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Abstract—In free viewpoint video, a viewer can choose at will
any camera angle or the so-called “virtual view” to observe a
dynamic 3-D scene, enhancing his/her depth perception. The
virtual view is synthesized using texture and depth videos of two
anchor camera views via depth-image-based rendering (DIBR).
We consider, for the first time, collaborative live streaming of a
free viewpoint video, where a group of users may interactively
pull and cooperatively share streams of different anchor views.
There is a cost to access the anchor views from the live source,
a cost to “reconfigure” the peer network due to a change in
selected anchors during view switching, and a distortion cost due
to the distance of the virtual views to the received anchor views
at users. We optimize the anchor views allocated to users so as
to minimize the overall streaming cost given by the access cost,
reconfiguration cost, and view distortion cost. We first show that,
if the reconfiguration cost due to view switching is negligible,
the view allocation problem can be optimally and efficiently
solved in polynomial time using dynamic programming. For the
case of non-negligible reconfiguration cost, the problem becomes
NP-hard. We thus present a locally optimal and centralized
algorithm inspired by Lloyd’s algorithm used in non-uniform
scalar quantization. We further propose a distributed algorithm
with convergence guarantee, where each peer group independently
makes merge-and-split decisions with a well-defined fairness
criteria. Simulation results show that our algorithms achieve low
streaming cost due to its excellent anchor view allocation.
Index Terms—Digital video broadcasting, multimedia com-

puting.

I. INTRODUCTION

T HE ADVENT of multiview imaging technologies means
that videos from different viewpoints of the same 3D

scene can now be captured simultaneously by a system of
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multiple closely spaced cameras [1]. Furthermore, depth maps,
which measure the per-pixel distance between cameras and
physical objects, can be captured directly through time-of-flight
(ToF) cameras [2], or indirectly through stereo-matching
algorithms [3]. When the depth maps are available at the
camera viewpoints, virtual views can be synthesized during
video playback using texture and depth maps of the closest
sandwiched camera views (the so-called anchor views) via
depth-image-based rendering (DIBR) [4]. The ability of users to
synthesize and display any virtual view is called free viewpoint
video. It enables a 3D visual effect known as motion parallax: a
viewer’s detected head movements can trigger correspondingly
shifted video views on his/her 2D display [5]. It is well known
that motion parallax is the strongest cue in human’s perception
of depth in a 3D scene and enhances the immersive visual
experience [6].
In live free viewpoint video streaming, texture and depth

videos from multiple viewpoints in the same 3D scene can
be real-time encoded at a server into separate streams before
delivery to interested users. The users can choose to look at the
recorded camera views or at virtual views arbitrarily positioned
between the camera views.
We consider a collaborative peer-to-peer (P2P) sharing

system where the users share their anchor views with each
other. Users may switch to any virtual viewpoints at will during
their streaming session. Each of them obtains two camera
views as the left and right anchors by pulling either directly
from the live streaming source, or indirectly from the other
users. As long as the virtual viewpoint of interest is in between
a user’s two received anchor views, he can use the same set
of anchor views to synthesize the virtual viewpoint. However,
if the viewpoint moves outside the viewing range bounded by
the two current anchor views (i.e., outside the anchor window),
the user has to obtain new anchor views so as to sandwich the
virtual view. Given that the currently subscribed anchor views
need to be reselected to accommodate users’ newly chosen
virtual views, the peer network needs to be reconfigured, which
may incur some overhead.
Fig. 1 shows an example of our collaborative free viewpoint

live streaming system. The live streaming source encodes in real
time all captured videos with different camera viewpoints of the
3D scene. Due to bandwidth and/or cost constraints, the source
transmits only a subset of these views (Views 5, 10 and 15 in the
figure) to a pool of clients for their sharing. Each client may in-
teract with the free viewpoint video by choosing any viewpoint
of his/her interest at will over time. For example, at a particular
instant client is interested in virtual viewpoint 6.5 (labeled as
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Fig. 1. Example of collaborative live streaming for a free viewpoint video.

in the figure). He obtains camera view 5 from the live
source as the left anchor view, and camera view 10 from Client
as the right anchor view, and then synthesizes viewpoint 6.5

given the anchor views 5 and 10. Client gets anchor views
5 and 10 from and , respectively, to synthesize its virtual
view of 8.5. It is clear that all clients are getting two anchor
views with their virtual viewpoints inside the anchor window.
If Client is to switch to another virtual view, say 12.2, it has
to replace its anchor view of 5 by 15, by pulling view 15 from
Client or . On the other hand, if Client is to switch to vir-
tual view 7.1, it then has to pull the anchors 5 and 10 from the
peer network (from Client or ) while is to pull
anchor view 15 directly from the live source. For any of the two
cases above, the peer network has to be reconfigured.
In this work we study the optimization of the total streaming

cost in free viewpoint video streaming. The streaming cost com-
prises the following three components.
Source access cost: There is an access cost associated with

the transmission of an anchor view from the streaming server to
the client pool (due to, for examples, server bandwidth, server
processing or computation, or network bandwidth). The peers
share with each other the anchor views pulled from the source
to generate their virtual viewpoints of interest. The sharing cost
among the peers is considered to be negligible because the peers
are within the same local community with high speed network.
Due to the source access cost and heterogeneous view popu-
larity, it may not be cost-effective to stream all the anchor views
to the client pool.
Video distortion cost: The distortion cost reflects the quality

or PSNR of the synthesized virtual views of the video. In gen-
eral the cost for DIBR synthesized view tends to be larger as the
distance from the virtual view to anchor views increases, as ex-
perimentally demonstrated and argued using statistical models
[7]. We are interested in the total distortion cost for all peers as
they select virtual views of different popularities.
Network reconfiguration cost: As the viewpoint of a peer

changes over time, he/she may eventually move outside the
anchor window. This necessitates the peer to search for some
new suppliers for his/her anchor(s) for view synthesis. We as-
sume that there is a network reconfiguration cost due to com-
munication overhead and connectionmanagement among peers.
The reconfiguration cost reflects the underlying cost and com-
plexity of re-arranging the P2P network, and is a function of the
probability for peers to change their anchor views due to view
switching interactivity. Such framework is general enough to be

applied to any P2P topology. Therefore, the P2P overlay con-
struction, peer group organization and reconfiguration mecha-
nisms are irrelevant to and outside the scope of this paper. There
have been extensive studies on these issues. Interested readers
may refer to studies in [8] and [9].
It is clear from above that the three cost components trade off

with each other. On the one hand, it is beneficial for a viewer
to request anchor views that tightly “sandwich” its virtual view
to reduce the distortion cost. However, this increases both the
access cost and reconfiguration cost (due to higher likelihood
of a viewpoint falling outside the anchor window). On the other
hand, using wider anchor windows may reduce both access and
reconfiguration costs. However, this increases the distortion
cost.
In this work, we study the anchor view allocation problem

to minimize total streaming cost composed jointly of anchor
access, video distortion and network reconfiguration. The allo-
cation problem is to optimally select the set of anchor views
from the source, so that an appropriate pair of anchor views
can be supplied to each peer for synthesis of his chosen virtual
view, given the popularity of different virtual views are known.
Though much work has been done on peer-to-peer streaming, it
is on single-view video which is passive (no interactive view-
switching) and hence provides no sensible solution to the an-
chor view allocation problem that optimizes the tradeoff among
different cost components. To the best of our knowledge, this is
the first piece of work that addresses the allocation problem for
collaborative live streaming of interactive free viewpoint video.
Our contributions are as follows.
1) Problem formulation for interactive free viewpoint live
video streaming: We discuss two representative formula-
tions of the anchor view allocation problem for live free
viewpoint video streaming. If the reconfiguration cost is
negligible (e.g., peers switch views infrequently or the
pxeer network is a simple topology), we formulate a cost
optimization problem named FLS which we prove to be
solvable in polynomial time. On the other hand, if the
network reconfiguration cost is non-negligible, (e.g., in
the case of complex P2P network, or large and frequent
view-switching by the peers), we formulate the problem
as FLSR, which is shown to be NP-hard.

