win, “Network localiza-
tion and navigation with scalable inference and efficient operation,” IEEE
Trans. Mobile Comput., vol. 21, no. 6, pp. 2072–2087, Jun. 2022.

[46] X. Huang, J. Lee, Y.-W. Kwon, and C.-H. Lee, “CrowdQuake: A networked
system of low-cost sensors for earthquake detection via deep learning,” in
Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2020,
pp. 3261–3271.

[47] W. Zhuo et al., “GRAFICS: Graph embedding-based floor identification
using crowdsourced RF signals,” in Proc. IEEE 42nd In. Conf. Distrib.
Comput. Syst., 2022, pp. 1051–1061.

[48] D. Chen, N. Wang, R. Xu, W. Xie, H. Bao, and G. Zhang, “RNIN-VIO:
Robust neural inertial navigation aided visual-inertial odometry in chal-
lenging scenes,” in Proc. IEEE Int. Symp. Mixed Augmented Reality, 2021,
pp. 275–283.

[49] W. Ma, Q. Li, B. Zhou, W. Xue, and Z. Huang, “Location and 3-D visual
awareness-based dynamic texture updating for indoor 3-D model,” IEEE
Internet Things J., vol. 7, no. 8, pp. 7612–7624, Aug. 2020.

[50] V. Renaudin, V. Demeule, and M. Ortiz, “Adaptative pedestrian displace-
ment estimation with a smartphone,” in Proc. IEEE Int. Conf. Indoor
Positioning Indoor Navigation, 2013, pp. 1–9.

[51] J. Chen et al., “Run, don’t walk: Chasing higher flops for faster neural
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2023,
pp. 12 021–12 031.

[52] B. Zhou et al., “DeepVIP: Deep learning-based vehicle indoor positioning
using smartphones,” IEEE Trans. Veh. Technol, vol. 71, no. 12, pp. 13
299–13 309, Dec. 2022.

[53] J. Kuang, T. Li, Q. Chen, B. Zhou, and X. Niu, “Consumer-grade inertial
measurement units enhanced indoor magnetic field matching positioning
scheme,” IEEE Trans. Instrum. Meas., vol. 72, 2023, Art. no. 9501914.

[54] Q. Wang et al., “Pedestrian dead reckoning based on walking pattern
recognition and online magnetic fingerprint trajectory calibration,” IEEE
Internet Things J., vol. 8, no. 3, pp. 2011–2026, Feb. 2021.

[55] Y. Wang, H. Cheng, C. Wang, and M. Q.-H. Meng, “Pose-invariant inertial
odometry for pedestrian localization,” IEEE Trans. Instrum. Meas., vol. 70,
2021, Art. no. 8503512.

[56] A. Brajdic and R. Harle, “Scalable indoor pedestrian localisation using
inertial sensing and parallel particle filters,” in Proc. Int. Conf. Indoor
Positioning Indoor Navigation, 2012, pp. 1–10.

[57] C. Wu, Z. Yang, and C. Xiao, “Automatic radio map adaptation for indoor
localization using smartphones,” IEEE Trans. Mobile Comput., vol. 17,
no. 3, pp. 517–528, Mar. 2018.

[58] F. Hölzke, J.-P. Wolff, and C. Haubelt, “Improving pedestrian dead
reckoning using likely paths and backtracking for mobile devices,” in
Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops, 2019,
pp. 273–278.

[59] B. Zhou, Z. Wu, and X. Liu, “Smartphone-based robot indoor localization
using inertial sensors, encoder and map matching,” in Proc. IEEE Int. Conf.
Automat. Control Robots, 2021, pp. 145–149.

[60] J. Tan, H. Wu, K.-H. Chow, and S.-H. G. Chan, “Implicit multimodal
crowdsourcing for joint RF and geomagnetic fingerprinting,” IEEE Trans.
Mobile Comput., vol. 22, no. 2, pp. 935–950, Feb. 2023.

[61] R. Harle, “A survey of indoor inertial positioning systems for pedestrians,”
IEEE Commun. Surv. Tut., vol. 15, no. 3, pp. 1281–1293, Third Quarter
2013.

[62] Y. Lu, D. Wei, Q. Lai, W. Li, and H. Yuan, “A context-recognition-aided
PDR localization method based on the hidden Markov model,” Sensors,
vol. 16, no. 12, 2016, Art. no. 2030.

[63] T. Moder, C. Reitbauer, M. Dorn, and M. Wieser, “Calibration of smart-
phone sensor data usable for pedestrian dead reckoning,” in Proc. Int. Conf.
Indoor Positioning Indoor Navigation, 2017, pp. 1–8.

