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Abstract—Existing crowdsourced indoor positioning systems
(CIPSs) usually require prior knowledge about the site and a
tedious calibration process. Moreover, they may require a large
number of landmarks while ignoring the topology information
that may be contained in the crowdsourced data. In this paper,
we present Leto, a system that uses learned topology information
from combined user traces to construct a radio map. Leto relies
on crowdsourced WiFi and accelerometer signals only without
requiring any prior knowledge about the site. Our key idea is that
learned topology information can reduce the required number of
landmarks, while available landmarks can transform the topology
into a map. We propose a novel framework that efficiently learns
the map topology by a hybrid multidimensional scaling (HMDS)
algorithm and accurately rectifies the map using only a few anchors
by an adaptive force-directed (AFD) algorithm. We also provide a
theoretical convergence analysis of the HMDS algorithm. Experi-
mental results on real-world datasets show that Leto can capture
useful topology information and achieve significant improvements
in radio map construction compared to existing systems.

Index Terms—Map rectification, radio map construction, topo-
logy learning.

I. INTRODUCTION

INDOOR Positioning System, or IPS, plays a fundamental
role in emerging indoor mobile applications such as indoor

navigation, geo-fencing, contact tracing, smart buildings, and
virtual and augmented reality (VR/AR). While infrastructure-
based IPSs, which require installation of additional equipment
such as Bluetooth beacons, UWB base stations and cameras, in-
cur extra deployment effort and cost, WiFi fingerprinting-based
IPSs [1], [2], [3] exploit the ubiquitous presence of WiFi access
points (APs). WiFi fingerprinting IPSs have demonstrated good
localization capabilities in many complicated environments, but
they require manual surveys in an offline phase to create a
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radio map that contains the coordinates and WiFi measure-
ments at many locations. Moreover, they require an update of
the radio map when there are AP and environmental changes.

CIPSs [4], [5], [6], [7], [8], [9], [10], [11], [12], or crowd-
sourced IPSs, aim to eliminate manual surveys and dynamically
adapt to AP changes. SLAM (Simultaneous Localization and
Mapping) [13], [14], [15], [16], [17], [18], [19], first developed
within the robotic community, is the process by which a mobile
robot uses odometry, IMU (inertia measurement unit), range
sensing, and computer vision to build a map of the environment
while using this map to locate itself. Inspired by SLAM, re-
searchers in CIPS proposed the use of crowd PDR (Pedestrian
Dead Reckoning) for radio map construction, where PDR is the
process of calculating a user’s; position based on her previous
position, estimated heading direction, and displacement [5],
[6]. It is well known that PDR trajectories calculated from
IMU measurements can suffer from drift errors over the long
term. To create accurate radio maps, CIPSs may need many
landmarks, which are identifiable signatures on one or more
sensing dimensions, to recalibrate user trajectories. To reduce
the need of landmarks, many CIPSs [4], [7], [8], [9], [10], [11],
[12] map the user trajectories individually or jointly to a floor
plan, which may not always be available in practice.

More recently, GraphIPS [20], a graph-based SLAM system,
was proposed for constructing a radio map without a floor
plan and with reduced dependency on IMU. GraphIPS exploits
information contained in WiFi measurements to infer pairwise
distances between locations. With these spatial constraints, it
then uses multidimensional scaling (MDS) to determine the
coordinates of the locations. However, GraphIPS assumes that
the AP positions are known and AoA measurements are avail-
able. Furthermore, it is not clear whether a reasonable radio
map can be generated if the pairwise distance matrix is highly
incomplete.

Our system, Leto, for learned topology, assumes the sce-
nario shown in Fig. 1. When users move around the environ-
ment, apps running on their mobile devices collect and up-
load user traces, which are sequences of time-stamped WiFi
RSSI and accelerometer measurements. Following the idea of
graph-based SLAM [13], we use a graph to represent the radio
map. Each node in the graph corresponds to one measurement
associated with a location. Each edge has a weight that corre-
sponds to the physical distance between the two nodes. Leto
makes use of three types of distances: consecutive intra-trace
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Fig. 1. Leto user traces and distance model.

node distance, non-consecutive intra-trace node distance, and
inter-trace node distance. These distances, or spatial constraints,
may contain different levels of uncertainty. We build the graph,
or a topological map, by finding a node configuration that
best satisfies the constraints. Then, we rectify the topological
map by using a few landmarks. Our radio map construction
framework is shown in Fig. 2 and will be described in detail in
Section III.

We summarize our major contributions as follows:
� Leto fuses crowdsourced WiFi signals, accelerometer sig-

nals, and a few landmarks to build a radio map. Compared
to CIPSs using full IMU signals, Leto is less dependent on
mobile devices being held steadily to produce quality IMU
signals. Furthermore, Leto does not require a floor plan,
making it more widely applicable.

� We introduce a number of new features for distance esti-
mation in graph-based CIPSs. These features include stride
parameters for individual traces, a two-phase scheme for
estimating pairwise distances among WiFi measurements
by first applying short- and long-distance classification,
and the incorporation of uncertainty measures in our stress
minimization formulation.

� We introduce a low-complexity modified Smith-Waterman
(mSW) algorithm to detect junctions between two WiFi
sequences. By applying a sliding window technique, mSW
achieves O(mn) time complexity and O(max{m,n})
space complexity, where m, n are lengths of the two
sequences.

� We introduce a low-complexity HMDS algorithm for stress
minimization, which is a challenging non-convex opti-
mization problem. By stress minimization, the topologi-
cal map and individual stride parameters can be obtained
simultaneously. We also provide the convergence and com-
putation complexity analysis of the proposed algorithm.

� We introduce an AFD algorithm to rectify the topologi-
cal map using a few landmarks. The AFD algorithm dy-
namically selects neighboring nodes to escape from local
minima and adaptively adjusts the step size to speed up
convergence. We also provide a complexity analysis of the
AFD algorithm.

� Experiments are conducted to compare Leto against five
state-of-the-art CIPSs and to verify the effectiveness and
convergences of the proposed HMDS and AFD algorithms.

It is shown that Leto achieves significant performance
improvement in terms of map and localization accuracy and
also effectively reduces the assumptions by other CIPSs.

II. RELATED WORK

Crowdsourced IPSs (CIPSs) based on PDR have attracted sig-
nificant attention in recent years. To mitigate the effect of IMU
drift, several CIPSs, including Unloc [5], Walkie-Markie [6]
and WiFi-RITA [21], propose the use of detected landmarks
to correct the estimated PDR trajectories. But these systems
assume that mobile devices are held in a steady fashion. Also,
accuracy of the radio map created highly depends on the richness
of detected landmarks. This prompted CIPSs including Zee,
LiFs, and others to incorporate extra information from floor
plans [4], [8], [9], [10], [11], [12], [22].

A floor plan can be represented as a probabilistic model [4],
[9]. In zee [4], an augmented particle filter algorithm is used
to combine sensor information with constraints imposed by the
floor plan in estimating user locations. In [9], a hidden Markov
model (HMM) is used to describe the user traces constrained
by the floor plan. Nevertheless, the complexity of the learning
probabilistic models is very high. This complexity limits the use
of probabilistic models to small indoor areas.

To enhance scalability, many CIPSs use a graph-based
model [7], [8], [10], [11], [12], [22] to represent a floor plan.
In [22], a logical floor plan is first constructed by exploiting the
relationships among different rooms. Then, the logical floor plan
is mapped to a physical floor plan by graph matching techniques.
In [7], a simulated radio map is generated by a simulator that
requires details of the indoor environment, including the floor
plan, wall materials, and furniture. Then, the simulated radio
map is transferred to a limited number of calibration fingerprints
by manifold alignment techniques. In LiFs [8], a stress-free
floor plan is created in a high-dimensional space such that the
walking distances between every pair of locations are preserved.
Similarly, a fingerprint space is created such that the mutual
distances between fingerprints are preserved. Finally, the finger-
print space is mapped to the stress-free floor plan by analyzing
the spatial similarity. In [10], a topological radio map is created
by analyzing the spatial correlation of massive user traces. The
radio map is then mapped to the floor map by graph matching
techniques. [10] further studies the issue of symmetries and
the number and positions of markers required to associate a
topological radio map with a physical floor plan unambiguously.
To reduce the signal bias and labeling error, UbiFin [11] fuses
crowdsourced RF, magnetic field, and motion signals. Traces are
partitioned into segments and mapped to the physical floor plan
by dynamic programming. In CRCLoc [12], all possible paths in
a floor plan are extracted by image processing techniques. Then,
a shape context algorithm is adopted to map the estimated user
trajectories to the candidate paths.

Although floor plans can provide structural information, they
may not be available or up-to-date in practice. GraphIPS [20]
removes the requirement of a floor plan and exploits the spatial
relationships between users and APs. GraphIPS fuses WiFi and
IMU signals into a graph-based formulation and adopts MDS
to estimate user location. But its assumptions that AP locations
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Fig. 2. A diagram illustrating the full pipeline of radio map construction for Leto.

are known and WiFi AoA data is available may limit its use in
practice.

We will compare Leto against five previously proposed
crowdsourced systems mentioned above: Unloc, Zee, LiFs,
WiFi-RITA, and GraphIPS [4], [5], [8], [20], [21].

III. SYSTEM OVERVIEW

Leto constructs a radio map using WiFi signals, accelerometer
signals, and a few landmarks for low cost, wide availability, and
small deployment effort. In this work, we focus on radio map
construction on a single floor. However, it is easy to extend
our framework for a multi-floor setting by incorporating floor
identification techniques [23], [24] into our framework.

