
1874 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 7, NOVEMBER 2014

Coding Structure and Replication Optimization for
Interactive Multiview Video Streaming

Dongni Ren, S.-H. Gary Chan, Senior Member, IEEE, Gene Cheung, Senior Member, IEEE, and
Pascal Frossard, Senior Member, IEEE

Abstract—Multiview video refers to videos of the same dynamic
3-D scene captured simultaneously bymultiple closely spaced cam-
eras from different viewpoints. We study interactive streaming
of pre-encoded multiview videos, where, at any time, a client can
request any one of many captured views for playback. Moreover,
the client can periodically freeze the video in time and switch
to neighboring views for a compelling look-around visual effect.
We consider distributed content servers to support large-scale
interactive multiview video service. These servers collaboratively
replicate and access video contents. We study two challenges in
this setting: what is an efficient coding structure that supports
interactive view switching and, given that, what to replicate in
each server in order to minimize the cost incurred by interactive
temporal and view switches? We first propose a redundant coding
structure that facilitates interactive view-switching, trading off
storage with transmission rate. Using the coding structure, we
next propose a content replication strategy that takes advantage
of indirect hit to lower view-switching cost: in the event that the
exact requested view is not available locally, the local server can
fetch a different but correlated view from the other servers, so that
the remote repository only needs to supply the pre-encoded view
differential. We formulate the video content replication problem
to minimize the switching cost as an integer linear programming
(ILP) problem and show that it is NP-hard. We first propose
an LP relaxation and rounding algorithm (termed Minimum
Eviction) with bounded approximation error. We then study a
more scalable solution based on dynamic programming and La-
grangian optimization (DPLO) with little sacrifice in performance.
Simulation results show that our replication algorithms achieve
substantially lower switching cost compared to other content
replication schemes.

Index Terms—Multimedia computing, digital video broad-
casting.

Manuscript received July 04, 2013; revised December 19, 2013; accepted
June 09, 2014. Date of publication June 20, 2014; date of current version Oc-
tober 13, 2014. This work was supported in part by Hong Kong Research Grant
Council (RGC) General Research Fund under Grant 610713, HKUST under
Grant FSGRF13EG15, and the Hong Kong Innovation and Technology Fund
under Grant UIM/246. The associate editor coordinating the review of this man-
uscript and approving it for publication was Prof. Ebroul Izquierdo.
S.-H. Gary Chan and D. Ren are with the Hong Kong University of Science

and Technology, Clear Water Bay, Hong Kong (e-mail: tonyren@cse.ust.hk;
gchan@cse.ust.hk).
G. Cheung is with the National Institute of Informatics, Tokyo 1018430,

Japan (e-mail: cheung@nii.ac.jp).
P. Frossard is with the Ecole Polytechnique Fédérale de Lausanne (EPFL)

Lausanne CH-1015, Switzerland (e-mail: pascal.frossard@epfl.ch).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2014.2332139

Fig. 1. Distributed interactive multiview video streaming (IMVS) network.

I. INTRODUCTION

A MULTIVIEW video is a set of 2-D image sequences cap-
turing the same dynamic 3-D scene recorded by a large

array of time-synchronized and closely spaced cameras from
different viewpoints [1]. We consider interactive streaming of
multiview video, called interactive multiview video streaming
(IMVS) in the sequel, where a client can freely select any one
of these stored views and play back on a conventional 2-D
display. In addition, the client can freeze the video in time and
switch to nearby viewpoints to examine the 3-D scene from dif-
ferent angles [2]. This static view-switching interaction, which
enables a “Matrix”-like look-around visual effect1 with the ac-
tion scene frozen in time, has been shown to be more appealing
to users than dynamic view-switching, where the video is played
back in time uninterrupted as a viewer switches to neighboring
views, resembling a single-camera panning effect [3].
In order to support a large-scale service, a content provider

often deploys content servers close to user pools [4]. We show
in Fig. 1 an example of such a network. There is a remote
repository storing all the pre-encoded videos. The content
servers then collaboratively replicate the videos subject to their
storage capacities. A client is served by its local server. In ad-
dition to temporal interactive requests (random access in time
of the same video view using traditional DVR functionalities),
a client can send inter-view requests (aforementioned static
view-switching) to its local server. The server fulfills these
requests directly if the data has been replicated locally. This
situation is called replication hit. Otherwise, it contacts the
other servers for the missing data. If no other servers has the re-
quested data (a replication miss), the remote repository supplies
it to the local server. While the network transmission delay

1During the filming of the 1999 movie “The Matrix”, a 1D array of closely
spaced cameras were arranged in a near half-circle and used to capture an action
scene simultaneously. Frames of the same captured time instant from consec-
utive views were then arranged together for playback, enabling a look-around
visual observation of the scene frozen in time.

1520-9210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

REN et al.: CODING STRUCTURE AND REPLICATION OPTIMIZATION FOR INTERACTIVE MULTIVIEW VIDEO STREAMING 1875

is negligible among the servers, the delay from the repository
is generally larger—potentially resulting in video playback
delay—and the transmission is more expensive. Hence it is
important to limit repository access as much as possible.
During a temporal or inter-view switching, the client has de-

liberately chosen a different navigation path, and a typical video
client has to empty its current buffer content and rebuffer a fixed
number of new frames before playback resumes. The delay in
resuming video playback adversely affects viewing experience.
Thus, we define switching cost to be the amount of time required
for the rebuffering of the newly transmitted frames, which de-
pends on both the size of the frames and the network location
from which the frames are fetched.
In this paper, we study two critical challenges to support

large-scale IMVS services: how to design an efficient coding
structure to facilitate interactive view-switching? Then, given
such a coding structure, how to optimize content replication
across servers for multiple movies and minimize switching cost
during interactive temporal and static view switches?
First, the multiview video must be pre-encoded a priori

without knowing what view navigation paths the clients will
eventually choose; these pre-encoded frames must be efficiently
extracted for decoding and playback according to the actual
viewpoints chosen by the clients at stream time. A simple
(but naïve) way to enable random access for view-switching
is to encode different viewpoints as independently coded
Intra-frames (I-frames). In this case, selected views can be
transmitted and decoded in any order since there is no coding
dependency between views. However, because I-frames are
not coding-efficient, this naïve solution results in unacceptably
high bandwidth requirements.
Due to the high correlation among adjacent viewpoint im-

ages, we propose a more efficient coding structure to facilitate
static view-switching, trading off required storage size with ex-
pected transmission rate. The structure is based on redundant
P-frames [2] andmerge frames [5] to help users navigate among
adjacent views. A strength of our redundant coding structure is
that, in addition to the replication hits (called direct hits in the
sequel) and replication misses mentioned above, it enables in-
direct hits: even if an exact requested view is not available lo-
cally or in other servers, the local server can use a different but
correlated view (either locally stored or fetched from the other
servers), so that the remote repository only needs to transmit the
pre-encoded differentials between the target view and the cor-
related view. This leads to a lower overall switching cost than
transmission of intra-coded version of the requested view (nec-
essary for replication miss).
Using this new coding structure, we then formulate the con-

tent replication problem for multiple movies in order to mini-
mize the switching cost as an integer linear programming (ILP)
problem and show that it is NP-hard.We then propose a near-op-
timal replication strategy, which first solves the ILP problem as a
relaxed LP problem, and then heuristically rounds the resulting
fractional LP solution to integer towards ILP feasibility (using
a heuristic called Minimum Eviction). Since the LP-rounding
algorithm does not scale well to large size problems, we then
propose a more computationally efficient solution based on dy-
namic programming and Lagrangian optimization (DPLO) at

the price of only minimal performance penalty. Simulation re-
sults show that our replication algorithms reduce switching cost
substantially compared to other state-of-the-art content replica-
tion schemes.
The paper is organized as follows. We first discuss related

work in Section II. We then present the coding structure we
design to support static view-switching in Section III. In
Section IV, we formulate the content replication problem as an
ILP problem and show that it is NP-hard. We present our LP
relaxation and rounding algorithm based on Minimum Evic-
tion, and a scalable solution with dynamic programming and
Lagrangian optimization in Sections V and VI, respectively.
Experimental results are discussed in Section VII. We conclude
in Section VIII.