2) Exact optimal algorithm for negligible reconfiguration
cost: We present a polynomial time exact algorithm for
FLS based on dynamic programming (DP). It works for
both of the following cases: i) when the maximum number
of anchor views allocated to a peer group cannot be larger
than a certain number , and ii) when the anchor view
access cost is formulated as a cost function (i.e., each
anchor view pulled from the source incurs a certain access
cost ). Simulation results show that our algorithm makes
sensible tradeoffs among the three cost components, and
significantly out-performs a traditional sharing approach.

3) Heuristic algorithms for non-negligible reconfiguration
cost: Since FLSR is NP-Hard, we thus present a centralized
and locally optimal anchor view allocation heuristic algo-
rithm called Centralized Grouping. We further propose a
distributed version of our algorithm Distributed Grouping
with guaranteed convergence, where each peer group
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independently makes merge-and-split decisions with a
well-defined fairness criteria. The simulation results show
that our proposed algorithms achieve close-to-optimal cost
performance. They substantially outperform a traditional
sharing approach.

The outline of the paper is as follows. We first discuss
related work in Section II. In Section III, we discuss our system
models on the collaborative network, free viewpoints video and
view-switching. We present the anchor view allocation problem
formulations for negligible and non-negligible reconfiguration
costs in Section IV. In Section V, we present an optimal DP
algorithm and experimental results for anchor view allocation
with negligible reconfiguration cost. We then describe locally
optimal solutions with reconfiguration cost in Section VI.
Simulation results with reconfiguration cost are presented in
Section VII. We conclude in Section VIII.

II. RELATED WORK

We divide the overview of related work into two areas. We
first discuss the related work on multiview video streaming and
on the high-dimensional media navigation problem. Then we
discuss the related work on collaborative streaming of single-
view video, as well as game-theoretic analysis of collaborative
video streaming.

A. Multiview Video Streaming and High-Dimensional Media
Navigation

Much research on multiview video has been focusing on
compression (e.g., multiview video coding (MVC) [10], [11]).
Streaming strategies and network optimization for multiview
video is still a relatively unexplored and new research topic.
In their seminal work on multiview video streaming [12], the
authors propose a coding and streaming strategy for interactive
multiview video to a single user, where only a selected number
of captured views are transmitted based on predicted user’s
view selection. The work in [13] proposes a similar but more
advanced coding scheme that is also based on predicted user’s
selection, but individual code blocks are encoded with a quality
proportional to the likelihood that the pixels in the blocks are
used in the synthesized image. However, these works have not
addressed the problem of collaborative streaming of multiview
video, where costs of transmitting video views can be shared
among users.
Recent investigations have also studied the problem of loss-

resilient multiview videos streaming over error-prone networks.
The works in [14] propose to exploit the flexibility provided by
reference picture selection (RPS) in H.264 video coding stan-
dard for real-time encoded depth video, so that a depth block
important to the quality of the synthesized view can be pre-
dicted from a transmitted frame further in the past for more re-
liable decoding [15]. The authors in [16], [17] propose to use
distributed source coding (DSC) [18] to enable both periodic
view-switching in multiview video and loss resiliency for peers
watching the same multiview video synchronized in time but
not in view. While loss resiliency in video streaming is an im-
portant topic, we consider the orthogonal anchor view selection

issue in this paper; we leave the joint loss resiliency and anchor
view selection problem for future work.
The study in [19] discusses an interactive multiview video

streaming (IMVS) video-on-demand scenario, where only a
single requested view per client is needed at one time during
video playback when the clients may periodically request
view-switches. It proposes an efficient coding structure where
a captured image can be pre-encoded into multiple versions, so
that the appropriate version can be transmitted depending on
the currently available content in decoder’s buffer, in order to
reduce server transmission rate. Later, the work in [20] leverage
on the IMVS coding structure in [19] for content replication,
so that suitable versions of multiview video segments can be
cached in a distributed manner across cooperative network
servers. Our current work on anchor view allocation differs
from [20] in that: i) we consider the more general free viewpoint
video, where a client can select and synthesize any intermediate
virtual view between two anchor views via DIBR; and ii) we
focus on the live collaborative streaming scenario, where
anchor views can be shared among peers that are synchronized
in time but not necessarily in view.

B. Collaborative Video Streaming and Game-Theoretic
Analysis

There has been a large body of work on collaborative
streaming, addressing different aspects of the problem such
as topology construction, scheduling, capacity, security and
deployment, etc. The papers in [8], [9], [21]–[24] study the
structure and organization of streaming overlays. All these
works study single-view video streaming, which is passive
in nature (i.e., no view-switching), and the results cannot
be applied to live free viewpoint video streaming, which is
interactive in nature (i.e., each viewer can freely select a virtual
view from which to observe the 3D scene), and where anchor
view selection is a critical and challenging issue.
Collaborative video streaming has also been studied using

non-cooperative game-theoretic approaches, where users are
often modeled as selfish and rational, and they seek to maximize
their own payoff. Thus, the challenge is to design cooperation
incentives that encourage users to help each other by sharing
their resources [25], [26]. All these works use tools from com-
petitive game theory to study the individual behavior of each
user. In our work, users cooperate with each other to share the
access cost in downloading anchor views from the streaming
server, and the main issue is on the fair allocation of the cost
so that cooperation improves everyone’s utility. For this game,
cooperative game models are more appropriate.
It is important to note that we focus on the optimization of

the anchor view allocation among peers. After the left and right
anchor views for each user are determined, the overlay can
be arranged into either a push-based or a pull-based structure
for stream distribution. There are various overlay arrangement
methods that can be directly applied here (see, for examples,
[27]). In addition, issues regarding peer joins and leaves are
studied in various works of both single view and multi-view
streaming [28], [29]. Our work is orthogonal to them, and the
above approaches can be applied in our system.
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III. SYSTEM MODELS

In this section, we describe the models that we use in our
analysis and in the design of our algorithm for collaborative
free viewpoint video streaming. We first present the network
model for the streaming server and the peers, followed by the
free viewpoint video model that we use in this paper. Finally,
we describe how we model user’s interactive behavior during
view-switching.