The radio map construction framework for Leto is shown in
Fig. 2 and will be described in Section IV, V, and VI. Our
distance estimation framework consists of three parts:

1. Use of the accelerometer signals to estimate all the con-
secutive node distances (Section 4.1). These distance es-
timates are first parametrized by two unknown stride pa-
rameters specific to each trace.

2. Use of our modified Smith-Waterman algorithm (Section
4.2) for junction detection - to identify node junctions,
or pairs of WiFi measurements in different traces that are
likely to be taken at identical locations.

3. Use of a collection of neural networks, which we
call UDENet (Section 4.3), to estimate as many non-
consecutive node distances as we can. UDENet first clas-
sifies a distance to be a short or a long distance. Then, a
separate neural network is applied to estimate the distance
in each class. While estimating each distance, UDENet
also estimates the associated uncertainty, and this uncer-
tainty will be used as a weight in our optimization problem
for topological map construction.

Section V describes our topological map construction. Here,
the parametrized and absolute distance estimates from Section
IV are used as inputs to the efficient HMDS algorithm we

developed. The output is the complete set of relative 2D co-
ordinates of all the nodes and the stride parameter values for all
traces. We call this output a topological map because while the
relative coordinates and connectivity (as provided by the traces)
are determined, the absolute coordinates are not yet known.

Then, Section VI describes the final step, map rectification.
Here, we use the relative coordinates plus the absolute coor-
dinates of a few landmarks as input to our AFD algorithm to
re-calibrate the relative coordinates as well as to map the relative
coordinates to the absolute coordinates. We will show that this
rectification process can allow us to construct a final map that
can be highly consistent with the unknown underlying floor plan.

In Section VII, we provide experimental results comparing
the Leto against the five existing systems in two types of envi-
ronments – a campus with many corridors and classrooms, and
a shopping mall with shops and open spaces. In Section VIII,
we provide the conclusion.

Table I shows the notations used throughout this paper:

IV. DISTANCE ESTIMATION

This section presents distance estimation using accelerometer
and WiFi signals. Using accelerometer signals, we detect steps
and estimate the walking distance between consecutive nodes
in each trace. Using WiFi signals, we detect junctions among
traces and estimate pairwise distances between non-consecutive
nodes.

A. Walking Distance Estimation

Walking distance estimation allows us to establish the con-
straints among nodes within the same trace. To estimate walking
distances, we first detect and count steps. Many step detection
algorithms, e.g., peak detection, zero-crossing, detection, and
spectrum analysis, have been proposed in the literature. In
Leto,we employ the step detection algorithm proposed in [25].

Since the position and orientation of the mobile device may
change when a user is collecting data, we use the magnitude
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TABLE I
SUMMARY OF KEY NOTATIONS

of the 3-axis accelerometer signals for step detection only.
To recover the true periodicity of the signal, we first apply a
low-pass filter with a cut-off frequency set to 3 Hz to remove
high-frequency noise and spikes. Then, we search for peaks to
identify distinct steps. To reduce fake steps caused by accidental
bouncing of the mobile device, we enforce two heuristic con-
straints:
� Minimum and maximum time duration of a step, e.g., 0.5

seconds and 1 second;
� Minimum and maximum changes in acceleration magni-

tudes during one step, e.g., 0.2 g and 2 g.
Existing works [25], [26] have shown that the stride model for

converting steps to distances can vary greatly across individuals
due to weights and heights, and even for the same individual
due to physical exertion, ground and shoe types, hurriedness
and health status, etc. We adopt the following walking distance
model

di,i+1 = kmni,i+1 + bm, ∀m (1)

where ni,i+1 is the number of steps detected between consec-
utive nodes i and i+ 1 of trace m, and km and bm are stride
parameters to be estimated.

B. Junction Detection

The objective of junction detection is to identify nodes that we
believe are taken from the same location and to set their distances
to zero. As WiFi signals can vary greatly, it is generally hard to
individually match twoWiFi fingerprints, which are vectors
of RSSI from nearby APs. Many approaches [11], [27], [28],
[29] have turned to aligning sequences of rather than individual
fingerprints. Among them, Smith-Waterman algorithm [27] that
is guaranteed to find the optimal local alignment has made a suc-
cess. However, we cannot apply the Smith-Waterman algorithm
straightforwardly due to the following two reasons. First, users
may go back and forth, making the alignment not monotone.

Second, users may traverse the same path in opposite directions.
Hence, we need to align each pair of sequences twice. To address
these two issues, we follow [29] and employ a sliding-window
technique for aligning seqA and seqB.

Let seqA = a1, . . . ,am and seqB = b1, . . . ,bn be two WiFi
fingerprint sequences to be aligned, where ai and bj are the ith
fingerprint of seqA and jth fingerprint of seqB, m and n are
their lengths. To reduce the comparison effort, we first extract
WiFi fingerprint sequences with high AP overlap. We measure
the AP overlap by the Jaccard score

J(A,B) = |A ∩ B||A ∪ B| , (2)

whereA and B are the sets of hearable APs for seqA and seqB
respectively.

Then, we split seqB into k non-overlapping windows
seqB1, . . . , seqBk with window size w and apply the Smith-
Waterman algorithm for aligning seqA and seqBi. Now, we
design the scoring scheme for the Smith-Waterman algorithm.
Let ai and bj be WiFi fingerprints. We measure their similarity
by the cosine similarity

cos(ai,bj) =
aTi bj

‖ai‖‖bj‖ . (3)

For scoring, we fill a substitution matrix S ∈ R
m×n by the

following rule

Si,j =

{
3, if 1− cos(ai,bj) ≤ θ1,
−1, if 1− cos(ai,bj) > θ1

(4)

where two fingerprints ai and bj are considered matched if the
dissimilarity is smaller than the predefined threshold θ1. In (4),
a match has a reward of 3, and a mismatch has a penalty of -1.
We further use a linear gap penalty that has the same score for
opening and extending a gap, i.e., an insertion or a deletion. The
linear gap penalty simplifies the scoring process and is defined
as

ηk = kη1, (5)

where ηk is the penalty of a gap of length k and η1 is the penalty
of a single gap. In our setting, η1 = −1.

With the scoring scheme defined, we now fill a scoring matrix
H ∈ R

(m+1)×(n+1). We initialize the first row and column with
zero and fill the matrix by the following rules

Hi,j = max

⎧⎪⎪⎨
⎪⎪⎩
Hi−1,j−1 + Si,j ,
Hi−1,j + η1,
Hi,j−1 + η1,
0

(6)

where the diagonal move means a substitution, i.e., a match or
a mismatch. The horizontal and vertical moves mean gaps.

After filling the matrix, we find the maximum score in the
matrix and trace back the path of the previous maximum scores
among horizontal move, vertical move, and diagonal move until
a 0 is encountered. The path is the aligned indices indAi and
indBi. Note that it is possible that we can find several positions
with the same maximum score in the scoring matrix. In that
case, we randomly choose one as our alignment result. If the
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Algorithm 1: mSW Algorithm.
Input : seqA, seqB, θ1, θ2;
Output : ˆindA, ˆindB;
1: indA = {};
2: indB = {};
3: for each window seqBi in seqB do
4: //Smith-Waterman algorithm
5: Fill the substitution matrix S by (5);
6: Initialize H′s first row and first column with 0;
7: Fill the scoring matrix H by (6);
8: Obtain alignment indAi, indBi by tracing backH;
9: //Record medians of the alignment

10: if indBi satisfies consistency condition (7) then
11: Add med(indAi) to indA;
12: Add med(indBi) to indB;
13: end if
14: end for
15: //Interpolation
16: for i = 0: n-2 do
17: len = max(indAi+1 − indAi, indBi+1 − indBi)

18: Add linspace(indAi, indAi+1, len) to ˆindA

19: Add linspace(indBi, indBi+1, len) to ˆindB
20: endfor
21: ˆindA = round( ˆindA)

22: ˆindB = round( ˆindB)

aligned indices indBi in the ith window satisfy the consistency
condition

len(indBi)

len(seqBi)
≥ θ2, (7)

it means most of seqBi is aligned with seqA. We then consider
indAi and indBi as matched. We further add the medians of all
valid aligned indices as (med(indAi),med(indBi)) to indi.
As the last step, we evenly interpolate the indices indA and
indB to obtain the final alignment. We summarize the steps in
Algorithm 1.

1) Computation Complexity: To analyze the time complexity
of the modified Smith-Waterman algorithm, we analyze the main
steps of the algorithm. Let m and n be the length of seqA
and seqB, and m > n. Let w be the length of window seqBi.
The number of iterations is 
 nw �. We aim to align seqBi with
seqA in each iteration. Computing the substitution matrix has a
time complexity of O(m). Filling the scoring matrix has a time
complexity ofO(m). In the traceback step, finding the maximum
score in the scoring matrix has a time complexity of O(m).
Hence, the time complexity of each iteration is O(m). The total
time complexity of the algorithm is 
 nw � ×O(m) = O(mn).

The algorithm fills a single matrix of size mw and stores
at most O(w) positions for the traceback in each iteration.
To obtain the final alignment, it uses at most O(m) in the
interpolation step. Hence, the total space complexity of this
algorithm is O(m).

C. Uncertainty-Aware Distance Estimation

This section presents our uncertainty-aware neural network,
UDENet, for estimating non-consecutive node distances based
on WiFi signals. These distances are not exploited in existing
works and they help by addressing the sparsity problem in the
pairwise distance matrix. We will describe the selected RSSI
features, followed by the network architecture.

