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Abstract—In a video-on-demand (VoD) service, blockbuster
videos have stable and predictable popularity, but the traffic can
vary significantly within short timescale. To efficiently serve the
user pool in a geographic region, we consider a regional auto-
scaling cloud-based data center consisting of multiple servers. For
efficient storage, we partition the videos into fixed-size blocks.
To respond to dynamic user traffic in a timely and cost-effective
manner, we may activate or deactivate each server according to
the traffic while keeping at least one replica for each block in
the active servers. We maximize the user capacity of the active
servers (and hence minimizing the number of active servers at
any time) by jointly optimizing block allocation in the servers,
server selection at each traffic level, and request dispatching to
a server. We believe that this is the first work to study such
problem for an auto-scaling cloud-based VoD data center. We first
formulate the problem and show its NP-hardness. We then propose
AVARDO (Auto-scaling Video Allocation and Request Distribution
Optimization), a simple but efficient approximation algorithm with
proven optimality. AVARDO operates the servers like a stack, with
a server being pushed into or popped from the existing active server
set according to some optimized traffic thresholds. We prove that
AVARDO approaches the theoretical optimum as the block size
reduces. Trace-driven experimental results based on large-scale
real-world video data further validate that AVARDO is closely
optimal. It achieves significantly higher user capacity as compared
with other state-of-the-art and traditional schemes, and reduces
the optimality gap by multiple times.

Index Terms—Video-on-demand, auto-scaling cloud, video
allocation, request dispatching, joint optimization.

I. INTRODUCTION

W E CONSIDER a video-on-demand (VoD) service (e.g.,
Netflix) that provides blockbuster videos to a large group

of audience. In each geographic region, a cloud-based data cen-
ter provides VoD service to the regional local users within its
proximity. The popularity of blockbuster video is usually rather
stable and predictable over days or weeks (in contrast to user gen-
erated content where popularity may be more volatile, changing
drastically in minutes or hours). The total user request traffic
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Fig. 1. A video cloud consisting of auto-scaling VoD data centers.

presented to the system, on the other hand, may vary quite sig-
nificantly within much shorter timescale. As shown in [1], the
traffic may change by an order of magnitude over merely hours.

To serve highly dynamic user traffic in a region, the tradi-
tional infrastructure approach where the content provider stati-
cally allocates a fixed number of servers for the peak regional
user demand and keeps them running all the time is no longer
efficient. To meet demand in a timely and cost-effective manner,
content providers may employ auto-scaling servers from a pri-
vate cloud or a cloud service provider (e.g., Amazon AWS [2]),
where standby servers may be activated or deactivated according
to the user traffic.

Fig. 1 shows the system architecture of a typical video
cloud, which consists of several regional auto-scaling VoD data
centers1 placed close to the user pools. (For simplicity, we show
the user devices and internal architecture of data center in re-
gion A and B only.) Each data center has a dispatcher and a
set of standby auto-scaling servers to serve its regional user
demand. We consider the realistic and simple case of homoge-
neous servers in a data center. Each server has a certain limited
storage and streaming capacity, and may be activated or deacti-
vated within a short period of time (usually in tens of seconds).
The dispatcher distributes the demand to the active servers or to

1This work addresses the auto scaling feature of the VoD servers, and can be
extended to CDN or edge server clusters if they support such feature.
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the core network if the data center does not have the requested
video.

We aim at optimizing these auto-scaling VoD data centers.
In this network, a data center locally stores the content of wide
interest to serving its user pool. The video lifetime is typically
in the order of weeks, which is much longer than the timescale
of user traffic fluctuation. By storing many videos, a data center
captures most of its regional demand, and hence the core network
traffic between data centers is expected to be minimal. As the
data centers are operating rather independently, we focus on an
arbitrary one in this work.

To operate a data center cost-effectively, we activate or de-
activate the servers according to incoming traffic to elastically
scale system resources. For example, data center A activates
more servers than B because region A has more demand than
B. Currently, A has activated server A1, A3, A4 and A6. If the
demand in region A further increases, we can activate server A2

or A5. Conversely, if the demand decreases, we can deactivate
some servers.

For efficient video storage, we consider the storage unit in
our cloud as a video block. Each video block has the same size.
If a blockbuster video has a larger file size, we partition this
video into our fixed-size blocks. Note that our video block is
different from a DASH segment such that our block is only for
management purpose. Nevertheless, our design is amendable
and extensible to adaptive streaming. A block can consist of
multiple DASH segments depending on video’s bitrate. When
a user plays the video, the server streams the video to the user
based on segments. After streaming the last segment in a block,
the user moves to another block with the subsequent segments.