II. RELATED WORK

A. Multiview Video Coding for Interactive Applications

There has been much research in multiview video coding
(MVC), focusing on compression of all captured frames across
time and view, and exploiting both temporal and inter-view cor-
relation to achieve maximal coding gain [6], [7]. However, if
the sender transmits all camera-captured views (in a non-inter-
active streaming paradigm where the sender does not consider
receiver’s feedback when deciding which views to transmit),
which depending on system setup can be well over one hundred
cameras [8], the transmission bandwidth cost is exorbitant even
after employing MVC for compression, since the video bitrate
still grows approximately linearly with the number of coded
views [6]. This transmission of multiple views looks especially
wasteful given that a user typically observes only a single view
at a time on a conventional 2-D display.
In order to reduce transmission bandwidth, a user in an IMVS

system [2] requests and receives from the streaming server only
a single coded view for temporal playback, though he can re-
quest switches to neighboring views periodically (e.g., every
temporal frames) in an interactive manner; this is a new para-
digm that we call interactive streaming [9]. Unfortunately, video
data pre-encoded using MVC does not provide the data random
accessibility required for interactive streaming. In particular,
using MVC video for interactive streaming often means that
more than one video view must be transmitted just so a single
view can be correctly decoded and displayed, resulting in large
streaming rates. The reason is that complicated inter-frame de-
pendencies among coded frames across time and view (targeting
pure coding gain) reduce the random decodability of the video
stream. This point has been well established in the IMVS liter-
ature; see [2], [10], [11] for more detailed discussions.
In light of the practical need for new approaches to compress

multiview video compactly while maintaining a desired level of
data random access, new frame types and frame structures have
recently been proposed [2], [12], [13]. A new frame type called
SP-frame [12] in the video coding standard H.264 is designed
for switching among pre-encoded video streams, thus providing
flexibility in decoding. Later, authors in [13] showed that using
distributed source coding (DSC) principles, one can construct
a DSC frame using bit-plane and channel coding, which out-
performs the corresponding SP-frame in rate-distortion (RD)

1876 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 7, NOVEMBER 2014

performance. The method in [2] then optimizes the construc-
tion of a redundant frame structure using I-, redundant P- and
DSC frames as building blocks for an IMVS scenario, where
a client can interactively switch to an adjacent view every
frames without interrupting temporal video playback, i.e. dy-
namic view-switching.While these works focus their coding de-
sign for single server-client communication, we employ here a
redundant coding structure to facilitate static view-switching (as
opposed to dynamic view-switching in [2]) and to enable indi-
rect hits in a large-scale IMVS network. Further, instead of DSC
frame, we employ a more coding-efficient and less complex
merge frame for merging of decoding paths [5]. Section VII will
show that indirect hit can significantly lower expected transmis-
sion rate during an IMVS session.

B. Large-Scale Video Streaming and Distribution

There have been extensive studies on content replication and
replacement strategies for interactive video [14]–[17]. There
have also been studies on cooperative caching and server se-
lection in video streaming applications [18]–[20]. However, all
these works focus on single-view video and hence do not take
advantage of correlation among views of the same video for
saving resources. Therefore, they are not efficient for IMVS. In
contrast, we propose a coding structure for multiview video that
facilitates static view-switching, and then design content repli-
cation strategies to minimize overall switching cost.
More recently, multi-view video streaming has drawn quite

some attention in the community [21], [22]. The work in [23]
proposes a scheduling algorithm that allows peers to frequently
compute the scheduling of multiview segments. The paper [24]
studies the problem of achieving low view-switching delay by
organizing viewers of different views together. These works
essentially treat the multiview video streaming as multiple
independent single-view video streams, and have not consid-
ered view correlation and switching among views during video
playback. Our work extends the field further by considering
both the coding structure (through novel usage of inter-view
P-frames and merge frames to exploit correlation among neigh-
boring views) and content replication strategy to achieve nearly
minimum expected switching costs.
In our previous work [25], we study multiview video

streaming and content replication by proposing a heuristic-
based strategy for the delivery of a single multiview video
sequence, where we exploit the correlation between the mul-
tiple views. In our follow-up work [26], we formulate the
optimization problem for multiple videos as an ILP problem.
However, the rounding algorithm does not scale to large size
problems. In the present work, we extend the coding structure
of the multi-view video to include a new encoding scheme for
view switches, so that more advanced coding standards, such
as H.264, can be supported.

III. CODING STRUCTURE FOR IMVS

In this section, we introduce the coding structure that we
use for pre-encoding multiview video content that is stored in
the repository, with subsets of coded frames being distributed

TABLE I
SYMBOLS USED IN PROBLEM FORMULATIONS

among content servers. The structure is designed to facilitate
interactive view-switching while the video playback is paused
in time (static view switching), so as to enable a look-around
visual effect for the viewers. We employ coding tools that have
been previously developed to solve the view-switchingproblem
[5]. Table I shows a list of important symbols used in this paper.

REN et al.: CODING STRUCTURE AND REPLICATION OPTIMIZATION FOR INTERACTIVE MULTIVIEW VIDEO STREAMING 1877

Fig. 2. Dependencies among segments in our proposedmultiview video coding
structure. Arrows at heads indicate feasible view switches using pre-encoded
differentials.

A. Frame Structure in Details

To achieve inter-view and temporal switching with
good compression efficiency, we propose the following
framestructure to pre-encode a given multiview video content.
There are a total of views in the sequence. For any view
(), consecutive captured video frames in time are
encoded into a segment. The th segment for view is labeled
as , where and is the movie length
in frames.2

In our coding structure, a frame (or picture) at time instant
of view is labeled as , . The

segment contains the leading picture , called
head of , and the trailing pictures ,

, called tail of .
In the coding structure, is the inter-view switching pe-

riod, which is the minimum frame interval between two time
consecutive static view-switches requested by client. To facili-
tate view switching, has a redundant representation, so
that inter-view correlations among nearby viewpoints are ex-
ploited during a view-switch. Specifically, for a given redun-
dant window , the head contains up to per-encoded
differentials using heads ’s of nearby view ’s as predic-
tors, where . Using this
coding structure, a view-switch from view to only requires
transmission of the corresponding pre-encoded differential. We
give in Fig. 2 an illustration of a multiview video frame structure
for five views and redundant window . Obviously,
there is a tradeoff between the total data size and the switching
cost by varying the redundant window size . We will explore
this tradeoff in Section VII.
The head of is represented by multiple compressed ver-

sions of the same picture :
• One independently coded I-frame ,
• Multiple differentially coded P-frames ’s, and
• One merge frame [5].
First, a temporal P-frame is motion-com-

pensated using a P-frame of previous time instant
as predictor. Temporal P-frame is for

2We will adopt the convention that superscripts denote movie and/or server
indexes, subscripts denote time instants, and brackets denote view number in
the sequel.