1) RSSI Features: Given two WiFi fingerprints fpi ∈ R
|A|

and fpj ∈ R
|A| observed at nodes i and j, where A is the set of

all APs observed at the site, our goal is to estimate the physical
distance between the two nodes using WiFi fingerprints. We
note RSSI is affected by human activity and environment, i.e.,
the presence of walls or obstacles, in addition to distances [30].
Hence, we propose a set of features, i.e., RSSI difference, RSSI
distance, and RSSI variation to estimate distances.

For nodes i and j, we select the k strongest APs heard by
either i or j to create the set of APs Ak. The APs with strong
signals are useful for estimating physical distances. In this work,
we follow [31] and set the RSSI of APs who are not heard by
the node to -80 dBm. We set k to 10. We calculate the MAE,
MSE, and euclidean distance (ED) over Ak as RSSI distance

MAE(fpi, fpj ,Ak) =
1

k

∑
a∈Ak

|fpi(a)− fpj(a)|, (8)

MSE(fpi, fpj ,Ak) =
1

k

∑
a∈Ak

|fpi(a)− fpj(a)|2, (9)

ED(fpi, fpj ,Ak) =

√∑
a∈Ak

|fpi(a)− fpj(a)|2, (10)

where |fpi(a)− fpj(a)| = 80 if fpi(a) = −80 and fpj(a) =
−80.

We further use absolute difference (AD) over Ak as RSSI
difference

AD(fpi, fpj ,Ak) = |fpi(Ak)− fpj(Ak)|, (11)

where fpi(Ak) is the fingerprint of selected k APs at node i. | · |
is elementwise absolute value.

To account for the effect of human activities and environ-
ments, we propose RSSI variation features which include RSSI
temporal variation and dual-band disparity. Human activity
based on WiFi signals has been extensively studied [32], [33],
[34], [35]. Signal strength changes can be leveraged to infer
human activities roughly. The key observation is that different
human activities can be recognized from the standard deviation
of RSSI samples. Standard deviation is shown to be a relatively
stable feature for recognizing human activities. We define tem-
poral variation as the change in RSSI when a user moves from
node i to i+ 1

Δi(A) = MAE(fpi, fpi+1,A). (12)

where we consider only all APs with RSSI greater than -80 dBm.
When performing WiFi fingerprinting, considering only APs
with RSSI greater than -80 dBm is a common practice because
it helps to filter out weak and noisy signals that may lead to
inaccurate location estimates. The sensitivity of our UDENet
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Fig. 3. Architecture of UDENet. FC denotes the fully connected layer. Conv denotes the convolutional layer.

to RSSI threshold depends on various factors, such as the en-
vironment and the type of tasks. Empirically, the performance
of UDENet is not sensitive to the value of this parameter. We
further define the difference in temporal variation at nodes i and
j as

Δij(A) = |Δi(A)−Δj(A)|. (13)

Signal propagation can be significantly affected by obstacles
such as walls [36]. To account for the effect of walls, we harness
the difference in the characteristics of the 2.4 and 5 GHz WiFi
signals. The key observation is the difference in signal strengths
between the 2.4 and 5 GHz signals when there is no wall is
smaller than that when there is a wall. Hence, we define dual-
band disparity which attempts to measure the difference between
the temporal variation of the 2.4 GHz signal compared to the
5 GHz signal and calculate it as

Envi = |Δi(A2.4G)−Δi(A5G)|. (14)

We further define the difference in the environment at nodes i
and j as

Env ij = | Env i − Env j |. (15)

2) UDENet Architecture: Fig. 3 shows the architecture of
UDENet. In UDENet, distance estimation is divided into two
steps. First, we train a distance classification network to deter-
mine whether the distance between two nodes is a short or long
distance. Then we train two separate networks for estimating
short and long distances. The short distance network focuses on
estimating distances when there are enough common APs in the
two nodes. The long distance estimation network is trained to
estimate distances when there are few common APs. Since it is
well-known that errors in distance estimates cannot be captured
by a simple additional white Gaussian noise (AWGN) model,
along with each distance estimation network, we train a separate
uncertainty estimation network to estimate the uncertainty in the
distance estimate.

The distance classification model is a simple feed-forward
network consisting of an input layer, three fully connected layers
with a rectified linear unit (ReLU) activation function, and an
output layer with a sigmoid activation function. The three fully
connected layers consist of 16, 16, and 8 nodes respectively. We
employ Adam as an optimizer and train the network to minimize
the binary cross entropy.

The distance estimation network consists of three sub-
networks. The first sub-network is a simple feed-forward net-
work with two fully connected layers. It takes RSSI distance
(i.e., MAE, MSE, and ED defined in (8-10)) as input. The
feed-forward network is used here because RSSI distance is
high-level information that is directly related to the pairwise
distance. The second and third sub-networks are convolutional
networks each consisting of two convolutional layers. They
extract low-level information, i.e., RSSI difference and RSSI
variation, to estimate the pairwise distance. We again employ
Adam and train the network to minimize the mean squared error.

The uncertainty estimation network is a simple feed-forward
network consisting of an input layer, three fully connected layers
with ReLU activation function, and an output layer without
ReLU. The fully connected layers have 16, 16, and 8 nodes
respectively. We again employ Adam as an optimizer and train
the network to minimize mean squared error.

We have trained UDENet using data from different envi-
ronments separate from our experimental sites. We tested and
confirmed that the distance estimates vary relatively little with
the different training datasets.

V. TOPOLOGICAL MAP CONSTRUCTION

In this section, we describe how we use the detected junctions
and estimated distances to construct a topological map and cal-
ibrate the stride parameters for all traces jointly. The estimated
uncertainties of non-consecutive node distances by UDENet are
transformed into weights and exploited in the map construction.
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By using majorization minimization and block coordinate de-
scend techniques, we develop an efficient algorithm to solve the
topological map construction problem.

A. Formulation

We now formally state the topological map construction
problem. Consider N nodes from M trajectories in a two-
dimensional space. Our problem is to determine X ∈ R

N×2, the
matrix of coordinates of all the nodes. The euclidean distance
between nodes i and j is di,j(X) = ‖Xi −Xj‖2. We have three
types of information as inputs: consecutive node distances d̂i,i′ ,
non-consecutive node distances d̂i,j and node junctions. Con-
secutive node distances are estimated by the walking distance
model in (1). Their confidences are ŵi,i′ , which are treated as
identical. Non-consecutive node distances and their uncertain-
ties are estimated by UDENet. Their confidences are ŵi,j , which
are reciprocals of uncertainties. The set of distinct consecutive
node pairs (i, i′) for the mth trace is denoted by Jm. The set of
distinct non-consecutive node pairs (i, j) is denoted by I, The
set of junction node pairs (i, j) is denoted by K,

Motivated by the classical MDS algorithm, we estimate all
node positions by solving the following stress function mini-
mization problem

P1 : min
X,k,b

∑
(i,j)∈I

wi,j(d̂i,j − di,j(X))2

︸ ︷︷ ︸
distance disparities for non-consecutive nodes

+
∑
m

∑
(i,i′)∈Jm

wi,i′(d̂i,i′(km, bm)− di,i′(X))2

︸ ︷︷ ︸
distance disparities for consecutive nodes

(16)

s.t. d̂i,i′ = kmni,i′ + bm, (i, i′) ∈ Jm, ∀m (17)

XT (ei − ej) = 0, (i, j) ∈ K. (18)

Our formulation differs from the classical MDS algorithm in
three ways: First, each intra-trace distance estimate is a function
of km and bm, which account for the step length and estimation
noise for each trace. Our formulation enables us to learn node
positions and the step length for each trace simultaneously.
Previous formulations use a default step size and estimate only
the node positions. Second, the weights wi,j and wi,i′ are set to
the assessed confidence of distance estimates. The confidence is
inversely related to the uncertainty given by UDENet, preventing
us from tedious parameter tuning. Third, the junction points
detected by the mSW algorithm are imposed as a constraint,
providing extra information and making our problem a con-
strained optimization problem. As a result, the classical MDS in
previous formulations cannot be directly applied in our case. In
our HMDS formulation, we need to optimize over two blocks
of variables, and our optimization is a constrained optimization.