A. Network Model

Our free viewpoint video distribution network model consists
of only two nodes: is the live streaming source, and is a
single node representing the group of collaborative peers. (If
the peer group is too large, the management cost and control
overhead become high. In this case, the large peer group may
be sub-divided into smaller ones. Dividing a large peer group
into smaller ones is an orthogonal problem and would not be
considered here.)
All camera views are generated at the streaming source and

synchronized in time. The connection between the server and
the peer group may be modeled as a hard constraint; i.e., the
number of anchor views simultaneously pulled from by
cannot exceed a pre-defined value . This is the case for
a local community of local users who are inter-connected by a
high-speed network, but are connected to the server via a slower
common bottleneck link [30]. Alternatively, the connection be-
tween the server and the peer group may be modeled as a
soft constraint, i.e., each anchor view pulled by induces a cost
in the total cost function. This is the case when the server

charges a fixed price for each additional anchor view the peer
group subscribes to. The linear relationship between the “ac-
cess cost” and the number of anchor views is based on the as-
sumption that the cost of a typical CDN service is linear with re-
spect to the bandwidth consumption; the video source charges a
certain fixed monetary amount per output video stream to users,
which is reasonable given most video streaming systems cost
models in practice. We will consider these two different con-
nection constraints later in the problem formulation.

B. Free Viewpoint Video Model

Let be the discrete set of captured views
for equally spaced cameras in a 1D array as done in [1] and
other works. Each camera captures both a texture map (RGB
image) and a depth map (per-pixel physical distances between
objects in the 3D scene and camera) at the same resolution. The
texture map from an intermediate virtual view between any two
cameras can be synthesized using texture and depth maps of the
two camera views (anchor views) via a depth-image-based ren-
dering (DIBR) technique like 3D warping [4]. DIBR essentially
maps texture pixels in the anchor views to appropriate pixel lo-
cations in a virtual view; such locations are derived from the cor-
responding depth pixels in the anchor views. Disoccluded pixels
in the synthesized view—pixel locations that are occluded in
the two anchor views—can be filled in using depth-based in-
painting techniques [31], [32]. Because inpainting offers only a

best-guess solution, the larger the disoccluded region, the lower
the image quality of the synthesized view in general.
More specifically, let be the virtual view that a peer cur-

rently requests for observation. We consider that ,
, for some large pre-determined constant

. In other words, belongs to an ordered discrete set of inter-
mediate viewpoints—the set of views between (and including)
camera views 1 and , spaced apart by integer multiples of dis-
tance . Clearly, the set of views approaches a continuum
as increases. (Although we consider equally spaced virtual
views for ease of exposition, our analysis and algorithms can
be easily generalized to uneven virtual view spacing as well.)
A distribution function describes the fraction of peers in the
groupwho currently request the virtual view . Any virtual view
can be synthesized using left and right anchor views denoted

as and , respectively, where and .
Note that and do not have to be the closest captured
camera views to .
When texture and depth maps of multiple views of a free

viewpoint video are captured at the source, they are compressed
and encoded by the encoder at the server before network trans-
mission. In our work on anchor view allocation for collabora-
tive free viewpoint video streaming, we assume that the source
coding problem solved by the server is orthogonal to our anchor
view allocation problem solved by the peers. In other words, we
consider that the compressed camera views (generally of good
quality) are given at the server, and focus on minimizing the ad-
ditional distortion due to the synthesis of virtual views, based
on these compressed camera views.
We can model the synthesized view distortion as a sum of the

distortion due to lossy source coding of anchor view frames (af-
fecting directly the quality of rendered pixels), and the distortion
due to virtual view synthesis (influencing the sizes of disocclu-
sion holes). The second distortion depends on the distance be-
tween virtual view and anchor view frames. We essentially seek
to minimize it by selecting the appropriate set of anchor views,
because source coding has already been decided at the server,
which is outside of peers’ control. Therefore, we consider the
optimization of the source coding distortion in the camera views
to be orthogonal to our problem.
The distortion of the synthesized view varies with the choices

of anchor views. Let be the distortion function for
peers looking at virtual view , which is synthesized using ,

as anchor views.
We make two assumptions regarding the distortion function

. First, we assume that further-away anchor views
, cannot induce smaller distortion in the synthesized view,

that is

(1)

We call this monotonicity in anchor view distance for synthe-
sized view distortion. This is a reasonable assumption in gen-
eral, since a further-away reference view typically means larger
disoccluded regions in the virtual view image. The disocclusion
holes can be filled using inpainting algorithms [33], [34], but in
general the larger the holes, higher the penalty in reconstruction
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quality. This monotonicity assumption is also demonstrated ex-
perimentally in [35]using a large number of multiview image
sequences.
Second, given that the minimum distance between the an-

chor views and the synthesized viewpoint is defined as
, we assume that a larger will

not induce a smaller distortion, i.e.

(2)

We call this monotonicity in minimum anchor view distance.
This is also reasonable; it is observed empirically that when both
anchor views are encoded at the same quality, the worst synthe-
sized view distortion takes place at the middle view [7]. Further,
as the minimum view distance approaches zero, the synthe-
sized viewpoint is essentially one of the two anchor views with
no distortion due to synthesis. This assumption ensures that the
synthesized view distortion for is the minimum possible,
which agrees with the earlier statement. In the experimental sec-
tion, wewill construct a specific distortion equation that satisfies
these two monotonicity assumptions.
Note that we do not consider distortion due to packet loss in

our distortion function . We consider packet loss as an or-
thogonal problem and focus our distortion model on the syn-
thesized view distortion only. There are plenty of works in the
literature that study stream reliability and packet loss recovery,
e.g., transmission methods such as automatic retransmission
request (ARQ) or forward error correction (FEC) for UDP.
Also in the recent years, HTTP-based live streaming is widely
used by many state-of-the-art streaming systems, and protocols
such as “HTTP Live Streaming” (HLS) and “Dynamic Adaptive
Streaming over HTTP” (DASH) efficiently handle packet loss,
congestion control and retransmissions issues by using lower
layer transport protocols like TCP with persistent packet re-
transmission. Hence we consider that packet loss are handled
by transmission protocols and that views are delivered reliably
to the video clients.

C. View-Switching Model

In order to model the view-switching behavior of peers, we
consider that a peer with virtual view can switch in the next
time instant to any virtual views ’s with probability . The
view transition probability matrix is denoted by . For example,
if a peer keeps the current view with probability ,
and switches to any of the two adjacent views with equal proba-
bility , we have the following transition probabilities:

(3)

Note that the above view-switching model is a multi-state first-
order Markov model: the selection of the next view only de-
pends on the current view . More complicated view-switching
models may also be envisaged; for example, authors in [36]
have argued that the selection of the next view is based on the

Fig. 2. Road-map for formulations and algorithms.

current and the previously selected views. For the sake of sim-
plicity, however, we use themulti-state first-orderMarkov view-
switching model in this paper. Extensions to include more gen-
eral view-switching models like [36] are conceptually straight-
forward and hence not discussed here.

IV. ANCHOR ALLOCATION PROBLEMS FOR NEGLIGIBLE AND
NON-NEGLIGIBLE RECONFIGURATION COSTS

In this section, we present two formulations of the anchor
view allocation problem for negligible and non-negligible re-
configuration costs. Fig. 2 shows a road-map of our problems
and algorithms to be discussed in this paper.