Fig. 3. Piecewise constant function used for signal merging in our proposed
merge frame [5].

video playback in time in the same view . Then, inter-view
P-frames ’s are disparity-compensated, each using
I-frame of a nearby view at the same time instant
as predictor. Inter-view P-frames ’s are designed for
static inter-view switching.
We now describe the key idea in the design of merge frames

[5], which are used for effective view switching in our IMVS
system. The merge frame is built with multiple
P-frames ’s as predictors using the following procedure.
I-frame is the encoding target for , which
means that a correctly reconstructed merge frame is bit-by-bit
equivalent to . Each provides side information
(SI) to help decode . Because the reconstructed SI
frame and the target are both representations of
the same picture , the block-wise frequency contents in
reconstructed and in Discrete Cosine Transform
(DCT) domain are similar. In [5], a piecewise constant function
(pwc) is used to merge coefficients of different SI frames
to the target. As an example, in Fig. 3 we see two coefficients

and of block and frequency for SI frame
1 and 2 respectively, which are close to each other. If the
correct shift parameter and step size for a floor function
(example of a pwc function) are chosen, then the similar SI
coefficients will land on the same step, and the computed value

will be the same (merged) value for all SI frames .
[5] discussed the details of how and can be chosen for each
frequency of each block so that a desired reconstructed value

can be obtained. [5] showed that competitive coding
performance can be obtained compared to DSC frames pro-
posed in [13], which involved complex bit-plane and channel
coding. SP-frames in H.264 [12] can also be used for the same
decoding path merging task. However, the number of secondary
SP-frames required at head grows linearly with respect
to (while our proposal requires only a single merge frame

), and each secondary SP-frame is significantly larger
than our proposed merge frame due to lossless coding. See [5]
for a more detailed discussion.
Thus, by merge frame construction, can be perfectly

reconstructed via as long as one of the SI frames
’s is available at decoder. Functionally, serves

as a signal merging operator to reconciliate minor differ-
ences due to motion/disparity compensation and quantization
among P-frames ’s and . This is done so that
other frames in turn can simply use the one unified version
of —reconstructed I-frame —as predictor for
differential coding without introducing any coding drift. The
reconstructed frame is identical no matter which decoding path

1878 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 7, NOVEMBER 2014

Fig. 4. Implementation of a segment using I-, P-, and merge frames (denoted
by circle, squares, and diamonds, respectively).

is actually taken. More specifically, It is mathematically proven
in [5] that the decoded quantization bin indices for each DCT
block are exactly the same for every decoding path. Hence the
resulting decoded frame is bit-by-bit identical, and no coding
drift from this point onward.
The merge frame is in practice much smaller than

independently coded I-frame [5]. Fig. 4 shows a frame
structure for segment with the different types of frames
discussed above.

B. Benefits of Coding Structure in Interactive Systems

We now discuss how the redundant frame structure described
above is used for a large-scale distributed IMVS network. A
server in the network may choose to replicate a segment, which
will include the tail of the segment, plus the I-frame of the head
of the segment. All prediction differentials (inter-view P-frames
and merge frames) of the head of the segment are only stored in
the repository. Generally, the viewer tries to get the data from
local servers, and accesses the repository only if this is not pos-
sible. If a viewer requests a view after observing view , where

, only the inter-view P-frame and the merge
frame are needed from the repository for the decoder
to switch views, if the target I-frame is not available lo-
cally. On the other hand, if , then the much larger
independently coded I-frame is needed.
The repository transmission is generally much slower than

local server transmission. Therefore, the goal of minimizing
switching cost is equivalent to minimizing required repository
transmission. Thus, to avoid repository transmission of
during an inter-view switch, we do the following. If a neigh-
boring server has replicated I-frame , where ,
then the server first sends to the local server (with negli-
gible delay), while the repository transmits the smaller P-frame

and merge frame to the local server. This
is called indirect hit: a local server which does not have the
requested view but has a correlated view , can reduce the
switching cost of repository transmitting to the cost of
repository transmitting and .
To summarize, there are four possible transmission cases

during a static inter-view switch from to , depending on the
content replicated in servers. In order of increasing costs, they
are:
1) Direct hit: When a neighboring server or the local server
has the exact segment , the replicated I-frame

can be forwarded locally. This is of negligible
cost.

2) Differential transmission: The repository transmits pre-en-
coded differentially coded P-frame and the
merge frame .

3) Indirect hit: A neighboring server has replicated a corre-
lated frame , which is forwarded to the local server,
and the repository transmits only P-frame and
merge frame to the local server.

4) Replication miss: No server has exact or correlated frames,
and the repository transmits independently-coded I-frame

to the local server.
We illustrate the four transmission cases in Fig. 5. Fig. 5(a)

shows the flow diagram of an inter-view switch. In the example
of Fig. 5(b), We consider a multiview video with 7 indepen-
dent views. View 4 and view 7 are replicated by the content
servers, while the rest of the views are stored only in the reposi-
tory. We consider the redundant window in this example,
and the user is currently watching view 4. Switching to view 6
is a direct hit because view 6 is replicated by the content servers.
Switching to view 3 is a differential transmission because view
3 is within the redundant window of view 4, and only the merge
frame and differential P-frame need to be transmitted. Switching
to view 7 is an indirect hit because view 7 is within the redundant
window of another replicated view, view 6. Therefore view 6 is
delivered from a content server, and the merge frame and dif-
ferential P-frame are delivered from the repository. Switching
to view 1 is a replicate miss because no server replicates the
exact or correlated views. In this case the repository transmits
the complete view to the user. Fig. 5(a) shows the flow diagram
of an inter-view switch.
Due to indirect hit and differential transmission with our

coding structure, the switching cost from the repository can
be substantially reduced. Note finally that because there are
no differentially coded P-frames , , there are
only two possible costs for temporal switching, direct hit or
replication miss, similar to conventional content replication
methods in interactive video applications.

IV. PROBLEM FORMULATION AND COMPLEXITY

In this section, we formulate the distributed content repli-
cation problem for a minimal cost IMVS system as an ILP
problem. We first define the decision variables, followed by the
constraints and optimization objective. We finally prove that
the problem is NP-hard.

A. Decision Variables

We consider the distributed content replication problem with
movies of captured views each. Let and be the set of

servers and the repository, respectively. For efficient replication
of movie , sets of consecutive segments in time are grouped
as “chunks”, which is the basic replication unit. More precisely,
the chunk
includes the segments ’s, where
. When a server replicates , for each segment
in it replicates I-frame and temporal P-frames

in its local storage.
Inter-view P-frames ’s and merge frame re-
side only at the repository.
Each server must decide which chunk(s) of movie to repli-

cate given its own (limited) storage size. Let

REN et al.: CODING STRUCTURE AND REPLICATION OPTIMIZATION FOR INTERACTIVE MULTIVIEW VIDEO STREAMING 1879

Fig. 5. Four transmissions in inter-view switches. (a) Flow diagram. (b) An example.

be a binary variable indicating whether to replicate chunk
of movie at server . When watching a segment in

chunk of movie , a user can request an inter-view
or temporal switch, and IMVS system has to decide where
(content server or repository) to get the requested multiview
data from. For inter-view switching from view to , we first
define to be the binary variable indicating
whether to directly pull the requested view from a local server
(direct hit). If chunk is not replicated locally, we define

to be the binary variable indicating whether
to pull a correlated intermediate view from a local server
and pull the pre-coded differential between the intermediate
view and the requested view from the repository (indirect
hit). Clearly, means that requested
view must be pulled entirely from the repository (differential
transmission or replication miss, depending on view distance
from).
For temporal switching (i.e., switching to a temporal segment

of the same view not in the current chunk), we define
as the binary variable indicating whether to pull

the requested multiview data from a local server for a temporal
switch from chunk to .

B. Linear Constraints

We discuss now the system constraints in our content replica-
tion problem. For movie , first let be the size of chunk

. Further, let the storage capacity of server be denoted
. Using the decision variables introduced above, we can write

the following capacity constraint for server :

(1)

which means that the sum of replicated content cannot exceed
the storage capacity.
Then we observe that the temporal switch variable

can be 1 only if there is at least one server replicating chunk
. Thus, we can write:

(2)

Similarly, the direct inter-view switch variable can be
1 only if there is a server replicating chunk , i.e.,

(3)

Then, the indirect inter-view switch variable can be 1
only if there is a server replicating chunk , where view
is in the window , so that, the repository only
needs to send the inter-view P-frame and the merge
frame . Thus, we can write

(4)

Finally, we want to ensure that indirect and direct hits are not se-
lected simultaneously. Thus, for a given inter-view switch from
to , we write:

(5)

We can see that all the above system constraints are linear with
respect to the decision variables.