B. Algorithm

Motivated by iterative majorization (IM), we develop a sur-
rogate function to approximate the original loss function. The
central idea of the majorization method is to iteratively replace

the original complicated function f(x) with a simple surrogate
function g(x, z), where z in g(x, z) is a fixed value and to
generate a monotonically non-increasing sequence of function
values. Following this idea, the two terms of our stress function
have a similar form. For the first term, we expand and rewrite it
as

σ1(X) =
∑

(i,j)∈I
wi,j(d̂i,j − di,j)

2

=
∑

(i,j)∈I
wi,j d̂

2
i,j +

∑
(i,j)∈I

wi,jd
2
i,j − 2

∑
(i,j)∈I

wi,j d̂i,jdi,j

= η1 + ζ1(X)− 2ρ1(X), (19)

where η1 is a constant term, ζ1(X) is written in matrix form as

ζ1(X) = tr

⎛
⎝XT

⎛
⎝ ∑

(i,j)∈I
wi,jAi,j

⎞
⎠X

⎞
⎠

= tr(XTV1X), (20)

whereAi,j is a matrix with ai,i = 1, aj,j = 1, ai,j = −1, aj,i =
−1, and all other elements being zero. V1 is assumed to be
irreducible, i.e., the directed graph associated withV1 is strongly
connected. From the Cauchy-Schwarz inequality, the majorizor
of −ρ1(X) is

−ρ1(X) ≤ −tr

⎛
⎝XT

⎛
⎝∑

(i,j)

bi,jAi,j

⎞
⎠Z

⎞
⎠

= −tr(XTB1(Z)Z), (21)

where Z is a supporting point, and B1(Z) has elements

bi,j =

{
−wi,j d̂i,j

di,j(Z) , if i �= j, di,j(Z) �= 0

0, if i �= j, di,j(Z) = 0

bi,i = −
∑
i �=j

bi,j . (22)

In (21), the equality holds if X = Z. Combining (19), (20), and
(21) gives us the majorizor of the first term in (16) as

σ1(X) ≤ η1 + tr(XTV1X)− 2tr(XTB1(Z)Z)

= τ1(X;Z). (23)

Similarly, we can obtain the majorizor of the second term in
(16) as

σ2(X,k,b) ≤ η2(k,b)+tr(XTV2X)−2tr(XTB2(k,b;Z)Z)

= τ2(X,k,b;Z), (24)

where η2(k,b) is a function of k ∈ R
M and b ∈ R

M . Now,
we apply the method of Lagrange multipliers to find the local
minima of a function subject to equality constraints. Let the ma-
jorizor of (16) be τ(X,k,b;Z) = τ1(X;Z) + τ2(X,k,b;Z),
we write the Lagrangian as

L(X,k,b,u;Z) = τ(X,k,b;Z)

+
∑

(i,j)∈K
uT
(i,j)X

T (ei − ej), (25)
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whereu(i,j) ∈ R
2 is the Lagrange multiplier associated with the

equality constraint for junction nodes (i, j). We aim to find the
stationary points of L, which are the necessary conditions for
the optimal solution corresponding to the original constrained
problem [37]. However, the Lagrangian (25) is hard to optimize
due to its nonconvexity. Fortunately, it is convex in each block of
variables [38]. Specifically, L is quadratic in X,k,b and linear
inu. The saddle point ofL can be computed efficiently by setting
the partial derivatives of L(X,k,b,u;Z) to zero.

With k and b fixed
∂L
∂X

= 2VX− 2B(k,b;Z)Z+
∑

(i,j)∈K
(ei − ej)u

T
(i,j) = 0,

(26)

∂L
∂u(i,j)

= XT (ei − ej) = 0, (i, j) ∈ K. (27)

where V = V1 +V2, B(k,b;Z) = B1(Z) +B2(k,b;Z).
Then, X and u can be obtained analytically by[

X

uT

]
=

[
2V E

ET 0

]†[
2B(k,b;Z)Z

0

]
, (28)

where u = [. . . ,u(i,j), . . .], E = [. . . , e(i,j), . . .] and e(i,j) =
ei − ej .

With X and u fixed, km and bm can be obtained by setting
the partial derivatives to zero as follows:

∂L
∂km

=
∑

(i,i′)∈Jm
2wi,i′(kmni,i′ + bm)ni,i′

− 2
∑

(i,i′)∈Jm
wi,i′ni,i′di,i′ = 0 (29)

∂L
∂bm

=
∑

(i,i′)∈Jm
2wi,i′(kmni,i′ + bm)

− 2
∑

(i,i′)∈Jm
wi,i′di,i′ = 0. (30)

The above equations constitute a system of linear equations.
By stacking km and bm into vectors, we can solve k and b
analytically by [

k

b

]
= Φ†φ, (31)

where

Φ1 = diag

⎛
⎝
⎡
⎣ ∑
(i,i′)∈J1

wi,i′n
2
i,i′ , . . . ,

∑
(i,i′)∈JM

wi,i′n
2
i,i′

⎤
⎦
⎞
⎠ ,

(32)

Φ2 = diag

⎛
⎝
⎡
⎣ ∑
(i,i′)∈J1

wi,i′ni,i′ , . . . ,
∑

(i,i′)∈JM
wi,i′ni,i′

⎤
⎦
⎞
⎠ ,

(33)

Algorithm 2: HMDS Algorithm.

Input : wi,j , wi,i′ , d̂i,j , ni,i′ ;
Output : X,u,k,b;
1: Initialization: X0, Z0, k0, b0, u0;
2: t← 1;
3: while convergence condition not reached do
4: Xt,ut ← (28); / / update coordinate
5: kt,bt ← (31); / / update stride
6: Zt ← Xt;
7: t← t+ 1;
8: end while

Φ3 = diag

⎛
⎝
⎡
⎣ ∑
(i,i′)∈J1

wi,i′ , . . . ,
∑

(i,i′)∈JM
wi,i′

⎤
⎦
⎞
⎠ , (34)

Φ =

[
Φ1 Φ2

Φ2 Φ3

]
∈ R

2M×2M , (35)

φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
(i,i′)∈J1 wi,i′ni,i′di,i′

...∑
(i,i′)∈JM wi,i′ni,i′di,i′∑

(i,i′)∈J1 wi,i′di,i′
...∑

(i,i′)∈JM wi,i′di,i′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

2M . (36)

We summarize the HMDS algorithm in Algorithm 2
In the HMDS algorithm, we introduce the Lagrangian (25) to

handle the constraints and the block coordinate descent (BCD)
technique to optimize the two blocks of variables in turn - (28)
for the first block and (31) for the second block. One advantage
of BCD is that it can be easily parallelized - the updates to
different blocks of variables can be computed independently
and in parallel. This makes BCD particularly useful for large-
scale optimization problems, where the ability to parallelize
the computation can greatly reduce the time required to find
a solution. Another advantage of BCD is that it can be used
to solve problems with constraints since the variables can be
updated in a way that respects the constraints.

C. Convergence Analysis

In this session, we equip the HMDS algorithm with the
Armijo rule and give the convergence analysis of the HMDS al-
gorithm. Let x = vec(X), y = [x;k;b] and d = [dx;dk;db].
Let ȳ = [x̄; k̄; b̄] be a limit point of the sequence {yt}. Let
{yti |i = 0, 1, . . .} be a subsequence of {yt} that converges to
y∗. For ease of discussion, we focus on the update of x. In
the tth iteration of HMDS algorithm, we minimize L in (25)
with respect to x and obtain x by (28). We choose a feasible
descent direction by dx

t = x− xt−1 and set dt = [dx
t ; 0; 0]. We

further obtain a stepsize αt by Armijo rule, which is defined as
follows:
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Given α0 > 0, β ∈ (0, 1) and σ ∈ (0, 1), we choose αt to be
the largest element in {α0β

n|n = 0, 1, . . .} such that

f(yt−1)− f(yt−1 + αtdt) ≥ −σαtf
′(yt−1;dt) (37)

and

yt−1 + αtdt ∈ X , (38)

where f ′(yt−1;dt) is the directional derivative of f at pointyt−1
in the direction dt. The convergence of the HMDS algorithm is
shown in Theorem 1.

Theorem 1. Every limit point of the iterates generated by the
HMDS algorithm is a stationary point of P1.

Proof. Due to the space limit, we state the proof sketch here.
Due to the use of the Armijo rule, we have

f(yt)− f(yt+1) ≥ −σαtf
′(yt;dt) ≥ 0. (39)

Letting t→∞, we have

lim
t→∞αtf

′(yt;dt) = 0. (40)

Since {f(yt)} is monotonically non-increasing, we have

lim
t→∞ f(yt) = f(ȳ), (41)

where ȳ is a limit point.
Restricting to a subsequence {yti} where x is updated, we

follow the Theorem 4.1 (b) in [39] and prove that

lim
i→∞

dti = 0 (42)

by contradiction.
Since xti + dti is the minimizer of surrogate function

τ(x,yti), we have

τ(xti + dti ;yti) ≤ τ(x;yti), ∀x ∈ X1. (43)

Combining (42) and (43) and letting i→∞, we have

τ(x̄; ȳ) ≤ τ(x; ȳ), ∀x ∈ X1. (44)

Due to the first-order optimality condition and the fact that τ
is a local approximation of f

τ ′(x,y;dx) = f ′(y;d), ∀d = (dx; 0; 0) with x+ dx ∈ X1,
(45)

we have

f ′(ȳ;d) ≥ 0, ∀d = (dx; 0; 0) with x̄+ dx ∈ X1. (46)

Moreover, since dti → 0, we have

lim
i→∞

yti+1 = ȳ. (47)

By restricting to the subsequence that dti → 0 and repeating
the above argument for k and b, we have

f ′(ȳ;d) ≥ 0, ∀d = (0;dk; 0) with k̄+ dk ∈ X2 (48)

f ′(ȳ;d) ≥ 0, ∀d = (0; 0;db) with b̄+ db ∈ X3 (49)

Using the regularity of f at point ȳ completes the proof. �

D. Computation Complexity

To analyze the time complexity of the HMDS algorithm,
we essentially analyze each individual step of the algorithm.
Let m and n be the number of traces and the number of
positions. Usually, n >> m. The major computation in each
iteration is calculating the pseudo-inverse using singular value
decomposition (SVD). The complexity of SVD for solving X
and u is O(n3). The complexity of SVD for solving k and
b is O(m3). The stepsize search by the Armijo rule is of
constant time complexity. Assuming the number of iterations
until convergence is k, the total time complexity of the HMDS
algorithm is O(kn3).