A. Anchor Allocation With Negligible Reconfiguration Cost
We first consider the case where the reconfiguration cost due

to peers’ anchor view changes is negligible (due to, for ex-
amples, simple peer network protocols or infrequent user view
switching). For this case, we formulate the anchor view alloca-
tion problem as the free-viewpoint live streaming (FLS) problem
as discussed below.
Let be the purchased set of captured views selected

by the peer group to serve as anchor views to synthesize virtual
views. In other words, is streamed from the live source to
the user pool. A peer with virtual view selects left and right
anchor views and from the purchased set to synthesize
its target virtual view . We consider the following anchor view
selection constraint:

(4)

In words, Equation (4) states that a peer with virtual view must
select from an anchor view to the left of (i.e., ),
and an anchor view to the right of (i.e., ). The se-
lected anchor views, and , induce distortion in
the view synthesis process, as discussed in Section III-B. These
are our variables to be optimized.
There is an access cost to purchase the set of anchor views

by the peer group . If there is a hard connection constraint (or
cost budget for the group), we have

(5)

We label the combinatorial optimization problem with the hard
constraint as FLS-H, which is to select a subset and anchor
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views for each virtual view , so as to minimize the
aggregate distortion of all peers for all virtual views ’s, i.e.,

(6)

subject to Constraints (4) and (5), where is the fraction of
peers that request view , where and .
One may alternatively consider a soft connection constraint,

where the total access cost for the peer group is propor-
tional to the number of purchased anchor views, i.e.,

. This linear model assumes that a certain fixed monetary
amount per output video stream is charged by the video source,
which is consistent with cost models in many video streaming
systems today.
We label the problem with the soft constraint on server con-

nection as FLS-S, with the objective of minimizing the sum of
the total distortion of all peers for all virtual views ’s and the
total access cost

(7)

subject to Constraint (4), where is the total number of peers
in the network. We use the weighted sum method [37], [38] to
model these objectives so that the overall streaming cost can be
minimized. The exact value of the weight could be modified to
fit particular problems.
Note that we are only concerned here with the access cost

of camera views in the purchased set ; the question of how
the cost should be fairly distributed to each peer is deferred to
Section VI-C.

B. Anchor View Allocation With Reconfiguration Cost
As the video is played back, a peer may switch from a vir-

tual view to a new view , where may fall outside the
range spanned by the anchor views and . The net-
work hence needs to be reconfigured to supply the peer with
new anchor views. If the reconfiguration cost is non-negligible,
the group would tend to choose the anchor views and
that are further apart, so that the likelihood of the virtual view
switching outside the range is low. In this section, we
formulate the anchor view allocation problem with reconfigura-
tion cost, termed free-viewpoint live streaming with reconfigu-
ration (FLSR, as shown in Fig. 2).
The reconfiguration cost depends on the proba-

bility that a peer requires new anchor views during the next
view-switches, given the current virtual view and the anchor
views and . This probability can be computed as follows.
We first define a sub-matrix that contains only the
entries ’s, defined in Equation (3) with . In
other words, we keep only entries in that correspond to virtual
views within the range . Note that the sum of the entries
in a row of does not need to add up to 1. We can thus
write as a simple sum

(8)

where is the entry in the matrix
, which is the step transition

probability matrix. Equation (8) states that the reconfiguration
cost is one minus the probability that the peer stays within
the range for all view-switches.
We first consider the server-peer cost as a hard constraint and

formulate the corresponding FLSR-H optimization problem.
The FLSR-H problem is to select a global subset of camera
views for the peer group and to select anchor views ( ) for
each virtual view within , in order to minimize the sum of
the distortion of all peers and the reconfiguration cost weighted
by , i.e.,

(9)

subject to Constraints (4) and (5). The weight is a system pa-
rameter that is used to adjust the relative contribution between
distortion and the reconfiguration cost. In this formulation sec-
tion, we on purpose design a general cost function without spec-
ifying a particular value for , so that our developed algorithms
can be applied to a variety of scenarios. In the results section,
we will discuss how we choose a sensible in different experi-
mental settings.
If the connection costs are considered as a soft constraint,

we label the problem as FLSR-S. The FLSR-S problem is to
minimize the sum of the distortion, reconfiguration cost, and
the total access cost, i.e.,

(10)

subject to Constraint (4).
Both the FLSR-H and FLSR-S problems are NP-hard. The

proofs are given in the Appendix.

V. OPTIMAL SOLUTION WITH NEGLIGIBLE
RECONFIGURATION COST

Both FLS-H and FLS-S problems can be solved optimally in
polynomial time via dynamic programming (DP).We show here
how FLS-S is solved and its performance in Section V-A and
V-B, respectively. The algorithm for FLS-H follows similarly
in a straightforward manner, and hence is omitted.

A. FLS-S Solution With Dynamic Programming

First, let and ( stands for initialization) be the leftmost
and rightmost virtual views requested by the peer group. Let
and be the corresponding camera views just to the left and to
the right of them, i.e.,

(11)

and must be purchased as anchor views in an optimal so-
lution. Define as the minimum cost for all the peers in-
terested in virtual views , where is an already
purchased anchor view, and is the leftmost virtual view in
the range to the right of , i.e.,

(12)
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Fig. 3. PSNR and snapshots of the video at synthesized views. (a) PSNR of “Champagne Tower” view 38. (b) Snapshot of “Champagne Tower” frame 120 view
38.

The optimal solution of FLS-S can be found by a call to .
can be recursively calculated as the minimum of

(13)

In words, Equation (13) states that is the smaller of:
1) the sum of distortion for synthesized virtual views ‘s,

, given that no more anchor views are pur-
chased (and hence and are the best anchor views for
the synthesis of views ); and

2) the cost of subscribing to one more anchor view ,
(i.e., access cost ), plus the sum of distortion for

synthesized virtual views ’s, , plus recursive
cost with a reduced virtual view range .

Equation (13) follows the divide-and-conquer strategy that is
common in dynamic programming (DP), where each recursive
call results in a smaller synthesized view range.
The complexity of the solution given by Equation (13) can

be analysed as follows. Each time Equation (13) is solved for
arguments , the optimal objective value can be stored in entry

of a DP table , so that any subsequent call to the same
sub-problem can simply look up the table. Each minimization
in Equation (13) takes steps to try different anchor view
, and each requires computation of the sum, which has at
most terms. Given there are entries in the DP table,
this results in the run-time complexity of .

B. Experiments and Simulation
We present here illustrative simulation results for the anchor

view allocation problem of FLS-S. As discussed above, the dis-
tortion function should monotonically increase with respect to
the distance between left and right views, . Furthermore,
it should also monotonically increase with respect to the dis-
tance between the virtual view and the closer of the two cap-
tured views, and . Both of these tendencies are generally
observed in empirical multiview data [7], [35]. If the virtual
view is actually one of the anchor views, then the distortion

should be zero.