C. Inter-view & Temporal Switch Model

Before defining the objective function of our optimization
problem, we describe the probabilistic model that we use to
model the likelihood that a user chooses different inter-view
and temporal switches. For simplicity, we assume users select
inter-view switches independent of time and temporal switches
independent of view, and hence we model them separately.
We start with the temporal switch model. For movie , let
be the probability that a user temporally switches from -th

chunk to -th chunk for any view . We assume
that the users start an IMVS session at first chunk of some
view . At an arbitrary time after video playback has started, let

be the average probability that a user is observing chunk
of movie . We derive in terms of the switching probability

as follows.
Let be a discrete random variable denoting the total number

of temporal switches that a user have already made at the cur-
rent time instance (including both sequential temporal playback
and jumps). Denote the probability mass function of
as . Let be the probability that a user is at the
-th chunk after temporal switches, given that the user starts
from the first chunk. Considering the transitions from chunks to
chunks, can be derived recursively as

(6)

1880 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 7, NOVEMBER 2014

The average probability can then be expressed as3

(7)

Clearly, is a probability measure because it satisfies
.

For inter-view switches, we let be the probability
that a user switches from view to independent of time.
Inter-view switch probabilities ’s thus constitute an
irreducible, aperiodic and positive-recurrent Markov chain, and
we can compute the average state probability of view
by: i) performing eigen-decomposition of the state transition
matrix, and ii) identifying the eigenvector associated with
eigenvalue 1.
Finally, we let be the probability that in case of a switch,

a client performs temporal switching as opposed to inter-view
switching, independent of time and view; i.e., the viewer
switches to a different view with probability .

D. Objective Function

For the movie , let and be the cost of tem-
poral and inter-view switching, respectively, stemming from the
chunk . Let be the probability that the movie is se-
lected for playback. The expected switching cost can then be
expressed as

(8)
Our objective is to minimize the expected switching cost by
deciding: i) which server to replicate each chunk (’s),
and ii) where to pull content from upon a temporal switch (’s)
or an inter-view switch (’s and ’s). The problem is equivalent
to computing the following:

(9)

The temporal switch cost in can be expressed as the
sum of all temporal switch costs ’s to some chunk index
:

(10)

Let the transmission rate between the repository and a local
server be denoted as . Let be the size of first frames
of the segments in chunk , if the first frame is encoded
as I-frame, for video client rebuffering4. Each temporal switch
cost ’s can then be written simply in terms of temporal
switch variable :

(11)

3In practice, in the summation we count only terms where is non-
negligible, so that the number of terms in the summation is finite.
4 can be set according to the default client video player behavior. For ex-

ample, means the player will play back video as soon as there is a com-
plete frame in the buffer.

Equation (11) says that the temporal switch cost is equal to some
small if the chunk is replicated in a neighboring server,
and it is equivalent to the amount of time required to transmit
the first frames of the segment, , to the local server if
the new segment must be pulled from the repository.
Then, we can write inter-view switch cost as the sum

of all view-to-view costs to some view :

(12)

The view-to-view cost has a small value if there is a
direct hit in the local server (). If there is an indirect
hit (), then the repository must transmit a P-frame
and a merge frame, resulting in cost no larger than

; we bound the size of the first frames—starting with a
inter-view P-frame and merge frame —for any
intermediate view , , with .
Finally, if repository must transmit everything (

), then repository cost depends on
whether the target view is within the prediction window

(differential transmission) or not (replication miss):

(13)

Summarizing the above, the view-to-view cost is written as

(14)

Since , and are fixed, it is clear that
the temporal switch cost and the inter-view switch cost

are linear in the decision variables. Thus, the expected
temporal and inter-view switch cost and are also
linear, and the objective function is also linear. Since all the
constraints are also linear, our problem is an Integer Linear Pro-
gramming problem (ILP).

E. NP-Hardness Proof

Unfortunately, our ILP optimization problem is NP-hard. We
prove that by showing a special case of the problem can be
mapped to the known NP-complete problem bin packing [27],
which is the following. Given a bin capacity , a list of items of
sizes , and integer , is there a capacity-preserving
item-to-bin assignment so that or fewer bins are required?
Consider a special case of our problem where there are

servers in the IMVS network, each of storage size , and where
the multiview video has only one view. Thus, the client can
only perform temporal switching. Suppose each chunk of
chunks has size , and each chunk is requested with equal

likelihood. If there is a content replication strategy to fit all
chunk in the servers (reflected in the resulting cost since no
repository transmission is required), then there is a capacity-pre-
serving item-to-bin assignment to fit all items in or fewer bins.
It corresponds to solving a NP-Complete binary decision bin
packing problem. Finally, our optimization problem is a gen-
eral version of the previous problem; thus it is at least as hard
as the NP-complete binary decision bin packing problem, and
hence it is NP-hard.

REN et al.: CODING STRUCTURE AND REPLICATION OPTIMIZATION FOR INTERACTIVE MULTIVIEW VIDEO STREAMING 1881

V. LP RELAXATION AND ROUNDING WITH MINIMUM EVICTION

In this section, we present a first algorithm termed Minimum
Eviction5 which provides an approximate solution to the formu-
lated ILP problem in Section IV. We first discuss the principles
of relaxing the ILP problem to an LP one. Given the solution of
the LP problem, we next discuss Minimum Eviction to round
the fractional LP solution to integers for a feasible approximate
solution to the original ILP problem.

A. Principles of LP Relaxation

Though the ILP problem posed earlier has linear constraints
and objective, it is difficult to solve because of the integer con-
straints. If we remove these integer constraints, we can solve the
resulting LP problem using one of several known algorithms
(like Simplex) in polynomial time [27]. The resulting objec-
tive function value is called a super-optimal solution; i.e.,

, where is the true optimal solution value to the
original ILP problem. The reason is that LP problem is a re-
laxed version of the original ILP problem of Equation (9) with
fewer constraints.
If we perform rounding to the LP solution so that the integer

constraints are satisfied, we have a (likely sub-optimal) solution
that is feasible with objective value . The approximation error
from the true optimal solution is bounded as follows:

(15)

The proof is straight-forward:

Then (15) follows because .
Thus, the LP solution provides us with an a posteriori approx-

imation bound to quantify the quality of our rounded solution.
We discuss next how the LP solution also provides additional
information so that we can perform integer rounding to a good
approximate solution.

B. Rounding Heuristic: Minimum Eviction

Given an LP solution, we can classify the storage variables
’s into two classes: 1) Primary variables, which are

the fractions ’s of the same chunk that sum to
one across servers, i.e., ; and 2) Secondary
variables, which are the fractions ’s of the same chunk

when instead. The LP solution tells
us that the primary variables are more important than the
secondary ones, because the chunks are stored in entirety in
servers. The heuristic Minimum Eviction algorithm essentially
tries to fit as many primary variables in server storage as
possible by iteratively considering fractional chunks, starting
with the one of largest size first, as follows:

5“Eviction” is a common term used in caching literature to mean removal of
less useful contents for storage of more useful ones when the cache capacity is
full.

1) Identify the storage variables ’s that are equal to
1. These are stable assignments and will not be changed
further.

2) Find the target fractional primary variable
representing the largest fractional chunk. Round this frac-
tion up, and round the corresponding variables ’s
in other servers down.

3) If rounding up in step 2 results in a storage constraint vi-
olation for server , evict secondary variables in the order
of decreasing fractional chunk sizes until: i) the constraint
is met, or ii) no more secondary variables are left.

4) If the storage constraint in server is still violated, evict
the unstable primary variables in server in
the order of decreasing fractional chunk sizes until: i) the
constraint is met, or ii) no more unstable primary variables
are left.