VI. MAP RECTIFICATION

In this session, we describe how we rectify the map obtained in
the preceding section with reference to landmarks. We first find
a transformation to roughly align the map with the landmarks.
Then, we apply our AFD algorithm to rectify the map using
landmarks.

A. Map Transformation

We aim to find the transformation matrices, including scaling,
translation, rotation, and reflection, to align landmarks with the
corresponding nodes in the topological map obtained in the
preceding section. We obtain these transformation matrices by
solving the following minimization problem

P2 : min
P∈Diag(2),R∈SO(2),t∈R2

‖Xdst −PRXsrc − t‖2F (50)

where Xdst and Xsrc are the coordinates of landmarks and
corresponding nodes, P ∈ Diag(2) is a two-dimensional scal-
ing matrix which is also a diagonal matrix, R ∈ SO(2) is a
two-dimensional rotation matrix and t ∈ R

2 is a translation
vector. The difficulty in solving P2 is the constraint that P is
a diagonal matrix. By relaxing the constraint to P ∈ R

2×2, we
obtain the relaxed problemP′2 which is a manifold optimization
problem. We employ the trust-region algorithm to solveP′2. The
problem can be solved efficiently by off-the-shelf solvers, such
as Manopt [40]. Then, we apply the obtained transformation
matrices to obtain the transformed coordinates as

Xtrans = PRX+ t, (51)

where X is the coordinates of nodes obtained by our HMDS
algorithm.

B. Algorithm

The AFD algorithm fixes the positions of the landmarks
and moves other nodes in a 2D euclidean space such that the
euclidean distances between nodes accurately fit the estimated
distances. Let d̂i,j be the estimated distance between nodes i
and j, and Xi be the coordinates of node i. We can characterize
the embedding error as

E =
∑
(i,j)

Ei,j

=
∑
(i,j)

(‖Xi −Xj‖2 − d̂i,j)
2. (52)
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The embedding error is an analogue to the potential energy of
a spring-mass system. Thus, minimizing the embedding error is
equivalent to minimizing the energy of a spring-mass system.

The main idea of the AFD algorithm is to fix a few nodes to
the landmarks and replace each edge in the graph with a spring
to form a spring-mass system. Each node maintains its own
current coordinates, starting with X from the HDMS algorithm.
In each iteration, a node communicates with neighboring nodes,
measures the distances to these nodes, and adjusts its current
coordinates according to the elastic forces exerted on it. The
elastic force exerted on node i from node j is defined as

−→
fi,j = c1(‖Xi −Xj‖2 − d̂i,j)

−→ei,j , (53)

where c1 is the stiffness of the spring between nodes i and j,
d̂i,j is the rest length of the spring, and −→ei,j = (Xj−Xi)

‖Xj−Xi‖ is the
unit vector gives the direction of the force on node i.

While the minimum energy of the spring system corresponds
to the minimum embedding error, it is not guaranteed that the
global minimum can be obtained. To escape from trivial local
minima, our AFD algorithm adopts an adaptive strategy to select
the neighboring nodes to communicate in each iteration. The
neighbor nodes of node i are

N (i) = {j|d̂i,j < dneigh}, (54)

There is a tradeoff between increasing dneigh for greater accu-
racy and keeping it small for escaping from local minima. AFD
algorithm starts with a small value for dneigh to prevent nodes
from getting stuck in local minima. Then, we increase dneigh
in each iteration until dneigh reaches its predefined maximum
value.

The net force exerted on node i is the sum of elastic forces
from neighboring nodes

−→
fi =

∑
j∈N (i)

−→
fi,j . (55)

The coordinates of node i is updated by

Xi = Xi + δ
−→
fi . (56)

where δ is the step size. The rate of convergence is governed by
the step size δ. Large values of δ cause the AFD algorithm to
typically oscillate over low-energy valleys and fail to converge.
Small values of δ cause the AFD algorithm slow convergence.
To improve the convergence of the algorithm, we employ an
adaptive cooling scheme [41] to allow the algorithm to change
step size depending on the progress. This adaptive scheme is
motivated by the trust region algorithm for optimization. Let
γ ∈ (0, 1) be a cooling factor. If the energy of the system
decreases, the step size is unchanged. If the energy of the system
continuously decreases, we start to enlarge the step size by
δ = δ

γ . If the energy of the system increases, we shrink the step
size by δ = γδ.

We summarize the AFD algorithm in Algorithm 3.

C. Computation Complexity

The AFD algorithm has O(n2) running time, where n is
the number of nodes in the input graph. In each iteration,

Algorithm 3: AFD Algorithm.

1: Input : dneigh, ε1, d̂i,j , d̂i,i′ , γ;
2: Output : X;
3: X0 ← Xtrans;
4: ΔX← inf;
5: E0 ← inf;
6: t← 1;
7: while ‖ΔX‖F > ε1 and t < max_iter do
8: for i ∈ U do
9: Compute N (i) using dneigh;

10:
−→
fi ← (55);

11: end for
12: for i ∈ U do
13: Xi ← (56);
14: end for
15: t← t+ 1;
16: dneigh ← dneigh(1 + 0.001t);
17: Et ← (52);
18: ΔE = Et − Et−1;
19: ΔX = Xt −Xt−1;
20: if ΔE < 0 then
21: progress← progress+ 1;
22: if progress > 5 then
23: progress← 0;
24: δ ← δ

γ ;
25: end if
26: else
27: progress← 0;
28: δ ← γδ;
29: end if
30: end while
31: return X;

each node communicates with neighboring nodes, and their
elastic forces need to be computed, which is O(dn), where
d = max{deg(u)|u ∈ U} is the maximum of nodes’ degree.
Assuming the number of iterations to convergence is estimated
to be k, the total time complexity of AFD algorithm is O(kn).
In addition, k is empirically proportional to n. Note that when
combined with a multilevel approach, AFD can handle graphs
with millions of nodes. Furthermore, it requires O(dn) for
storage of pairwise node distance.

VII. EXPERIMENT AND RESULT

A. Datasets and Equipments

In this section, we compare the performance of our system
against several existing systems. We collect traces of WiFi
fingerprints at two sites: a campus and a shopping mall. Data is
collected via a smartphone using an application we developed.
The smartphone is Samsung Galaxy S8+ with Android version
8.0. To obtain the ground truth of node positions, the surveyor
designs a walking path and puts checkpoints on the path. Check-
points typically contain the starting point, ending point, and
turning points whose locations are known by referring to the
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Fig. 4. Floor plan (campus).

Fig. 5. Floor plan (mall).

TABLE II
STATISTICS OF THE DATASETS FOR RADIO MAP CONSTRUCTION

floor plan. Then, the surveyor follows the designed path and
visits the checkpoints in order. When the user visits a checkpoint,
she presses the button on the app to record the time of her visit.
We can easily estimate the average walking velocity between
consecutive checkpoints and generate a sequence of nodes with
a time interval being 2 seconds. Since we know the positions of
all nodes, we randomly select some of them as landmarks whose
positions are known. In a real deployment, we can install BLE
beacons that can broadcast their position at the site.

To imitate crowdsourced data, the surveyor collects data
one trace at a time by walking in a normal fashion over a
planned route. The app collects a variety of sensor readings,
including WiFi RSSI values, accelerations, angular velocities,
and magnetic fields, at their highest sampling frequencies. The
acceleration readings are used to detect steps and determine the
ground truth of step length. We synchronize different sensor
readings to 0.5 Hz. The number of collected fingerprints is 2747
for the campus and 1176 for the mall. The average time interval
between consecutive fingerprints is 2 seconds. Note that some
areas on the floor plan may not be accessible. Figs. 4 and 5 show
the floor plans of the two sites and Table II summarizes the two
datasets.

Experiments are run on our laptop computer with Intel(R)
Core(TM) i7-7700HQ CPU @ 2.80GHZ. The operating system
is Windows 10. All the code is implemented in Python.

B. Baselines

We implemented the following baseline CIPSs for compari-
son:
� Zee which has two key components: Placement Indepen-

dent Motion Estimator (PIME) and Augmented Particle
Filter (APF). PIME uses mobile sensors such as accelerom-
eter, compass, and gyroscope to estimate user motion. APF
uses the motion estimates from PIME and the floor map to
track the user’s location on the floor.

� UnLoc which combines three components - dead-
reckoning, urban sensing, and WiFi-based partitioning
- into a framework for unsupervised localization. Both
Seeded Landmarks (SLMs) from the floor plan and Organic
Landmarks (OLMs) discovered from the collected data
are used to improve the dead-reckoning for subsequent
users, which in turn improves the location estimates of the
SLMs/OLMs themselves. This circular process pushes the
entire system to better accuracy over time.

� LiFs which transforms floor plan to stress-free floor plan by
MDS and then creates a distance matrix between every pair
of two consecutive fingerprints by step counter and com-
pletes the distance matrix by Floyd-Warshall algorithm.
After using MDS to construct a fingerprint space, LiFS
detects doors as landmarks to map fingerprints to locations.
Since doors are not used in our scenario, to adapt to our
experiments, we manually label all the landmarks.

� WiFi-RITA which generates selected user trajectories by
PDR. WiFi-RITA merges the user trajectories by finding
planar rotation and translation with reference to detected
WiFi marks. After the trace merging, WiFi-RITA removes
the outlier traces based on signal marks and landmarks.

� GraphIPS which dynamically generates accurate radio
maps by utilizing crowdsourced smartphone WiFi and
IMU data. GraphIPS fuses the crowdsourced data into a
graph-based formulation and applies the MDS algorithm
to compute the positions of users’ steps. GraphIPS assumes
AP locations are known and WiFi AoA data is available,
both being not true in our scenario. To adapt to our exper-
iments, we manually create all the virtual APs.