We conduct experiments with view synthesis reference soft-
ware (VSRS) to study the effect of anchor view selection on the
distortion of the synthesized video.
Two multi-view video sequences “Champagne Tower” and

“Kendo” (provided by Tanimoto Laboratory, Nagoya Uni-
versity) are used in the experiments. The multi-view video
sequences have a resolution of pixels per frame and
30 frames per second. We use the YUV components of the raw
camera sequences to synthesize the virtual views. We do not
model the source coding error that is due to signal quantization,
and only measures the induced by view synthesis. In
“Champagne Tower”, we set the left anchor view to camera
37, and use camera 39 or camera 41 as right anchor view to
synthesize virtual view 38. As shown in Fig. 3(a) synthesizing
the video with anchor views further apart leads to worse PSNR.
We also observe in Fig. 3(b) that the virtual view synthesized
by closer cameras has less distortion. The results agree with the
monotonicity properties of the distortion model.
For simplicity, we consider the following distortion function
, which satisfies the two assumptions of monotonicity in

Section III-B:

(14)

where is the weighting parameter for distortion in the total
cost. The rate at which the distortion increases with the distance
between anchor views can be adjusted by the parameters and
. We calculate the values of and using the MSE distor-

tion of the VSRS-synthesized virtual views in our experiments
with the multiview video sequences “Champagne Tower” and
“Kendo”. The resulting distortion function is used subsequently
in the simulations.
We carry out further simulations to study the performance of

our algorithms in solving FLS. The simulator is implemented
in JAVA, where there are camera views in the system in
total. Between each pair of two adjacent camera views, the same
number of virtual viewpoints are generated. The total number of
virtual viewpoints is . There are peers in the network. Each
peer is randomly assigned a virtual viewpoint of interest, and
seeks two anchor views to synthesize the target virtual view-
point in between. The distribution of peers watching different
virtual views, i.e., , follows a normal distribution (We have
also run simulations using different peer distributions. The re-
sults of those simulations are qualitatively the same as what is
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TABLE I
BASELINE PARAMETERS IN OUR SIMULATION

Fig. 4. Total cost versus price of camera views for FLS-S.

presented here, and hence are not shown for brevity). The dis-
tortion of a peer is calculated according to Equation (14), and
the total cost of all peers is calculated according to Equation (7).
We define the price of a camera view as the source access cost

of pulling one camera view from the streaming source to the user
pool, which is denoted by . We implement our dynamic pro-
gramming algorithm, as well as a comparison scheme, View-in-
dependent approach. In View-independent approach, peers inde-
pendently choose the anchor views that minimize their own dis-
tortion without considering peer collaboration on anchor selec-
tion. It minimizes the total peer distortion, and the access cost of
each anchor view is shared by all users that request it. The base-
line parameter values are shown in Table I. We run our simula-
tion on a 64-bit Windows 7 Machine with a Intel i7-2600 CPU.
The results are the average of 10 different simulation runs.
Fig. 4 shows the total cost (distortion plus access costs) of the

peers as a function of the price of camera views. Our dynamic
programming (DP) algorithm gives significantly better results
than the View-independent approach, especially when the price
is high. This is because the peers in the DP algorithm can collab-
oratively select and share the same anchor views to reduce the
access cost, achieving a low distortion penalty. As fewer camera
views are pulled from the server, the total cost is low.
Fig. 5 shows the cost components of peers as a function of

the price of camera views. In the View-independent approach,
the peers greedily pull anchor views to minimize their own dis-
tortion. Therefore it leads to high access cost when the anchor
view price is high. On the other hand, when the price of an an-
chor view increases, our proposed DP algorithm will pull less
anchor views from the streaming source in order to reduce the
access cost, with a small tradeoff in peer distortion. It clearly
makes sensible decision on the anchor view allocation.
Fig. 6 shows the average PSNR observed by the peers as

a function of the price of camera views. The peer PSNR is
calculated using the MSE distortion model in Equation (14).
The View-independent approach has optimal PSNR since the

Fig. 5. Cost components versus price of camera views for FLS-S.

Fig. 6. Average PSNR versus price of camera views for FLS-S.

peers always pull anchor views to minimize their own distor-
tion without considering access cost or network reconfiguration.
Our proposed DP algorithm achieves close-to-optimal average
PSNR, and at the same time optimizes the source access cost.
It balances the cost components and makes the optimal anchor
allocation decision for each peer.

VI. VIEW ALLOCATION ALGORITHMS WITH NON-NEGLIGIBLE
RECONFIGURATION COST

In this section, we present locally optimal and effective algo-
rithms to address the anchor view allocation problem with non-
negligible reconfiguration cost. We first present a centralized
and locally optimal algorithm (Centralized Grouping) based on
Lloyd’s algorithm used in non-uniform scalar quantization [39].
Then we present a distributed algorithm with guaranteed con-
vergence, along with a fair access cost allocation mechanism
(Distributed Grouping).

A. Centralized Grouping: Locally Optimal Algorithm

We present here a low-complexity centralized optimization
algorithm that converges to a locally optimal solution for the
NP-hard FLSR problem.We first observe that, for a given subset
of camera views and a given access cost, a peer in-
terested in the virtual view can independently select and

from in order to minimize its own sum of distortion and
reconfiguration cost given by . This
may potentially lead to a better global solution. In other words,
a solution cannot be globally optimal if a peer of virtual view
can find a lower sum of distortion and reconfiguration cost by
choosing a different left or right anchor views from the same



REN et al.: ANCHOR VIEW ALLOCATION FOR COLLABORATIVE FREE VIEWPOINT VIDEO STREAMING 315

purchased set . We formalize this necessary condition for
global optimality with the following lemma.
Lemma 1: If , ’s and ’s are a set of optimal variables,

then peer(s) with any virtual view cannot switch from a se-
lected left anchor view to another anchor view
and lower the overall cost.
The above Lemma also holds for changing the right anchor

view to lower the overall cost.
While the first lemma is concerned with switching of anchor

views within a fixed subset of camera views, we can similarly
construct a second Lemma about the replacement of a selected
camera view by another view .
Lemma 2: If , ’s and ’s is a set of optimal variables,

then one cannot replace a selected camera view with an
unselected view , so that peers of views ’s that currently
use view as anchor view (i.e. or ), switch to
as anchor view and lower the overall cost.
The above two Lemmas are analogous to the two necessary

conditions in optimizing non-uniform scalar quantization (SQ)
in signal processing [39]. SQ is the problem of quantizing a
large number of samples in space into Voronoi regions for
compact representation, so that only bits are required to
represent a sample with minimal distortion. The first necessary
optimal condition for SQ is that each sample is represented by
the Voronoi region whose centroid has the minimum distance to
itself (minimum distortion). This is similar to our first Lemma.
In the second optimal condition for SQ, each Voronoi region can
freely estimate a centroid that minimizes the sum of distances to
all samples in the region. This is similar to our second Lemma.
Due to the similarity of our problem to SQ, we can employ a

modified version of the famed Lloyd’s algorithm to effectively
solve our anchor view allocation problem.We call our algorithm
the Centralized Grouping algorithm.
In particular, for the FLSR-H problem, we first select the

leftmost and rightmost camera views from the server, and then
a total number of ( ) camera views are randomly pulled
in between. For each peer, we identify the “best” anchor views
(chosen from selected camera views) that minimize
the sum of distortion and reconfiguration cost. Similar to the
Lloyd’s algorithm, we then iteratively adjust the positions of
( ) camera views to reduce the total cost of all peers
in the group. In each iteration, we go through each one of the
( ) camera views, calculate the new total costs if we
shift the camera view one step towards its left or right. If the
new total cost is lower than the original one, we substitute the
camera view with the one to its left (or right) respectively. The
algorithm stops when the total cost of peers cannot be further
reduced. It is guaranteed to converge since the total cost only
decreases at each iteration.
Finally, for the FLSR-S problem, we run the above procedure

( ) times with to , and then choose the optimal
that yields the minimum total cost that includes distortion,

reconfiguration and access costs.