[64] Z. Zhang, S. He, Y. Shu, and Z. Shi, “A self-evolving WiFi-based indoor
navigation system using smartphones,” IEEE Trans. Mobile Comput.,
vol. 19, no. 8, pp. 1760–1774, Aug. 2020.

[65] H. Jiang et al., “Fly-Navi: A novel indoor navigation system with on-
the-fly map generation,” IEEE Trans. Mobile Comput., vol. 20, no. 9,
pp. 2820–2834, Sep. 2021.

[66] Z. Wang, C. Long, and G. Cong, “Trajectory simplification with rein-
forcement learning,” in Proc. IEEE 37th Int. Conf. Data Eng., 2021,
pp. 684–695.

[67] Z. Wang, C. Long, G. Cong, and Q. Zhang, “Error-bounded online
trajectory simplification with multi-agent reinforcement learning,” in
Proc. 27th ACM SIGKDD Conf. Knowl. Discov. Data Mining, 2021,
pp. 1758–1768.

[68] X. Du, K. Yang, and D. Zhou, “MapSense: Mitigating inconsistent WiFi
signals using signal patterns and pathway map for indoor positioning,”
IEEE Internet Things J., vol. 5, no. 6, pp. 4652–4662, Dec. 2018.

[69] Google, “Android code snippet for orientation calculation,” 2024.
[Online]. Available: https://developer.android.com/develop/sensors-and-
location/sensors/sensors_position#sensors-pos-orient

[70] K. Han, S. M. Yu, S.-W. Ko, and S.-L. Kim, “Waveform-guide transfor-
mation of IMU measurements for smartphone-based localization,” IEEE
Sensors J., vol. 23, no. 17, pp. 20379–20389, Sep. 2023.

[71] J. Gong, X. Zhang, Y. Huang, J. Ren, and Y. Zhang, “Robust inertial motion
tracking through deep sensor fusion across smart earbuds and smartphone,”
Proc. ACM Interactive Mobile Wearable Ubiquitous Technol., vol. 5, no. 2,
pp. 1–26, 2021.

[72] S. Sun, D. Melamed, and K. Kitani, “IDOL: Inertial deep orientation-
estimation and localization,” in Proc. AAAI Conf. Artif. Intell., 2021,
pp. 6128–6137.

[73] Y. Wang, J. Kuang, Y. Li, and X. Niu, “Magnetic field-enhanced learning-
based inertial odometry for indoor pedestrian,” IEEE Trans. Instrum.
Meas., vol. 71, 2022, Art. no. 2512613.

[74] T. Feng, Y. Liu, Y. Yu, L. Chen, and R. Chen, “CrowdLOC-S:
Crowdsourced seamless localization framework based on CNN-LSTM-
MLP enhanced quality indicator,” Expert Syst. Appl., vol. 243, 2024,
Art. no. 122852.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

https://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/
https://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/
https://developer.android.com/develop/sensors-and-location/sensors/sensors_position#sensors-pos-orient
https://developer.android.com/develop/sensors-and-location/sensors/sensors_position#sensors-pos-orient

11906 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Weipeng Zhuo received the BSc (double majored in
computer science and applied mathematics), master
of philosophy (MPhil), and PhD degrees, from the
Hong Kong University of Science and Technology.
He is currently an assistant professor with the Depart-
ment of Computer Science, BNU-HKBU United In-
ternational College, Zhuhai, China. During his MPhil
study, he was a visiting scholar with the Department
of Electrical Engineering, Princeton University. His
research interests include IoT signal analytics, graph
neural networks, and indoor localization.

Shiju Li received the bachelor’s degree from the
Huazhong University of Science and Technology,
China, and the master’s degree from the Florida
Institute of Technology, Melbourne, FL. He is cur-
rently working toward the PhD degree in computer
engineering. His research interests include network
science, data science, graph analysis, and networking.
He is also interested in Big Data analytics acceler-
ation, and modeling, analysis, and optimization of
large-scale networked systems. His current research
topic includes computational storage, large language

model, and graph neural network.

Tianlang He received the bachelor of engineer-
ing (with honor) degree from Donghua University,
Shanghai, China, in 2018, and the master of science
degree from the Hong Kong University of Science
and Technology (HKUST), Hong Kong, China, in
2019. He is currently working toward the PhD de-
gree with the Department of Computer Science and
Engineering, HKUST. His research interests include
AIoT, trustworthy AI, and wireless computing.