We summarize these CIPSs in Table III. The same data is used
to evaluate the above CIPSs.

C. Map Accuracy

We study the map accuracy of Leto compared with the base-
line CIPSs. Figs. 6 and 9 show the true radio maps of the campus
and mall. Each color represents an individual trace. The same
color may represent different traces for the simplicity of colors.
Figs. 7 and 10 visually show the respective estimated radio maps
by Leto. Figs. 8 and 11 show the CDFs of position errors of the
estimated radio maps. From the results, we can observe that:

(1) Leto achieves better accuracy for both sites compared to
most IPSs. The reason is that Leto can learn the topology of the
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TABLE III
COMPARISON OF CIPSS

Fig. 6. True radio map (campus).

Fig. 7. Estimated radio map with 60 landmarks (campus).

Fig. 8. CDF of position errors (campus).

Fig. 9. True radio map (mall).

Fig. 10. Estimated radio map with 40 landmarks(mall).

Fig. 11. CDF of position errors (mall).

radio map first and then make use of anchor points to calibrate the
radio map, while Zee and Unloc construct the radio map trace
by trace. It verifies that the topology is easy to learn and can
help us better construct the radio map. LiFS and GraphIPS also
learn the topology. However, LiFS associates the map with the
floor plan corridor by corridor, which diminishes the benefits
of learned topology. The rigid transformation used in LiFS is
not stable for associating corridors with the floor plan. Note
that GraphIPS achieves similar accuracy as ours on the mall
dataset. The reason is that GraphIPS uses AOA data, which is not
available in practice and GraphIPS generates them by simulated
data. Also, GraphIPS uses AP locations as indirect anchor points,
whose accuracies vary greatly in different sites.

(2) Leto is more deployable compared to the baseline CIPSs.
From Table III, we use fewer sensors and prior knowledge. Most
CIPSs use IMU signals for tracking user behavior, and Leto only
uses the accelerometer signal for step detection. Zee, Unloc, and
WiFi-RITA track user trajectories by PDR which may suffer
from unstable user behavior. Most CIPSs assume a floor plan is
available. Zee and LiFS heavily rely on the availability of a floor
plan to map traces to. Unloc, LiFS, WiFi-RITA, and GraphIPS
require enough landmarks, either automatically detected or
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TABLE IV
STATISTICS OF THE DATASETS FOR LOCALIZATION EVALUATION

determined by a site survey, to achieve satisfactory accuracies.
For Unloc, each trace needs to observe at least one landmark.
For LiFS, the junctions of corridors need to be correctly detected
as landmarks. For WiFi-Rita, each trace needs to observe at
least three WiFi marks. For GraphIPS, the AP locations are
determined by a site survey.

(3) PDR-based CIPSs (i.e., Zee, Unloc, WiFi-RITA) generally
have worse performance compared to graph-based CIPSs (i.e.,
Leto, GraphIPS, LiFS). The reason is that the IMU signal is
noisy and the PDR result is unsatisfactory. Moreover, short
traces contained in our datasets cause extra difficulty for PDR-
based CIPSs. For Zee, short traces exhibit too few signatures
for inferring their locations on the floor plan using a particle
filter. For Unloc and WiFi-RITA, short traces usually reduce the
probability of detecting enough landmarks to calibrate the PDR
result.

(4) Accuracies of CIPSs on the mall dataset are generally
better than that on the campus dataset. For graph-based CIPSs,
like Leto and GraphIPS, the WiFi signal is utilized to infer
pairwise distances, and there are higher probabilities for LOS
(line of sight) at the mall, which is an open space. LOS can help
improve the accuracy of pairwise distance estimation leading
to improved radio map accuracy. For PDR-based CIPSs, like
Zee, the campus map contains much more similar substructures,
i.e., rectangles, than in a mall. It is harder for particle filters to
converge to the correct locations, especially for short traces.
Moreover, the area of the campus is much larger than that of
the mall. Since we use the same number of particles for the two
datasets, the mall is explored more fully than the campus.

D. Localization Accuracy

We study the localization accuracy of our radio map compared
to the baseline CIPSs. We collected additional fingerprints at the
mall and campus about three months later after the initial data
collection. The true positions of nodes are generated as explained
in Section 7.1. The information on datasets for localization
evaluation is summarized in Table IV.

For a fair comparison, we adopt WKNN, which is a widely
used localization technique. In this work, we set K to 3. From
Figs. 18 and 19, we observe that:

(1) The performance of Leto is significantly better than the
baseline models in terms of position errors. Leto’s result is
comparable to results obtained with site survey, especially on
the mall dataset. Note that GraphIPS has a similar performance
to ours on the mall dataset, which is consistent with the result
of map construction errors. As shown in Figs. 18 and 19, 90
percent of localization errors are under 10 meters on the campus
dataset, and 90 percent are under 5 meters on the mall dataset.

(2) The localization error is correlated with the map error. The
localization error is slightly larger than the map error. The reason

TABLE V
PERFORMANCE OF THE DISTANCE CLASSIFICATION

Fig. 12. True pairwise distances (campus).

Fig. 13. Estimate pairwise distances (campus).

is that the fingerprints vary over time due to environmental
changes - AP changes, unpredictable user behaviors, and so on.

E. Pairwise Distance Estimation Accuracy

We study the accuracy of pairwise distance estimation. We
divide the pairwise distance estimation into two steps. We first
train a forward neural network to classify short and long dis-
tances. Then, we train two separate neural networks to estimate
pairwise distances for each class. For the campus dataset, the
short distance is from 0 to 10 meters, and the long distance is
from 10 to 40 meters. For the mall dataset, the short distance is
from 0 to 5 meters, and the long distance is from 5 to 40 meters.
The results of distance classification are shown in Table V. From
the results, we can observe that our model can classify different
ranges with high accuracy.

The CDF of estimation errors is shown in Figs. 20 and 21. The
ground truth and estimation of pairwise distance are shown in
Figs. 12–17. We visualize the estimated pairwise distance matrix
of campus and mall datasets in Figs. 13 and 16. The estimated
distance is consistent with the ground truth shown in Figs. 12
and 15. Note that we only show distances under 40 meters. Our
models only estimate pairwise distances under 40 meters due to
the limited WiFi sensing range.

To demonstrate the robustness of our pairwise distance esti-
mation model, we randomly add or remove some APs from the
test data and evaluate the effect of AP changes on the accuracy

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 08,2024 at 09:10:29 UTC from IEEE Xplore.  Restrictions apply. 



2808 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Fig. 14. Confidence of estimated distance (campus).

Fig. 15. True pairwise distances (mall).

Fig. 16. Estimate pairwise distances (mall).

Fig. 17. Confidence of estimated distance (mall).

Fig. 18. CDF of localization errors (campus).

Fig. 19. CDF of localization errors (mall).

Fig. 20. CDF of distance errors (campus).

Fig. 21. CDF of distance errors (mall).

Fig. 22. Localization errors under AP changes.

of the estimates. The results are shown in Fig. 22. From the
figure, we can observe that estimation errors change only slightly
under different AP changes. The reason is that our AP selection
criteria mitigate the effect of AP changes and crafted features
are effective and robust under AP changes.

To demonstrate the generalization ability of our model, we
increase the training dataset and evaluate the effect of training
data size on the accuracy of pairwise distance estimation. Results
are shown in Fig. 23. From the figure, we can observe that
estimation errors change only slightly under different training
sizes for short distances, while estimation errors are slightly
reduced with increasing training size for long distances.
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Fig. 23. Localization errors under different training sizes.

Fig. 24. Performance under different θ1 (campus).

TABLE VI
PERFORMANCE OF THE JUNCTION DETECTION

F. Junction Detection Accuracy

We study the performance of the junction detection algorithm.
The true positions of all nodes are obtained, as explained in
Section 7.1. When the distance between two nodes from different
traces is smaller than 3 m, we consider them to be at the same
location. As shown in Table VI, our junction detection algorithm
achieves high precision on both datasets. It indicates our algo-
rithm can detect junctions between traces reliably. Note that the
recall of our algorithm is more than 50 % on the mall dataset.
It indicates that our algorithm can discover many junctions that
are not estimated accurately by our pairwise distance estimation
model. This is because we utilize temporal information to align
pairs of user traces. Moreover, our algorithm is highly efficient.
It takes less than one minute to detect junctions among all traces
on both datasets. The reason is that our sliding window technique
and pruning strategies can greatly reduce the computation.

Our algorithm uses two heuristic thresholds θ1 and θ2 for
determining fingerprint-level match and window-level match
respectively. A smaller value of θ1 means a stricter condition
for a fingerprint-level match. Note that θ1 for the campus data
is empirically set larger than that for mall data. This is again
because fingerprints exhibit higher similarity at the mall than
at the campus. A Larger value of θ2 means a stricter condition
for a fingerprint-level match. To demonstrate the robustness of
our algorithm, we investigate the effect of different values for
these two thresholds. The results of θ1 are shown in Figs. 24
and 25. We observe that the detection precision is near 1 over

Fig. 25. Performance under different θ1 (mall).

Fig. 26. Performance under different θ2 (campus).