B. Distributed Grouping: Coalition Maintenance
The centralized algorithm presented above is able to find a lo-

cally optimal FLSR solution by assigning anchor views to each
peer. The solution is suitable when there is a central controller,

Fig. 7. Coalition of peers.

and the network is not large or not highly dynamic (a dynamic
system is a system with frequent peer arrivals and departures,
and many view switches). Like in any centralized systems, the
average runtime for “Centralized Grouping” increases with the
number of peers. In this section, we present a simple, adaptive
and distributed algorithm for collaborative sharing of anchor
views. Our distributed algorithm is adaptive to dynamic net-
works and scales well to large networks with peer churns (i.e.,
with peer arrivals and departures). We call this the Distributed
Grouping algorithm.
In a peer group, the peers watching the same virtual

views or adjacent ones are organized into “coalitions”.
Fig. 7 shows an example of how peer coalitions are formed,
where are virtual views. Peers watching virtual
views between and are organized into a coalition, say,
Coalition 1. All peers that belong to the same coalition use
the Centralized Grouping algorithm proposed in the previous
section to find the optimal set of anchor views that minimizes
the total cost (due to distortion, access and reconfiguration as
defined in Equation (10)) for all users in the coalition , and
let be the corresponding minimum total cost. All peers in
the same coalition share these anchor views and thus access
costs. There is a leader peer (marked in white in Fig. 7) in each
coalition, who keeps track of the number of peers watching
each virtual view and of the total cost of the whole coalition. It
periodically exchanges information with the two neighboring
coalitions on each side. Two neighboring coalitions may merge
into a new bigger coalition, and a coalition may also split into
two if the overall cost can be reduced.
Inspired by the split-and-merge coalition formation scheme

in [40], we use the following algorithms for peer joins, coalition
merge and split, peer leaves and view switching.
Peer join:When a new peer arrives, it first contacts a Ren-

dezvous Point (RP) that forwards it to the peer group that be-
longs to. If there is an existing coalition that covers the virtual
view that peer requests in the peer group, RP connects with
the leader node of the coalition . The node joins the coalition
and starts to pull anchor views from other peers in the coali-

tion. The leader peer in updates the cost and information of
the coalition. However, if the virtual view requested by peer is
not in the range of any coalition, a new coalition will be created,
and the peer becomes the leader of the new coalition. It pulls
the anchor views from the streaming server in order to minimize
its own costs (distortion and reconfiguration costs).
Coalition merge:The coalition structure adapts to peer churns

in order to keep the P2P network optimized. The leader of each
coalition periodically exchange information. Let , be the
cost for and respectively, and , be the optimal
cost for peers in and from the result of the Centralized
Grouping algorithm run on if they merge and cooperate.
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If and , the two coalitions and are
merged. Let be the optimal set of anchor views returned by
the Centralized Grouping algorithm. Each peer in the merged
coalition adapts to new anchor views and that give the
minimum cost ( ). The leader who requested the
merge becomes the new leader of the merged coalition.
Coalition split: For a big coalition , the leader period-

ically examines whether splitting into two coalitions leads to
lower cost. Let be a virtual view separating into two
coalitions , . For each different view , the leader runs
the Centralized Grouping algorithm on both and . If the
combination of optimal costs is smaller than , then is
split into and , and a new leader is randomly selected for
the newly created coalition.
Peer leave:When a peer is about to leave, all content sharing

between and its neighbors is stopped, and the leader node up-
dates the cost of the coalition. If the leader node leaves, a new
leader is randomly chosen.
View switch:Apeer can change its virtual view in themiddle

of a streaming session. If the new virtual view is still within the
range of the coalition, the peer can still pull anchor views from
other peers and synthesize the new view. There is no change in
the overlay structure. However, if the new virtual view goes out
of the range of the coalition, the peer leaves the current coali-
tion and joins (or creates) a new coalition. It follows the same
process as in the situation where peers join or leave the system.

C. Distributed Grouping: Fair Cost Allocation

In the above Distributed Grouping algorithm, two neigh-
boring coalitions will merge if this reduces the total cost of all
users in both coalitions, and a coalition will split into two if
such reduces the total cost of all users in the coalition. Thus, it
targets the overall system performance optimization with the
assumption that all users are altruistic and willing to sacrifice
their own performance to lower the overall system cost.
As peers in P2P networks are selfish and rational, they are

willing to cooperate if and only if such cooperation helps to
improve their utilities (i.e., if it reduces their cost). Thus, an
important issue is to achieve fairness in peer cooperation; we
need to study mechanisms to lower each user’s cost in addition
to minimizing the total cost of the entire P2P network. As such,
no user is willing to deviate from the proposed solution, and the
constructed overlay P2P network is stable. In our collaborative
live free viewpoint video streaming problem, one possibility to
address the above is to study the fair allocation of the cost among
peers in a coalition; and coalitional game theory provides an
ideal tool to provide fair rules for cost reduction via cooperation
[41].
Consider a coalition with peers who

watch neighboring views and share the anchor views and the
access cost. For a subgroup of users watching nearby
views, let be the total cost of peers in if they decide
to cooperate with users in only. Given the coalition with
its members and the minimum total cost determined by
the centralized grouping algorithm, an allocation vector

divides the total cost among its mem-
bers, where is the cost assigned to user and .

Note that, from Section III-B and Equation (8), users’ view dis-
tortion and reconfiguration costs are determined by the set of
pulled views only. Therefore, for a coalition , given the min-
imum total cost and the corresponding optimal anchor view
set determined by the centralized grouping algorithm, the dis-
tortion and reconfiguration costs for a user are fixed. Users then
discuss how to fairly share the total access cost of such that
the coalition and the allocation vector are stable.
Given an allocation vector , we define the excess of a sub-

group (with respect to ) as .
In this definition, the first term is the total cost of the sub-
group if the peers in this subgroup decide to deviate from the
coalition , to form a new coalition and to cooperate with
peers in only, but not with others. The second term
is the total cost of if the peers decide to stay with the coalition
and with the same allocation vector . Therefore, the excess

of the subgroup with respect to the allocation vector is the
extra cost incurred to if the peers deviate from the coalition
and the allocation but form a new coalition by themselves.