5) If the storage constraint in server is still violated, evict
the target unstable variable instead.

6) If there are no more primary variables, then round down all
remaining fractional variables and the algorithm finishes.
Otherwise, go back to Step 1.

The key idea is that, by attempting to round up storage vari-
able with the largest fractional chunk size, it is either kept in
server or removed from the servers, but it is never moved from
one server to another.

VI. DPLO: DYNAMIC PROGRAMMING FOLLOWED BY
LAGRANGIAN OPTIMIZATION

In the previous section, we propose a solution based on LP
relaxation and rounding. Because the LP-rounding algorithm
does not scale well to large number of variables, we propose
here a more scalable solution based on dynamic programming
and Lagrangian optimization (DPLO), which suffers little loss
in performance. DPLO has two stages. In the first stage, it uses
DP to calculate the maximum replication benefit of each movie
chunk in a server, subject to the server storage constraint. In
the second stage, it uses Lagrangian optimization based on the
replication benefits to optimally store the chunks in each server.

A. A Benefit Measure for Chunk Replication

We solve the ILP problem formulated in the previous sec-
tion in the following manner. Let be the bi-
nary decision variable indicating whether server replicates the
chunk . Since there is no additional benefit of replicating
a chunk more than once among servers (due to negligible cost
between servers), we have

(16)

In other words, the chunk will be replicated at most once
among servers.
We analyze the cost and benefit of replicating the chunk

as follows. Replicating the chunk consumes
server storage space. The benefit of replicating

1882 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 7, NOVEMBER 2014

chunk among servers, when the replicated chunk of the
nearest view is , can be written as

(17)

In words, the equation states that the benefit of repli-
cating chunk is the difference in the cost between repli-
cation miss (i.e.,) and direct hit (i.e.,) during a tem-
poral switch from to , plus the difference in transmission cost
during an inter-view switch. For inter-view switch, we divide
the potential benefit into two cases: i) view-switch from view
to , and ii) view-switch from view to some other view ,
, and view is used as an intermediate view during an in-

direct hit. For the first case, we write the benefit as :

(18)
The equation above states that if the view-switch from to target
is within , or if the view of an already replicated chunk
is also within of target , then the benefit is only the difference
between a transmission cost of an indirect hit
and a direct hit , i.e., . Otherwise, the benefit is
the difference between the cost of a replication miss
and a direct hit .
For the second case that represents the switching from view
to a target view , where , we write the potential benefit
of using view in an indirect hit as :

(19)
The above states that if the view of an already replicated chunk

is within of target , or if the current view is within
of target , then the cost of view-switching from to is

already no worse than an indirect hit6, and replicating chunk
brings no additional benefit. Otherwise, the benefit is the

difference between the cost of a replication miss and
the cost of an indirect hit .
Given the above cost/benefit analysis for each chunk, we can

derive an algorithm that operates in two stages as follows. In
the first stage, we determine how the storage space should be
optimally distributed among different views of chunks of the
same movie and time index . In the second stage, we deter-
mine how the storage space should be distributed among chunks
of different movies and different time indices. We will demon-
strate in Section VII that this “divide-and-conquer” strategy is

6If , then it is a direct hit with cost , which is smaller than an indirect
hit .

computationally much more efficient than the Minimum Evic-
tion algorithm discussed in Section V.

B. Stage 1: Dynamic Programming to Calculate Replication
Benefits of Movie Chunks

We now discuss the first stage, namely a dynamic program-
ming (DP) algorithm to find the optimal selection of chunks
of the same movie and time index , given the available
server storage space. First, let be the max-
imum possible benefit achieved by the IMVS network by se-
lecting which views of movie , chunk to replicate under
the constraints of available storage capacities in
servers. We can solve using recursive function

, which is defined to be the maximum ben-
efit given optimal replication decision has been made for view

and the most recent replicated view is :

(20)

The variable can be defined recursively as
follows:

(21)

In words, the above equation says that is
the larger of if chunk has not
been replicated, and benefit of chunk plus fu-
ture recursive cost, if has been replicated. Note that the
recursive term has a smaller remaining storage size
for server , and that the most recent replicated view has been
updated to .
We solve with arguments , where
is the total storage capacity of server . Equation (21) can

be solved using DP, where solution to is
stored in entry of a DP table, so that a future
call to with the same argument can be simply looked up.
The time complexity of the algorithm is then the number of
steps that are necessary to compute each DP table entry (
using Equation (21)), times the number of entries in the DP table
(which is).
Nonetheless, the size of the DP table can be large, leading

to large computation costs. We can reduce the complexity by
a rounding factor as follows. First, the storage sizes for the
arguments of the first call are each scaled and
rounded down by , i.e., . Then, in Equa-
tion (21), when the chunk is replicated in server , the
reduction in size is then scaled and rounded up by ,
i.e., . In doing so, an entry in the
DP table now represents the solution if storage sizes of at least

are available for chunks ’s of view
, each chunk being of size no larger than . The
rounding directions are chosen so that the obtained solution re-
mains feasible in the original problem without rounding. Large
rounding errors due to large , however, would mean that more
storage space in servers are left unused, leading to larger ap-
proximation error in the obtained solution. The benefit on the

REN et al.: CODING STRUCTURE AND REPLICATION OPTIMIZATION FOR INTERACTIVE MULTIVIEW VIDEO STREAMING 1883

other side is a reduction in DP table size7 by factor , thus
reducing the overall complexity of the algorithm.
We note the following two observations about the DP algo-

rithm. First, the computation for can be carried
out independently for chunks of the different movies in the stage
1 of our algorithm. And at different time instants, leading to an
efficient parallel implementation. Second, the DP tables hosting
the computed results in stage 1 are only constructed once (for
a given rounding factor). In the Lagrangian optimization in
stage 2 of the optimization algorithm, the sameDP tables can be
reused without re-computation, although the optimization has
to be performed multiple times in search for the appropriate La-
grange multipliers ’s,.

C. Stage 2: Lagrangian Optimization for Chunk Storage

We have described above how can be
solved with a DP algorithm. The overall constrained optimiza-
tion problem can then be written as

(22)

Instead of solving Equation (22) directly, we propose to solve
its Lagrangian version using Lagrange multipliers :

(23)

We can see clearly that Equation (23) is separable, i.e., for
fixed ’s we can solve for optimal ’s for chunks
of all view ’s independently of other chunks, without loss of
optimality. In other words, we can solve independently the fol-
lowing set of problems:

(24)
This means that Equation (24) for different movies and at dif-
ferent time instants can also be solved independently in a par-
allel implementation, similarly to the DP algorithm in the stage
1 of the optimization algorithm. Equation (24) for a given pair of
movie index and time instant can be solved easily. The only
remaining task is to find so that the operational storage sizes
are as close to the original constraints ’s, without exceeding
them. This can be done, for example, using binary search on the
real positive number line.
In summary, our optimization procedure of DPLO is as

follows:
1) Using as argument, construct functions
for all and with Equation (20). Use to control
complexity.

2) Initialize , .

7We note that integer rounding to reduce DP table size is a standard technique
in polynomial-time approximation scheme (PTAS) in combinatorial optimiza-
tion [27].

3) Solve Equation (23) for given ’s. Increase if
. Otherwise, decrease only if
.

4) Repeat Step 3 if a has been updated.

VII. ILLUSTRATIVE SIMULATION RESULTS

In this section, we present simulation results to demonstrate
the performance of our multiview coding and content replica-
tion strategies.