Mengyun Liu received the BE degree from the
School of Geodesy and Geomatics, Wuhan Univer-
sity, in 2013, the BBA (minor) degree from Eco-
nomics and Management School, Wuhan University,
in 2013, and the PhD degree from the State Key
Laboratory of Information Engineering in Surveying,
Mapping and Remote Sensing (LIESMARS), Wuhan
University, in 2019. She is currently working with
the Institute of Artificial Intelligence, Guangzhou
University. Before joining Guangzhou University, she
was an research associate and postdoctoral fellow

with the Department of Computer Science and Engineering, Hong Kong Univer-
sity of Science and Technology (HKUST). She was also an intern with Microsoft
Research Asia, and a research assistant with the Department of Land Surveying
and Geo-Informatics, Hong Kong Polytechnic University. Her research interests
include positioning in GNSS-denied areas, geo-security, and the Internet of
Things.

S.-H. Gary Chan (Senior Member, IEEE) received
the BSE (highest honor) degree in electrical engi-
neering from Princeton University, Princeton, NJ,
with certificates in applied and computational math-
ematics, engineering physics, and engineering and
management systems, and the MSE and PhD degrees
in electrical engineering with a minor in business
administration from Stanford University, Stanford,
CA. He is currently professor with the Department of
Computer Science and Engineering, Hong Kong Uni-
versity of Science and Technology (HKUST), Hong

Kong. He is also affiliate professor of Innovation, Policy and Entrepreneurship
Thrust in HKUST (GZ), and board director of Hong Kong Logistics and Supply
Chain MultiTech R&D Center (LSCM). His research interests include smart IoT

and sensing systems, location AI and mobile computing, video/user/data analyt-
ics, cloud and edge AI, technology transfer and IT entrepreneurship. He has been
an associate editor of the IEEE Transactions on Multimedia, and a vice-chair
of Peer-to-Peer Networking and Communications Technical Sub-Committee of
IEEE Comsoc Emerging Technologies Committee. He has been guest editor of
the ACM Transactions on Multimedia Computing, Communications and Appli-
cations, IEEE Transactions on Multimedia, IEEE Signal Processing Magazine,
IEEE Communication Magazine, etc. He is a steering committee member and
was the TPC chair of IEEE Consumer Communications and Networking Con-
ference (IEEE CCNC), and has been area chair of the multimedia symposium
of IEEE Globecom and IEEE ICC for many years. Through technology transfer
and entrepreneurship, he has successfully transferred and deployed his research
results in industry and co-founded several startups. Due to their innovations,
commercial and societal impacts, his technologies have received numerous local
and international awards. Notably, he received Hong Kong Chief Executive’s
Commendation for Community Service for “outstanding contribution to the
fight against COVID-19” in 2020. He is the recipient of Google Mobile 2014
Award and Silver Award of Boeing Research and Technology. He was a visiting
professor or researcher with Microsoft Research, Princeton University, Stanford
University, and University of California at Davis. At HKUST, he was director
of Entrepreneurship Center, director of Sino Software Research Institute, co-
director of Risk Management and Business Intelligence program, and director
of Computer Engineering Program. He was a William and Leila fellow with
Stanford University, and the recipient of the Charles Ira Young Memorial Tablet
and Medal and the POEM Newport Award of Excellence at Princeton University.
He is fellow of Sigma Xi (FSX) and chartered fellow of the Chartered Institute
of Logistics and Transport (FCILT).

Sangtae Ha (Senior Member, IEEE) received the
PhD degree in computer science from North Car-
olina State University. He is an associate professor
with the Department of Computer Science, University
of Colorado Boulder. He was an associate research
scholar with Princeton University from 2010 to 2013.
He received the MobiSys Best Paper Awards in 2019
and 2021, the Samsung GRO Award in 2017, and the
INFORMS ISS Design Science Award in 2014.

Chul-Ho Lee (Member, IEEE) received the PhD
degree in computer engineering from North Carolina
State University, Raleigh, NC. He is currently an
assistant professor with the Department of Computer
Science, Texas State University, San Marcos, TX.
Prior to that, he was an assistant professor with the
Department of Computer Engineering and Sciences
(now the Department of Electrical Engineering and
Computer Science), Florida Institute of Technology,
Melbourne, FL, and a senior research engineer with
Samsung Electronics DMC R&D Center (now Sam-

sung Research), South Korea. His research interests include graph mining,
network science, machine learning, networking, and computing/networked sys-
tems. He has been serving on the program committees of various conferences
such as IEEE INFOCOM, ACM MobiHoc, ACM KDD, IEEE ICDM, and
SIAM SDM. He currently serves as an associate editor of IEEE Transactions on
Network Science and Engineering and a track co-chair of Algorithms & Theory
at the 21st IEEE International Conference on Mobile Ad-Hoc and Smart Systems
(MASS 2024). He has been recognized as a distinguished TPC member of IEEE
INFOCOM 2018–2023 due to his excellent performance in the review process.
His work was recognized as a Best Paper Award Finalist at ACM MobiHoc
2019, and he received NVIDIA Applied Research Accelerator Award in 2022.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 07,2024 at 00:16:33 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