Fig. 27. Performance under different θ2 (mall).

a certain range of θ1 and deteriorates with larger values of θ1.
The detection recall differs at different sites. The recall slightly
changes under different values of θ1 on the campus dataset, while
the recall significantly increases with increasing θ1. It indicates
that the algorithm is more sensitive to the θ1 when it is applied
to open space. The results of θ2 are shown in Figs. 26 and 27.
We observe that the detection performance is highly stable over
a wide range of θ2 on both datasets.

G. HMDS Performance

To demonstrate the effectiveness of our HMDS algorithm in
constructing the radio map, we visualize the topology of the
radio map in Figs. 28 and 29. From the figures, we can not
directly evaluate the accuracy of the topological map, especially
for Fig. 29. To show the accuracy of the constructed topological
map, we need to refer to the result of map rectification as shown
in Figs. 7 and 10. Since our adaptive force-directed (AFD) algo-
rithm does not change the topology of the constructed map and it
converges in a reasonable time, we can verify that the constructed
topological map by HMDS has good accuracy and HMDS can
effectively fuse the heterogeneous distance estimation to output
a reasonable topology. We also show the MAE of the estimated
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Fig. 28. Estimated topology of radio map (campus).

Fig. 29. Estimated topology of radio map (mall).

TABLE VII
PERFORMANCE OF THE STEP LENGTH ESTIMATION

Fig. 30. Convergence of HMDS (campus).

Fig. 31. Convergence of HMDS (mall).

step length compared to the constant method in Table VII. The
constant method assumes each trace has a constant (0.76 m) step
length.

To demonstrate the efficiency of HMDS, we evaluate the
convergence and running time. Typical convergences of HMDS
on different datasets are shown in Figs. 30 and 31. We observe
monotone decreasing convergences on both datasets. It indicates
the good convergence of HMDS. We also show the running

TABLE VIII
RUNING TIME OF THE MAP CONSTRUCTION

TABLE IX
PERFORMANCE OF THE MAP RECTIFICATION UNDER DIFFERENT NUMBERS OF

LANDMARKS

Fig. 32. Convergence of AFD (campus).

Fig. 33. Convergence of AFD (mall).

time of HMDS in Table VIII. It indicates the low complexity of
HMDS.

H. AFD Performance

In this work, we use 60 and 40 landmarks to rectify the radio
map for campus and mall datasets. To demonstrate the effect
of landmarks in rectifying the radio map, we further evaluate
the MPE using different numbers of landmarks. The results
are shown in Table IX. We observe that the accuracy of map
rectification improves with the increasing number of landmarks.

To demonstrate the effectiveness of AFD in rectifying the
radio map, we show the convergence of AFD in Figs. 32 and
33. We observe that the average force of nodes oscillates several
times. It indicates our algorithm can escape from the local min-
ima and converge to the global optimum by adaptively adjusting
the communication range dneigh. We show the running time of
AFD in Table X. It indicates that AFD can find good solutions
within a reasonable time.
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TABLE X
RUNNING TIME OF THE MAP RECTIFICATION

VIII. CONCLUSION

In this paper, we propose Leto, a crowdsourced radio map
construction scheme based on WiFi, accelerometer signals,
and a few landmarks. Leto introduces several innovations for
crowdsourced indoor radio map constructions. These innova-
tions include enhancement to the graph-based CIPS formulation
by introduction of individual stride parameters and combina-
tion of accelerometer-based and neural network-based distance
estimations, a new low-complexity modified Smith-Waterman
algorithm for sequence matching, a new low-complexity HMDS
algorithm to replace MDS for stress minimization, and a new
rectification step using an enhanced Adaptive Force Directed
algorithm to better align the map with available landmarks. Our
experiments show that the stride parameters can be estimated
reasonably well which should in turn lead to better final results.
Our modified Smith-Waterman algorithm is window-based and
is capable of matching two sequences in the two directions at the
same time. HMDS uses block coordinate descent to handle the
two blocks of variables – node positions and stride parameters
– in turn. We have also enhanced existing neural network-based
distance estimation by introducing the concept of long and
short-distance classification and uncertainty estimation. Our
approach avoids the need for full IMU measurements, which
can be sensitive to how mobile devices are carried.

We implemented Leto and conducted extensive experiments
on our campus and a shopping mall. The results demonstrate
that Leto significantly outperforms state-of-the-art CIPSs on
the campus dataset, in terms of both the radio map accuracy
and WKNN localization accuracy. For the mall data set, Leto is
about at par with GraphIPS while both significantly outperform
the others. We investigated our pairwise distance estimation
accuracy, junction detection accuracy, HMDS performance with
step length estimation accuracy, and AFD performance. We also
investigated the running time and convergence of our algorithms.
Leto requires little prior knowledge about the target site and
consistently provides the best performance over two types of
sites.

REFERENCES

[1] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based user
location and tracking system,” in Proc. IEEE Conf. Comput. Commun.
19th Annu. Joint Conf. IEEE Comput. Commun. Soc., 2000, pp. 775–784.

[2] M. Youssef and A. Agrawala, “The Horus wlan location determina-
tion system,” in Proc. 3rd Int. Conf. Mobile Syst., Appl. Serv., 2005,
pp. 205–218.

[3] A. Goswami, L. E. Ortiz, and S. R. Das, “Wigem: A learning-based
approach for indoor localization,” in Proc. 7th Conf. Emerg. Netw. Ex-
periments Technol., 2011, pp. 1–12.

[4] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, ”Zee: Zero-
effort crowdsourcing for indoor localization,” in Proc. 18th Annu. Int.
Conf. Mobile Comput. Netw., 2012, pp. 293–304.

[5] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R. Choudhury,
“No need to war-drive: Unsupervised indoor localization,” in Proc. 10th
Int. Conf. Mobile Syst., Appl., Serv., 2012, pp. 197–210.

[6] G. Shen, Z. Chen, P. Zhang, T. Moscibroda, and Y. Zhang, “Walkie-Markie:
Indoor pathway mapping made easy,” in Proc. 10th USENIX Symp. Netw.
Syst. Des. Implementation, 2013, pp. 85–98.

[7] S. Sorour, Y. Lostanlen, S. Valaee, and K. Majeed, “Joint indoor local-
ization and radio map construction with limited deployment load,” IEEE
Trans. Mobile Comput., vol. 14, no. 5, pp. 1031–1043, May 2015.

[8] C. Wu, Z. Yang, and Y. Liu, “Smartphones based crowdsourcing for indoor
localization,” IEEE Trans. Mobile Comput., vol. 14, no. 2, pp. 444–457,
Feb. 2014.

[9] S.-H. Jung, B.-C. Moon, and D. Han, “Unsupervised learning for crowd-
sourced indoor localization in wireless networks,” IEEE Trans. Mobile
Comput., vol. 15, no. 11, pp. 2892–2906, Nov. 2016.

[10] X. Zhang, A. K.-S. Wong, C.-T. Lea, and R. S.-K. Cheng, “Unambigu-
ous association of crowd-sourced radio maps to floor plans for indoor
localization,” IEEE Trans. Mobile Comput., vol. 17, no. 2, pp. 488–502,
Feb. 2017.

[11] J. Tan, H. Wu, K.-H. Chow, and S.-H. G. Chan, “Implicit multimodal
crowdsourcing for joint RF and geomagnetic fingerprinting,” IEEE Trans.
Mobile Comput., vol. 22, no. 2, pp. 935–950, Feb. 2023.

[12] X. Du, X. Liao, M. Liu, and Z. Gao, “CRCLoc: A crowdsourcing-based
radio map construction method for WiFi fingerprinting localization,” IEEE
Internet Things J., vol. 9, no. 14, pp. 12364–12377, Jul. 2022.

[13] F. Lu and E. Milios, “Globally consistent range scan alignment for envi-
ronment mapping,” Auton. Robots, vol. 4, no. 4, pp. 333–349, 1997.

[14] A. Howard, M. J. Mataric, and G. Sukhatme, “Relaxation on a mesh:
A formalism for generalized localization,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst.. Expanding Societal Role Robot. Next Millennium,
2001, pp. 1055–1060.

[15] M. Montemerlo et al., “FastSLAM: A factored solution to the simultaneous
localization and mapping problem,” Proc. AAAI Nat. Conf. Artif. Intell.,
2002, pp. 593–598.

[16] S. Thrun and M. Montemerlo, “The graph slam algorithm with applications
to large-scale mapping of urban structures,” Int. J. Robot. Res., vol. 25,
no. 5/6, pp. 403–429, 2006.

[17] B. Ferris, D. Fox, and N. D. Lawrence, “WiFi-SLAM using Gaussian
process latent variable models,” in Proc. Int. Joint Conf. Artif. Intell., 2007,
pp. 2480–2485.

[18] R. Faragher and R. Harle, “SmartSLAM-An efficient smartphone indoor
positioning system exploiting machine learning and opportunistic sens-
ing,” in Proc. 26th Int. Tech. Meeting Satell. Division Inst. Navigation,
2013, pp. 1006–1019.

[19] P. Mirowski, T. K. Ho, S. Yi, and M. MacDonald, “SignalSLAM: Si-
multaneous localization and mapping with mixed WiFi, Bluetooth, LTE
and magnetic signals,” in Proc. Int. Conf. Indoor Positioning Indoor
Navigation, 2013, pp. 1–10.

[20] Y. Zhao, Z. Zhang, T. Feng, W.-C. Wong, and H. K. Garg, “GraphIPS:
Calibration-free and map-free indoor positioning using smartphone crowd-
sourced data,” IEEE Internet Things J., vol. 8, no. 1, pp. 393–406,
Jan. 2021.