A. Simulation Environment, Comparison Schemes and
Performance Metrics

In our simulation, we first run a set of experiments on the
MPEG multiview videos to estimate the respective sizes of
I-frames, temporal P-frames, inter-view P-frames, and merge
frames. In the experiments, we use the multiview video se-
quences of Kendo, Champagne tower and Pantomime, provided
by the Tanimoto Laboratory, Nagoya University [28]. Views are
coded into our proposed frame structure using a H.264 codec: I-
and P-frames are coded using conventional H.264 tools, while
merge frames are coded using the methodology described in
[13]. The quantization parameter is fixed at 40 for all frames
for constant visual quality. Note that the benefits offered by our
optimized replication algorithm are not dependent on the actual
video coding algorithms deployed. The performance gain may
vary depending on the version of the video coding standards
used in the experiments, but the results would be qualitatively
the same. We normalize the size of each I-frame, merge frame,
temporal and inter-view P-frame into block units. Then we
randomly generate frames for the movies with the sizes and
distributions according to the experiment results. The size of
I-frames is distributed with mean 4 units. The size of a temporal
P-frame is distributed with mean 1 units. The size of a merge
frame plus a inter-view P-frames between view and view
equals to units. Unless otherwise stated, we
use the baseline parameters as shown in Table II to represent
the system settings and the different costs in the IMVS system.
The popularity of the movies follows the Zipf distribution with
parameter (i.e., the access probability is proportional to ,
where is the movie index). We have also run our simulations
using different popularity distributions. The results of those
simulations are qualitatively the same as those based on the
Zipf distribution, and hence they are not shown for the sake of
brevity.
We compare our replication strategiesMinimum Eviction and

DPLO with the following schemes:
• Local Greedy [29]: Local greedy is a state-of-the-art repli-
cation strategy, in which each server replicates chunks with
high utility. In other words, popular movies and views
are most likely to be replicated. A few servers replicate
medium popular movies and views, and unpopular ones
are only stored at the repository. In our implementation,
we use half of the storage in each server to replicate the
most popular chunks, and the other half the storage in each
server to replicate the medium popular ones. The unpop-
ular ones are not replicated by the servers.

1884 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 7, NOVEMBER 2014

TABLE II
BASELINE PARAMETERS IN OUR SIMULATION

• Random: Random replication is a simple replication
method. Each server randomly replicates chunk of dif-
ferent views and different movies up to using fully the
available storage.

We evaluate the performance of our proposed algorithms
and compare them with other schemes in terms of run time,
switching cost and request performance.
• Run time: The run time is defined as the total number of
seconds needed to compute the replicating strategy. We
conduct our simulations on a 64-bit desktop computer with
Intel Core i7-2600 CPU@3.40 GHz and 8 GB RAM run-
ning Windows 7 operating system. We set the normalized
run time unit to be 10 seconds in this experiment. We are
particularly interested in the normalized running time of
DPLO compared to Minimum Eviction.

• Switching cost: Then, the switching cost is our objective
metric in the problem formulation. We study the switching
cost of the different schemes, as well as its sensitivity
against different system parameters. We are also interested
in cost components and distribution.

• Request performance: Finally, besides the cost perfor-
mance, we also study the distribution of different types of
requests/transmissions, i.e., direct hit rate (defined as the
number of direct hit requests divided by total number of
requests), differential transmission rate, indirect hit rate
and replication miss rate.

B. Preliminary Comparison Between Minimum Eviction and
DPLO

Due to the scalability issues of Minimum Eviction, first
consider a small scale problem with 3 servers, 14 movies and
3 chunks per movie for the comparisons in this sub-section.
Fig. 6 shows the total switching cost as a function of the
inter-view switch probability (view-switch tendency) for dif-
ferent schemes. A view-switch tendency of 0 means that users
only perform temporal switch, and view-switch tendency of
1 means that users perform inter-view switch at every switch
opportunity. Super Optimal is the optimal solution to the
formulated ILP problem in Section IV but without the integer
constraints. We observe that Random has the worst performance
due to the lack of a problem-specific optimization. When view
switch tendency is larger than 0, DPLO outperforms Local
Greedy because the servers consider view switches when they

Fig. 6. Switching cost versus view-switch tendency for different replication
algorithms.

Fig. 7. Algorithm run time versus number of movies.

replicate chunks. Both DPLO and Minimum Eviction achieve
close-to-optimal performance as compared to Super Optimal.
Fig. 7 shows the running time of DPLO and Minimum Evic-

tion as a function of number of movies. DPLO achieves much
better performance in run time than Minimum Eviction. This
is because Minimum Eviction needs to solve a large-scale LP
problem with a large number of variables. Recall that the com-
putational complexity ofDPLO can be tuned using the rounding
parameter , which is set to 2 in this experiment.
Although Minimum Eviction achieve better performance in

switching cost, it does not scale to larger problem sizes. There-
fore we focus on DPLO in the rest of the evaluation studies.

C. Computational Run Time

We now study the performance of DPLO in different exper-
iments. Fig. 8 shows the run time of DPLO as a function of
switching cost. It illustrates the “time-performance” tradeoff of
our algorithm. We use a scaling parameter to control the size
of the DP table, and hence the complexity of the algorithm.
As shown in the figure, with (no rounding operations),
DPLO gives the most accurate replicating solution, which leads
to lowest switching costs. As the scaling factor increases, the
run time of DPLO decreases significantly with a slight increase
in switching costs. Therefore, by adjusting the scaling factor
, DPLO can trade off performance with computational com-

plexity in the optimization of the replications strategy.
Fig. 9 shows the algorithm run time as a function of the total

number of servers. It demonstrates the relationship between the
computational time of a replication plan and the problem com-
plexity. The run time of Random does not increase much with

REN et al.: CODING STRUCTURE AND REPLICATION OPTIMIZATION FOR INTERACTIVE MULTIVIEW VIDEO STREAMING 1885

Fig. 8. Algorithm run time versus switching cost.

Fig. 9. Switching cost versus view-switch tendency for different replication
algorithms.

Fig. 10. Switching cost versus number of views for different replication
algorithms.

the problem size since every server just randomly replicates
chunks without any collaboration and optimization. DPLO and
Local Greedy has similar performance, where their run time
both increases with the number of servers. In real VOD sys-
tems, multiple servers are often grouped into a single server
cluster or farm, which can be modeled as one logical server in
our problem. Therefore the total number of servers is not ex-
pected to be very large.

D. Switching Cost

Fig. 10 shows the switching cost as a function of the number
of views in total. We observe that the switching cost increases
with the number of views. This is because the increase in views
leads to an increase of the number of total chunks in the system,
and hence there is a higher likelihood of replicationmiss.We ob-
serve again that DPLO performs better than Random and Local
Greedy, especially when the number of views is large.

Fig. 11. Switching cost versus the size of redundant window for different repli-
cation algorithms.

Fig. 12. Switching cost versus the movie popularity model for different repli-
cation algorithms.

Fig. 11 shows the switching cost as a function of the size of
the redundant window . The switching cost decreases with the
increase of the redundant window size. With a larger redundant
window, more view switches only require transmission of the
corresponding pre-encoded differentials. As a result, the indirect
hit rate increases, and the switching cost in turn decreases. On
the other hand, a large redundant window size means that there
are more redundant inter-view P-frames generated in the head of
each coding unit, leading to amore redundant representation and
to a larger storage cost at the repository. Therefore, the size of
the redundant window needs to be judiciously selected to trade
off performance (switching cost) with repository storage cost.
Fig. 12 shows the switching cost as a function of the Zipf

parameter in the movie popularity model. When the param-
eter is equal to zero, all movies are equally popular. As the
movie popularity becomes more skewed, the switching cost of
DPLO and Local Greedy decreases because they use relatively
more storage to replicate popular movies. The switching cost
of Random is not sensitive to movie popularity. We observe
again that DPLO significantly outperforms Local Greedy and
Random.

E. Cost Components and Distribution

Fig. 13 shows the cost distribution of the different schemes.
It can be seen thatDPLO has a much lower replication miss cost
compared to Random and Local Greedy. This is because DPLO
replicates chunks in order to maximize the benefit of transmit-
ting frame differentials instead of the whole chunks from the
repository. Therefore, there are much more differential trans-
mission requests and indirect hits inDPLO than in the other two
schemes. DPLO exploits indirect hit to lower the overall cost.