Apparently, if and forming a new coalition incurs
more cost to peers in , the subgroup has no incentive to deviate
from the coalition . For a given allocation, if its excesses are
all non-negative, then users in have an incentive to stay in ,
and is a stable coalition. Our goal is to find such stable coali-
tions and allocation vectors.
Finding such stable allocations is often difficult, and a well-

known fair solution is the nucleolus [41], [42], which always
exists and is unique. It maximizes the excesses in the non-de-
creasing order, or equivalently, minimizes peers’ dissatisfaction
in the non-increasing order. That is, it first selects all allocation
vectors that maximize the smallest excess (or equivalently, the
allocation vectors that minimize the dissatisfaction of the sub-
group(s) of peers that gain the least from staying in the coalition
). Then it finds from the selected allocation vectors those that

maximize the second smallest excess, and repeats this process
until the allocation vector satisfying all the above constraints is
unique. Nucleolus is often the desired solution since, if there
exist stable allocations, nucleolus is always one of them.
The nucleolus is defined as follows. Given an allocation , we

sort all excesses in the non-decreasing
order, and let be the sorted access vector. The nucleolus
is the unique allocation that lexicographically maximizes

over all allocations, that is, . Given two
vectors and sorted in the non-decreasing order, is said
to be lexicographically larger than ( ) if in the first
component that they differ, that component of is larger than
the one of .
To compute the nucleolus, we follow the above definition and

solve a sequence of linear programs as follows [42]. We first
solve the following problem:

(15)

which maximizes the smallest excess. Let be the optimal so-
lution of ( ), which is the maximal smallest excess, and let
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be the collection of all subgroups whose excesses are equal
to . We then solve

(16)

which maximizes the second smallest excess. The second
constraint forces the excesses of all subgroups in to be ,
the maximum smallest excess found in ( ). We continue the
same process until there is only one allocation that satisfies
all the constraints that allocation is the nucleolus.
In Distributed Grouping, we apply the above procedure to

compute the nucleolus for each coalition found by the algorithm
described in Section VI-B. Computing the nucleolus involves
solving a sequence of linear programs. There are linear
programs in total. Studies have shown that the number of linear
programs can be reduced to without increasing their size
[43]. The complexity of computing the nucleolus can be further
reduced by considering all peers watching the same virtual view
as one single node.

VII. ILLUSTRATIVE SIMULATION RESULTS WITH
NON-NEGLIGIBLE RECONFIGURATION COST

A. Simulation Environment, Comparison Schemes, and
Metrics
We carried out simulations to evaluate the performance of our

proposed Centralized Grouping (given by Section VI-A) and
Distributed Grouping (given by Sections VI-B and VI-C). In
our simulation, the probability of each peer staying at the same
view is , while the total view switches of each peer is . The
reconfiguration cost for each peer can be calculated according
to Equation (8), and the total cost for all peers are calculated
with Equation (10). We set the view switch parameters as fol-
lows: , , . The set of parameters are
chosen so that the reconfiguration cost in Equation (14) is in the
same scale as the distortion cost. In this way, we explore how
our algorithms allocate anchor views given the tradeoff between
distortion and reconfiguration cost. Unless otherwise stated, we
use the same distortion model and simulation environment as in
Section V-B.
We compare our algorithms with the following schemes.
• Optimal: The optimal solution is obtained by exhaustive
search;

• View-Independent: In this approach, the peers indepen-
dently optimize their costs (distortion and reconfiguration).
It is similar to the View-independent approach in FLS
except that peers minimize their own total cost instead of
distortion.

We evaluate the performance of our proposed algorithms
using the following metrics.
• Streaming Cost: We are interested in the total streaming
cost, which is the weighted sum of distortion, reconfig-
uration cost and access cost of all peers. Our algorithms

Fig. 8. Total cost versus anchor price.

Fig. 9. Cost component versus anchor price.

(Centralized Grouping and Distributed Grouping) mini-
mize this cost. Besides the total cost, we are also interested
in the cost components and distributions among peers.

• Camera Views Pulled: In our algorithms, peers collabora-
tively pull camera views from the streaming server, and the
cost for accessing the camera views are shared. To under-
stand how the algorithms work, we study the evolution of
the total number of camera views pulled versus system pa-
rameters, as well as the distribution of anchor views and
their popularity among peers.

B. Streaming Cost
Fig. 8 shows the total streaming cost of all peers as a function

of camera view prices. The total cost increases with the price of
a camera view. This is because a higher view price leads to a
higher access cost, and peers tend to use the same anchor views
with others so they can share the cost of transmitting common
anchor views from the streaming server. This, in turn, increases
other cost components, i.e., the distortion and reconfiguration
costs. From Fig. 8, we see that Centralized Grouping performs
very close to the global optimal solution. The anchor views can
successfully be moved to good positions to minimize the total
costs of all peers. Distributed Grouping is also very efficient in
reducing the total cost, especially when the price of a captured
view is high. Distributed Grouping does not outperform View-
independentwhen the view price is low due to the lack of global
information.
Fig. 9 shows the cost components of Centralized Grouping

algorithm. With the increase of view price, the access cost be-
comes the major component of the total cost. Distortion and re-
configuration costs also increase because peers compromise to
sub-optimal anchor views (in terms of distortion and reconfig-
uration) so that their access costs can be shared with a larger
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Fig. 10. Cost distribution of peers.

Fig. 11. Total cost versus number of peers.

crowd. The cost components of Distributed Grouping are qual-
itatively the same as Centralized Grouping, and hence are not
shown for brevity.
Fig. 10 shows the cost distribution of all peers. The majority

of the peers in both Centralized Grouping and Distributed
Grouping have a low overall cost. All peers in Distributed
Grouping have a similar cost because of the fair cost allocation
mechanism within a coalition. On the other hand, in Centralized
Grouping, the access cost is evenly shared among all peers.
Therefore. the peers with large distortion and reconfiguration
cost have significantly larger overall cost than others.
We show in Fig. 11 the cost versus number of peers. The total

cost increases with the number of peers. View-independent per-
forms the worst. It has a very high total cost even when the
number of peers is low. This is due to the lack of collabora-
tion in anchor view selections. Centralized Grouping and Dis-
tributed Grouping achieve close-to-optimal performance.When
there are fewer peers in the system, they tend to use the same
anchor views to reduce the access cost, with a penalty in other
cost components.When the peer population increases, each peer
can choose better anchor views, which leads to a lower distor-
tion and reconfiguration cost, since there are more neighbors to
share the access cost.
Fig. 12 shows the total cost as a function of the number of

camera views. When there are more anchor views, the virtual
views that the peers watch become further apart from each other,
and hence the peers are less likely to share anchor views due to
the high distortion and reconfiguration penalty. Therefore the
total cost increases with the number of anchor views.

C. Camera Views Pulled
Now we look closer at the distribution of the camera views

in the different allocations algorithms. Fig. 13 shows the total

Fig. 12. Total cost versus number of camera views.

Fig. 13. Number of camera views pulled versus anchor price.

Fig. 14. Anchor view distribution for Centralized Grouping.

number of views pulled from the streaming server as a function
of the access cost of an anchor view. The number drops with
the increase in the price of a camera view. When requesting a
captured view from the streaming server becomes expensive,
peers tend to seek more cooperation by using the same anchor
views and sharing the access cost. Therefore, the total number
of camera views pulled from the streaming server becomes
smaller. In Distributed Grouping, the total number of views
pulled could be higher than the total number of camera views
since peers only share the access costs within the same coali-
tion, and a captured view could be pulled multiple times by
peers from different coalitions.
Fig. 14 shows the popularity of camera views in Centralized

Grouping, i.e., how many times a camera view is used as anchor
views by peers. With a small standard deviation of the virtual
view distribution, only a few camera views are pulled. The
majority of peers watching similar virtual views in the middle
use the same anchors (9, 11 and 12). Since the rest of the peers
are very few in number, they all use the same anchor views (1 or
21) to save access cost with the price of high distortion. When
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Fig. 15. Number of coalitions formed for Distributed Grouping.