[21] Z. Li, X. Zhao, Z. Zhao, and T. Braun, “WiFi-RITA positioning: Enhanced
crowdsourcing positioning based on massive noisy user traces,” IEEE
Trans. Wireless Commun., vol. 20, no. 6, pp. 3785–3799, Jun. 2021.

[22] C. Wu, Z. Yang, Y. Liu, and W. Xi, “WILL: Wireless indoor localization
without site survey,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 4,
pp. 839–848, Apr. 2013.

[23] W. Zhuo et al., “GRAFICS: Graph embedding-based floor identification
using crowdsourced RF signals,” in Proc. IEEE 42nd Int. Conf. Distrib.
Comput. Syst., 2022, pp. 1051–1061.

[24] S. Mostafa, K. Harras, and M. Youssef, “A survey of indoor localization
systems in multi-floor environments,” 2022 arXiv:20439648.v1.

[25] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao, “A reliable and
accurate indoor localization method using phone inertial sensors,” in Proc.
ACM Conf. Ubiquitous Comput., 2012, pp. 421–430.

[26] W. Zijlstra, “Assessment of spatio-temporal parameters during uncon-
strained walking,” Eur. J. Appl. Physiol., vol. 92, no. 1, pp. 39–44, 2004.

[27] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” J. Mol. Biol., vol. 147, no. 1, pp. 195–197, 1981.

[28] K.-S. Lin, A. K.-S. Wong, T.-L. Wong, and C.-T. Lea, “Adaptive WiFi
positioning system with unsupervised map construction,” in Proc. Int.
Conf. Artif. Intell., 2015, pp. 636–642.

[29] H. Wu, S. He, and S.-H. G. Chan, “Efficient sequence matching and
path construction for geomagnetic indoor localization,” in Proc. Int. Conf.
Embedded Wireless Syst. Netw., 2017, pp. 156–167.

[30] T. He, J. Tan, W. Zhuo, M. Printz, and S.-H. G. Chan, “Tackling multipath
and biased training data for IMU-assisted BLE proximity detection,”
2022, arXiv:2201.03817.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 08,2024 at 09:10:29 UTC from IEEE Xplore.  Restrictions apply. 



2812 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

[31] P. Sapiezynski, A. Stopczynski, D. K. Wind, J. Leskovec, and S. Lehmann,
“Inferring person-to-person proximity using WiFi signals,” Proc. ACM
Interactive, Mobile, Wearable Ubiquitous Technol., vol. 1, no. 2, pp. 1–20,
2017.

[32] S. Sigg, M. Scholz, S. Shi, Y. Ji, and M. Beigl, “RF-sensing of activities
from non-cooperative subjects in device-free recognition systems using
ambient and local signals,” IEEE Trans. Mobile Comput., vol. 13, no. 4,
pp. 907–920, Apr. 2014.

[33] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Understanding and
modeling of WiFi signal based human activity recognition,” in Proc. 21st
Annu. Int. Conf. Mobile Comput. Netw., 2015, pp. 65–76.

[34] H. Abdelnasser, M. Youssef, and K. A. Harras, “WiGest: A ubiquitous
WiFi-based gesture recognition system,” in Proc. IEEE Conf. Comput.
Commun., 2015, pp. 1472–1480.

[35] Y. Gu, F. Ren, and J. Li, “PAWS: Passive human activity recognition
based on WiFi ambient signals,” IEEE Internet Things J., vol. 3, no. 5,
pp. 796–805, Oct. 2016.

[36] T. Nakatani, T. Maekawa, M. Shirakawa, and T. Hara, “Estimating the
physical distance between two locations with Wi-Fi received signal
strength information using obstacle-aware approach,” Proc. ACM Inter-
active, Mobile, Wearable Ubiquitous Technol., vol. 2, no. 3, pp. 1–26,
2018.

[37] D. Kalman, “Leveling with lagrange: An alternate view of constrained
optimization,” Math. Mag., vol. 82, no. 3, pp. 186–196, 2009.

[38] Y. Xu and W. Yin, “A block coordinate descent method for regularized
multiconvex optimization with applications to nonnegative tensor factor-
ization and completion,” SIAM J. Imag. Sci., vol. 6, no. 3, pp. 1758–1789,
2013.

[39] P. Tseng and S. Yun, “A coordinate gradient descent method for linearly
constrained smooth optimization and support vector machines training,”
Comput. Optim. Appl., vol. 47, no. 2, pp. 179–206, 2010.

[40] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, “Manopt, a matlab
toolbox for optimization on manifolds,” J. Mach. Learn. Res., vol. 15,
no. 1, pp. 1455–1459, 2014.

[41] Y. Hu, “Efficient, high-quality force-directed graph drawing,” Math. J.,
vol. 10, no. 1, pp. 37–71, 2005.

Yiwen Wang (Graduate Student Member, IEEE)
received the bachelor of engineering degree from
Southeast University, Nanjing, Jiangsu, China, in
2014, and the master of Philosophy degree in elec-
tronic and computer engineering from the Hong Kong
University of Science and Technology (HKUST), in
2017. He is currently working toward the PhD degree
with the Department of Electronic and Computer
Engineering, Hong Kong University of Science and
Technology (HKUST), Hong Kong, China. His re-
search interest includes crowdsourced sensing, Inter-

net of Things (IoT), and mobile computing.

Albert Kai-Sun Wong (Member, IEEE) received
the SB, SM, EE, and PhD degrees in electrical en-
gineering, all from the Massachusetts Institute of
Technology, in 1982, 1984, 1984, and 1988, respec-
tively. He joined the Hong Kong University of Science
and Technology, in 2005 to support the University’s
Development in Nansha, China. Since 2008, he has
been in the Department of Electronic and Computer
Engineering and is currently a senior lecturer and
associate head of the department. Prior, he was vice
president, Wireless Communication Systems, of AS-

TRI, the Applied Science and Technology Research Institute of Hong Kong,
and chief operating officer, Transtech Services Group, a company engaged in
the building of a fiber preform plant. From 1988 to 2000, he was with AT&T
and Lucent Technologies Bell Laboratories, where he was a member of technical
staff, distinguished member of technical staff, technical Manager, Director of
technical marketing, and Director, sales and technical marketing. He has also
held visiting and adjunct faculty positions with the Chinese University of Hong
Kong, Polytechnic University of New York, and Rutgers University. His current
research interests include biomedical systems automation, wireless localization
and tracking, and optical and data communication systems.

S.-H. Gary Chan (Senior Member, IEEE) received
the BSE degree (highest honor) in electrical engi-
neering from Princeton University (Princeton, NJ),
with certificates in applied and computational math-
ematics, engineering physics, and engineering and
management systems, and the MSE and PhD degrees
in electrical engineering with a minor in business
administration from Stanford University Stanford,
CA, USA. He is currently a professor with the De-
partment of Computer Science and Engineering, The
Hong Kong University of Science and Technology

(HKUST), Hong Kong. He is also affiliate professor in Innovation, Policy
and Entrepreneurship Thrust Area of HKUST(GZ), chair of the Committee
on Entrepreneurship Education Program, HKUST, and board director of Hong
Kong Logistics and Supply Chain MultiTech R&D Center (LSCM). His research
interest includes smart sensing and IoT, cloud and fog/edge computing, indoor
localization and mobile computing, video/location/user/data analytics, and IT
entrepreneurship. He has been an associate editor of IEEE Transactions on
Multimedia, and a vice-chair of Peer-to-Peer Networking and Communications
Technical Sub-Committee of IEEE Comsoc Emerging Technologies Committee.
He has been guest editor of ACM Transactions on Multimedia Computing, Com-
munications and Applications, IEEE Transactions on Multimedia, IEEE Signal
Processing Magazine, IEEE Communication Magazine, etc. He is a steering
committee member and was the TPC chair of IEEE Consumer Communications
and Networking Conference (IEEE CCNC), and area chair of the multimedia
symposium of IEEE Globecom and IEEE ICC.

Wai Ho Mow (Senior Member, IEEE) received the
PhD degree in information engineering from the
Chinese University of Hong Kong, in 1993. From
1997 to 1999, he was with the Nanyang Techno-
logical University, Singapore. He has been with the
Hong Kong University of Science and Technology
(HKUST), since 2000 and is currently a professor.
He published two books and more than 220 jour-
nal/conference publications and is the inventor of
38 patents. His research areas include coding and
information theory, wireless communications, optical

camera communications, and thermographic signal processing. He pioneered
the lattice approach to signal detection problems, including sphere decoding and
complex lattice reduction-aided detection. He unified all known constructions of
perfect roots-of-unity (aka CAZAC) sequences, which have been widely used as
communication preambles and radar signals. His joint work won the top prizes of
more than 10 project/paper competitions, including the 2014 HK U-21 IoT Gold
Award for Revolutional Concept, the Best Paper Award of 2013 and the 2016
Asia-Pacific Communications Conference, and the Best Mobile App Award at
ACM MobiCom’2013. His coinvented picture barcode PiCode was highlighted
as one of the four local innovations in the 2015 International IT Fest organized
by the Office of the Government Chief Information Officer, Hong Kong. He is a
Past Chair of the Hong Kong Chapter of the IEEE Information Theory Society,
and was the General/Program chair of six conferences, including SETA’2018
held in HK. He served on the Editorial Boards of six journals, including IEEE
Transactions on Wireless Communications. He is a past member of the Radio
Spectrum Advisory Committee, Office of the Telecommunications Authority,
Hong Kong S.A.R. Government.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 08,2024 at 09:10:29 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