1886 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 7, NOVEMBER 2014

Fig. 13. Cost distribution for the different replication schemes.

Fig. 14. Distribution of request types versus the size of redundant window for
algorithm DPLO.

Fig. 14 shows the fraction of different requests in DPLO as
a function of the size of the redundant window. When the re-
dundant window size is zero, there are only two types of re-
quests—direct hit and replication miss—since there is no inter-
view P-frames to provide representation redundancy and ex-
ploit inter-view correlation during a view-switch. With the in-
crease of the redundant window size, the fraction of replica-
tion miss decreases sharply, and both the fractions of indirect
hit and differential transmission increase. The servers use inter-
view P-frames to decode neighboring views more often, and the
cost induced by replication miss significantly decreases. When
the redundant window size becomes large, the fraction of in-
direct hits also decreases. This is because, with a large redun-
dant window size, each view has a larger number of neigh-
boring views. Hence most of the view switch requests lead to
differential transmission, which costs less than an indirect hit.
The number of direct hits remains constant, since the redundant
window size does not introduce new replicated chunks.

VIII. CONCLUSION

In interactive multiview video streaming (IMVS), users
watching a multiview video may request inter-view or temporal
switches at any time. In this paper, we study the issues of coding
structure and its replication to support large-scale IMVS service
with distributed servers. In order to facilitate view-switching
and storage, we propose a coding structure based on redundant
P-frames and merge frames. Using the redundant frame struc-
ture, the switching cost of video segments can be substantially
reduced via “indirect hit”—given a requested view and a locally
stored correlated views at a server, only pre-encoded frame
differentials between the replicated views and the requested
views are needed to be transmitted in the network.

With the coding structure, we then formulate the content
replication problem to minimize content switching cost as an
integer linear programming (ILP) problem. We propose an
LP-based strategy with integer rounding (called Minimum
Eviction) to replicate movie contents which achieves excellent
performance. We further propose a more scalable solution
based on dynamic programming and Lagrangian optimization
(DPLO). Simulation results show that our schemes achieve
very close to the optimal solution, with significantly lower
cost than a state-of-the-art and a commonly used replication
schemes.

REFERENCES
[1] M. Tanimoto, M. P. Tehrani, T. Fujii, and T. Yendo, “Free-viewpoint

TV,” IEEE Signal Process. Mag., vol. 28, no. 1, pp. 67–76, Jan. 2011.
[2] G. Cheung, A. Ortega, and N.-M. Cheung, “Interactive streaming of

stored multiview video using redundant frame structures,” IEEE Trans.
Image Process., vol. 20, no. 3, pp. 744–761, Mar. 2011.

[3] J.-G. Lou, H. Cai, and J. Li, “A real-time interactive multi-view video
system,” in Proc. ACM Int. Conf. Multimedia, Singapore, Nov. 2005,
pp. 161–170.

[4] X. Zhang and H. Hassanein, “Video on-demand streaming on the in-
ternet—a survey,” in Proc. 25th Biennial Symp. Commun., 2010, pp.
88–91.

[5] W. Dai, G. Cheung, N.-M. Cheung, A. Ortega, and O. Au, “Rate-dis-
tortion optimized merge frame using piecewise constant functions,”
in Proc. IEEE Int. Conf. Image Process., Melbourne, Australia, Sep.
2013, pp. 1787–1791.

[6] P. Merkle, A. Smolic, K. Muller, and T. Wiegand, “Efficient predic-
tion structures for multiview video coding,” IEEE Trans. Circuits Syst.
Video Technol., vol. 17, no. 11, pp. 1461–1473, Nov. 2007.

[7] S. Shimizu, M. Kitahara, H. Kimata, K. Kamikura, and Y. Yashima,
“View scalable multiview coding using 3-D warping with depth
map,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 11, pp.
1485–1495, Nov. 2007.

[8] T. Fujii, K. Mori, K. Takeda, K. Mase, M. Tanimoto, and Y. Sue-
naga, “Multipoint measuring system for video and sound—100 camera
and microphone system,” in Proc. IEEE Int. Conf. Multimedia Expo,
Toronto, ON, Canada, Jul. 2006, pp. 437–440.

[9] G. Cheung, A. Ortega, N.-M. Cheung, and B. Girod, “On media data
structures for interactive streaming in immersive applications,” in
Proc. SPIE Vis. Commun. Image Process. Conf., Huang Shan, China,
Jul. 2010.

[10] X. Xiu, G. Cheung, and J. Liang, “Delay-cognizant interactive multi-
view video with free viewpoint synthesis,” IEEE Trans. Multimedia,
vol. 14, no. 4, pp. 1109–1126, Aug. 2012.

[11] T. Maugey, I. Daribo, G. Cheung, and P. Frossard, “Navigation domain
representation for interactive multiview imaging,” IEEE Trans. Image
Process., vol. 22, no. 9, pp. 3459–3472, Sep. 2013.

[12] M. Karczewicz and R. Kurceren, “The SP- and SI-frames design for
H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7,
pp. 637–644, Jul. 2003.

[13] N.-M. Cheung, A. Ortega, and G. Cheung, “Distributed source coding
techniques for interactive multiview video streaming,” in Proc. 27th
Picture Coding Symp., Chicago, IL, USA, May 2009, pp. 1–4.

[14] E. Jaho, I. Koukoutsidis, I. Stavrakakis, and I. Jaho, “Cooperative
content replication in networks with autonomous nodes,” Comput.
Commun., vol. 35, no. 5, pp. 637–647, Mar. 2012.

[15] S.-H. G. Chan, “Operation and cost optimization of a distributed
servers architecture for on-demand video services,” IEEE Commun.
Lett., vol. 5, no. 9, pp. 384–386, Sep. 2001.

[16] S. Ataee, B. Garbinato, and F. Pedone, “Restream - a replication al-
gorithm for reliable and scalable multimedia streaming,” in Proc. 21st
Euromicro Int. Conf. Parallel, Distrib. and Network-Based Process.,
2013, pp. 68–76.

[17] Y. Zhou, T. Fu, and D. M. Chiu, “On replication algorithm in P2P
VoD,” IEEE/ACM Trans. Networking, vol. 21, no. 1, 2013.

[18] S. Ghandeharizadeh and S. Shayandeh, “Domical cooperative caching
for streaming media in wireless home networks,” ACM Trans. Multi-
media Computing, Communications and Applications, vol. 7, no. 4, pp.
40:1–40:17, Dec. 2011.

[19] S. Borst, V. Gupta, and A. Walid, “Self-organizing algorithms for
cache cooperation in content distribution networks,” ACM SIGMET-
RICS Performance Eval. Rev., vol. 37, no. 2, pp. 71–72, 2009.

REN et al.: CODING STRUCTURE AND REPLICATION OPTIMIZATION FOR INTERACTIVE MULTIVIEW VIDEO STREAMING 1887

[20] S. Mao, X. Xheng, Y. T. Hou, H. D. Sherali, and J. H. Reed, “On joint
routing and server selection for MD video streaming in ad hoc net-
works,” IEEE Trans. Wireless Commun., vol. 6, no. 1, pp. 338–347,
Jan. 2007.

[21] M. Wang, L. Xu, and B. Ramamurthy, “Improving multi-view
peer-to-peer live streaming systems with the divide-and-conquer
strategy,” Comput. Netw., vol. 55, no. 18, pp. 4069–4085, Dec. 2011.

[22] S. Sedef Savas, C. Göktuğ Gürler, A. Murat Tekalp, E. Ekmekcioglu,
S. Worrall, and A. Kondoz, “Adaptive streaming of multi-view video
over p2p networks,” Image Commun., vol. 27, no. 5, pp. 522–531, May
2012.