Fig. 16. Reconfiguration rate of peers versus anchor price.

the virtual viewpoints are more “spread out”, i.e., standard
deviation equals to 4, more camera views are pulled, with more
distributed popularity as well. It shows that our algorithms are
adaptive to different virtual view distributions of peers. With
different distributions, Centralized Grouping pulls different
numbers of camera views with a different allocation so that the
total cost is minimized.
Fig. 15 shows the number of coalitions formed by the Dis-

tributed Grouping algorithm. The number of coalitions drops
with the price of a captured view. When the anchor views are
expensive, neighboring coalitions are more likely to merge into
a bigger one so that the access costs can be shared bymore peers.
Distributed Grouping can efficiently re-arrange the topology to
minimize the total cost when the view prices changes.
Fig. 16 shows the reconfiguration rate, i.e., the probability

that peers need to change their anchor views in Distributed
Grouping. A peer’s virtual view can no longer be synthesized
if it goes outside of the range defined by two anchor views in a
series of view switches. In this case new anchor views must be
obtained, and the P2P network needs to be reconfigured, which
leads to system instability. As shown in the Figure, we achieve
low probability of anchor change (less than 5%), because
we consider the reconfiguration cost directly in our objective
function. The reconfiguration rate is higher when the price of a
camera view increases, as peers sacrifice their reconfiguration
cost to look for better sharing of access cost.

D. Computational Time
Fig. 17 shows the average run time of the Centralized

Grouping algorithm as a function of the total number of camera
views. It demonstrates the relationship between the computa-
tional time of an anchor allocation scheme and the problem
complexity. The running time of the algorithm increases with

Fig. 17. Average run time for Centralized Grouping.

Fig. 18. Average reconfiguration time for Distributed Grouping.

the number of camera views. With more camera views, there
are more candidates for the pulled camera views,
and Centralized Grouping needs to go through more iterations
before it converges. However, given a reasonable number of
camera views, our algorithm achieves very low computational
time for a medium-sized P2P system.
Fig. 18 shows the average reconfiguration time ofDistributed

Grouping algorithm as a function of the total number of camera
views. The reconfiguration time is defined as the amount of time
needed by the coalition leader needs to calculate the new an-
chor allocation scheme upon peer churns, i.e., peer join, peer
leave, view-switch, coalition merge and coalition split. The re-
configuration time mildly increases with the number of camera
views. However it is relatively low comparing to the length of
the player buffer in real P2P streaming systems, hence this re-
configuration time is not a problem in practice.

VIII. CONCLUSION
In live free viewpoint streaming, videos from different view-

points of the same 3D scene are captured by multiple cameras.
Peers may select at will different virtual viewpoints, which are
synthesized using texture and depth videos of the sandwiched
camera views or the so-called anchor views. In this paper we
study anchor view allocation problem for collaborative live
streaming of free viewpoint video, where peers share with each
other their anchor views. There is an access cost to access
anchor views from the live source, a distortion cost due to the
distance from the virtual views to the anchor view, and a recon-
figuration cost due to change of suppliers in the peer network
upon view switching. The challenge is how to minimize the
total streaming cost by trading off these cost components by
allocating anchor views to the peers.
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We formulate two problems for anchor view allocation,
namely FLS and FLSR, depending on whether the recon-
figuration costs are negligible or not. We provide an exact
optimal solution based on dynamic programming for FLS. For
FLSR, we present a locally-optimal and effective centralized
algorithm (Centralized Grouping), and a distributed algorithm
with guaranteed convergence (Distributed Grouping). The sim-
ulation results show that our proposed algorithms substantially
outperform a baseline scheme without collaborative anchor
selection. Our results show that collaboration is key in the
design of live free viewpoint streaming systems to achieve low
distortion and streaming costs.

APPENDIX
NP-HARD PROOF OF FLSR

We show that the well-known NP-completeMinimum Cover
(MC) problem is polynomial-time reducible to a special case of
FLSR-H. In MC, a collection of subsets of a finite item set
is given. The decision problem is: does contain a cover for
of size at most , i.e., a subset where , such that
every item in belongs to at least one subset of ?
Consider a special case of FLSR-Hwhere in the optimal solu-

tion, all peers use the leftmost camera view 1 as their left anchor
view. This is the case if the synthesized distortion for each peer
of view is a local minimumwhenever view 1 is used as left an-
chor, i.e., . Hence all peers will
share view 1 as left anchor view, and need to select only the right
anchor view to minimize the aggregate cost in Equation (9).
We first map items in set to consecutive virtual views ’s

(each with ) just to the right of leftmost camera view
1. We map subsets in collection to camera views ’s to the
right of the virtual views ’s. We next construct the reconfigu-
ration cost by assuming a view-switching probability

in (1) and , resulting in a decreasing as
a function of for all virtual views ’s, as shown in Fig. 19.
We first set the distortion for peers with virtual

views ’s such that the aggregate cost is a constant , i.e.,
. Then, for each item in subset

, we reset the distortion (of virtual view corre-
sponding to item and of anchor view corresponding to
set ) to the distortion with the anchor view

. Note that the distortion function remains monotonically
non-decreasing.
Fig. 19 shows an example of the aggregate cost for peer with

virtual view , where is the distortion and is the recon-
figuration cost. Note that except for
and . If an optimal solution to FLSR-H with constraint

has a total cost less than , then the selected
camera views will correspond to in . Hence MC is a spe-
cial case of FLSR-H.
Then We prove that the FLSR-S problem is NP-hard, by re-

ducing the MC problem to a special case of FLSR-S. Following
similar construction as in the proof for FLSR-H, we first map
items in set to virtual views ’s (each with ) to the
right of leftmost camera view 1, and map subsets in collection
to camera views ’s to the right of the virtual views. Consider

again the case where the optimal solution has all peers sharing
view 1 as their left anchor view.

Fig. 19. Cost with different right anchor views, when the left anchor view is
fixed.

We construct the reconfiguration cost as done in the
FLSR-H proof. Next, we identify the smallest for all
’s and ’s for which and correspond to an item and a subset

in the originalMC problem, respectively. Let
. We then construct to be if

the subset corresponding to contains the item corresponding
to , and otherwise. That means that a virtual view
covered by a camera view has a decrease of in distortion.
Note that by the definition of , is monotonically non-
decreasing. Finally, we define the access cost ,
which means that purchasing all the camera views ’s is cheaper
than paying for a distortion for a virtual view uncovered by
a camera view .
We now claim that, if the optimal solution to FLSR-S has

an access cost smaller than , then the MC deci-
sion problem is positive, and vice versa. This is because under
the above construction, FLSR-S can always find a solution that
covers all virtual views ’s (items in MC) with camera views
’s. If the solution requires or fewer camera views, then the
corresponding subsets will cover all items in in MC.
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