[23] Y. Ding and J. Liu, “Efficient stereo segment scheduling in peer-to-peer
3D/multi-view video streaming,” inProc. IEEE Int. Conf. Peer-to-Peer
Computing, Sep. 2011, pp. 182–191.

[24] Z. Chen, L. Sun, and S. Yang, “Overcoming view switching dynamic
in multi-view video streaming over P2P network,” in Ptov. 3DTV-Con-
ference: The True Vision - Capture, Transmission and Display of 3D
Video, Jun. 2010, pp. 1–4.

[25] H. Huang, B. Zhang, G. Chan, G. Cheung, and P. Frossard, “Coding
and caching co-design for interactive multiview video streaming,” in
Proc. Mini-conf. IEEE INFOCOM, Orlando, FL, USA, Mar. 2011, pp.
3073–3077.

[26] H. Huang, S.-H. G. Chan, G. Cheung, and P. Frossard, “Near-optimal
content replication for interactive multiview video streaming,” in Proc.
19th Int. Packet Video Workshop, May 2012, pp. 95–98.

[27] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Al-
gorithms and Complexity. New York, NY, USA: Dover, 1998.

[28] Tanimoto Laboratory, Department of Information Electronics,
Nagoya University [Online]. Available: http://www.tanimoto.nuee.
nagoya-u.ac.jp

[29] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. IEEE INFOCOM, Mar. 2010,
pp. 1–9.

Dongni Ren received the B.Eng. degree in com-
puter science and engineering and M.Phil. degree
in computer science from Hong Kong University
of Science and Technology (HKUST), in 2007 and
2009, respectively, where he is currently working
toward the Ph.D. degree at the Department of Com-
puter Science and Engineering, supervised by Prof.
Gary Chan.
His research interest includes video streaming

networks, overlay broadcasting, Video on Demand
(VOD), and multi-view/free-viewpoint video

technologies.

S.-H. Gary Chan (S’89–M’98–SM’03) received
the B.S.E. degree (with highest honor) in electrical
engineering from Princeton University, Princeton,
NJ, USA, in 1993, and M.S.E. and Ph.D. degrees
in electrical engineering from Stanford University,
Stanford, CA, USA, in 1994 and 1999, respectively,
He is currently Professor and Undergraduate Pro-

grams Coordinator at the Department of Computer
Science and Engineering, The Hong Kong University
of Science and Technology (HKUST), Hong Kong.
He is also the Director of Sino Software Research In-

stitute at HKUST. His research interest includes multimedia networking, wire-
less networks and mobile computing.
Prof. Chan was an associate editor of the IEEE TRANSACTIONS ON

MULTIMEDIA (2006–11), and a Vice-Chair of Peer-to-Peer Networking and
Communications Technical Sub-Committee of IEEE Comsoc Emerging Tech-
nologies Committee. He has been Guest Editors of IEEE TRANSACTIONS ON
MULTIMEDIA (2011), the IEEE Signal Processing Magazine (2011), the IEEE
Communication Magazine (2007), and Springer Multimedia Tools and Appli-
cations (2007). He was the TPC chair of IEEE Consumer Communications
and Networking Conference (CCNC) 2010, Multimedia symposium in IEEE
Globecom (2007 and 2006), IEEE ICC (2007 and 2005), and Workshop on Ad-
vances in Peer-to-Peer Multimedia Streaming in ACM Multimedia Conference
(2005). His research projects on wireless and streaming have received several
ICT (Information and Communication Technology) awards in Hong Kong, Pan
Pearl River Delta and Asia-Pacific regions due to their commercial impacts to

industries (2012, 2013, and 2014). He is the recipient of Google Mobile 2014
Award (2010 and 2011) and Silver Award of Boeing Research and Technology
(2009). He has been a visiting professor or researcher in Microsoft Research
(2000–11), Princeton University (2009), Stanford University (2008–09), and
University of California at Davis (1998–1999). He was a Co-director of
HKUST Risk Management and Business Intelligence program (2011–2013),
and Director of Computer Engineering Program at the HKUST (2006–2008).

Gene Cheung (M’00–SM’07) received the B.S. de-
gree from Cornell University, Ithaca, NY, USA, in
1995, and the M.S. and Ph.D. degrees and computer
science from the University of California, Berkeley,
CA, USA, in 1998 and 2000, respectively, all in elec-
trical engineering.
He was a Senior Researcher with Hewlett-Packard

Laboratories Japan, Tokyo, from 2000 till 2009. He
is now an associate professor in National Institute of
Informatics in Tokyo, Japan. His research interests
include image & video representation, immersive vi-

sual communication and graph signal processing. He has published over 130
international conference and journal publications.
He has served as an associate editor for the IEEE TRANSACTIONS ON

MULTIMEDIA from 2007 to 2011 and currently serves as associate editor
for DSP Applications Column in the IEEE Signal Processing Magazine
and APSIPA journal on signal & information processing, and as area ed-
itor for EURASIP Signal Processing: Image Communication. He currently
serves as member of the Multimedia Signal Processing Technical Committee
(MMSP-TC) in IEEE Signal Processing Society (2012–2014). He has also
served as area chair in IEEE International Conference on Image Processing
(ICIP) 2010, 2012–2013, technical program co-chair of International Packet
Video Workshop (PV) 2010, track co-chair for Multimedia Signal Processing
track in IEEE International Conference on Multimedia and Expo (ICME)
2011, symposium co-chair for CSSMA Symposium in IEEE GLOBECOM
2012, and area chair for ICME 2013. He was invited as plenary speaker for
IEEE International Workshop on Multimedia Signal Processing (MMSP) 2013
on the topic “3-D visual communication: media representation, transport and
rendering”. He is a co-author of best student paper award in IEEE Workshop
on Streaming and Media Communications 2011 (in conjunction with ICME
2011), Best Paper finalists in ICME 2011 and ICIP 2011, Best Paper Runner-up
Award in ICME 2012, and Best Student Paper Award in ICIP 2013.

Pascal Frossard (S’96–M’01–SM’04) received
the M.S. and Ph.D. degrees, both in electrical
engineering, from the Swiss Federal Institute of
Technology (EPFL), Lausanne, Switzerland, in 1997
and 2000, respectively.
Between 2001 and 2003, he was a member of

the research staff at the IBM T. J. Watson Research
Center, Yorktown Heights, NY, where he worked
on media coding and streaming technologies. Since
2003, he has been a faculty at EPFL, where he
heads the Signal Processing Laboratory (LTS4). His

research interests include image representation and coding, visual informa-
tion analysis, distributed image processing and communications, and media
streaming systems.
Dr. Frossard has been the General Chair of IEEE ICME 2002 and Packet

Video 2007. He has been the Technical Program Chair of IEEE ICIP 2014 and
EUSIPCO 2008, and a member of the organizing or technical program com-
mittees of numerous conferences. He has been an Associate Editor of the IEEE
TRANSACTIONS ON IMAGE PROCESSING (2010–2013), the IEEE TRANSACTIONS
ON MULTIMEDIA (2004–2012), and the IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS FOR VIDEO TECHNOLOGY (2006–2011). He is the Chair of the IEEE
Image, Video and Multidimensional Signal Processing Technical Committee
(2014–2015), and an elected member of the IEEE Visual Signal Processing
and Communications Technical Committee (2006–) and of the IEEE Multi-
media Systems and Applications Technical Committee (2005–). He has served
as Steering Committee Chair (2012–2014) and Vice-Chair (2004–2006) of the
IEEE Multimedia Communications Technical Committee and as a member of
the IEEEMultimedia Signal Processing Technical Committee (2004–2007). He
received the Swiss NSF Professorship Award in 2003, the IBM Faculty Award
in 2005, the IBM Exploratory Stream Analytics Innovation Award in 2008 and
the IEEE TRANSACTIONS ON MULTIMEDIA Best Paper Award in 2011.