An incoming user demand for a video hence consists of mul-
tiple block accesses. For each block access, the dispatcher dis-
tributes it to an active server storing the requested block. To
guarantee service, we clearly must have at least one replica for
each video block in the active servers at any time. For example,
if server B3 and B4 are necessary to keep the full replication in
data center B, when the user demand further decreases, we still
cannot deactivate any of them.

Let V be the set of all standby servers in the data center. The
total block request rate λ (requests/second) is first mapped to
an auto-scaling level i (i = 0, 1, 2, . . .) such that λ is between
some thresholds of λi and λi+1 (λi < λi+1), with a correspond-
ing predefined set of servers Vi ⊆ V being activated which con-
tains at least one replica of all video blocks. We show in Fig. 2
the mapping mechanism. For request rate less than λ0 (the low-
est auto-scaling level 0), servers in V0 are activated. When the
request rate is between λi and λi+1, servers in Vi+1 are acti-
vated to serve the users. As the user request rate increases (de-
creases), we increase (decrease) the auto-scaling level so that
more (fewer) servers are activated. Let |V0| = ν be the number
of servers in V0, we clearly have |Vi| = ν + i for auto-scaling
level i.

The deployment cost of such a system depends on the number
of active servers. In order to minimize it, we hence seek to maxi-
mize user capacity in terms of λi at each auto-scaling level i. To
maximize λi, we have to optimize the following interdependent
design dimensions:

Fig. 2. Mapping mechanism of auto-scaling levels.

� Block allocation (BA): Due to limited storage on a server, a
single server alone cannot store all the video blocks. There-
fore, we need to decide which blocks should be allocated
(or replicated) in each server, the so-called block alloca-
tion (BA) problem. Note that at auto-scaling level 0, we
still need V0 to be with enough total storage to coopera-
tively store at least one replica of every block in the whole
video pool.

� Server selection (SS): This is to decide which servers
should be activated (i.e., the set Vi) for each auto-scaling
level i. Since different server may store different set of
video blocks, we have to ensure that servers in Vi have
enough replicas for each video block to support the re-
quest.

� Request dispatching (RD): Request dispatching is to decide
which server to cater a block request. Since some blocks
may be stored in multiple active servers, the dispatcher has
to balance the load of each active server so as to minimize
user delay or server utilization.

Note that, due to the relatively stable video popularity as com-
pared with user traffic, on-the-fly BA is not necessary. We hence
consider video blocks are preloaded in all the servers for SS
and RD. Furthermore, BA has much longer timescale (in day or
week) than SS (in hour), whose timescale is in turn much longer
than RD (in second). Therefore, RD decision should be based on
a given SS, while SS decision should be based on a given BA.
Therefore, to maximize λi, we need to jointly optimize these
three interdependent dimensions.

To the best of our knowledge, this is the first work to maximize
user capacity for an auto-scaling cloud-based VoD data center by
jointly optimizing block allocation, server selection and request
dispatching. Our contributions are on the following:
� Problem formulation and its NP-hardness: We study the

novel problem of maximizing user capacity for each auto-
scaling level i (in terms of λi) for an auto-scaling VoD data
center. We formulate the optimization problem as a multi-
objective mixed-integer linear program, and prove that it
is NP-hard. Our formulation is a general model such that,
by allowing only a single auto-scaling level (i.e., V0 = V ),
it becomes the optimization of the traditional fixed-server
system.
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� Stack-based algorithm with proven approximation ra-
tio: To tackle the joint problem, we propose a novel
and efficient approximation algorithm called AVARDO
(Auto-scaling Video Allocation and Request Dispatching
Optimization). AVARDO is a stack-based approach where
the servers are arranged in a linear array and are pushed
(activated) or popped (deactivated) according to the incre-
ment or decrement of auto-scaling level corresponding to
the user traffic. AVARDO’s overhead is low, because only
one server is activated or deactivated between successive
auto-scaling levels. We prove its approximation ratio to
show its closely optimal performance. We show that the
optimality gap can be further narrowed by reducing the
block size in the system (i.e., videos are partitioned into
smaller blocks).

� Extensive trace-driven experimental study based on real-
world data: We conduct extensive trace-driven experi-
ments with real-world VoD data (from a leading video ser-
vice website in China) to evaluate AVARDO. Our results
show that AVARDO’s performance is close to the optimum,
validating our theoretical analysis. Compared with other
state-of-the-art and traditional schemes, AVARDO signifi-
cantly lowers the number of active servers, and reduces the
optimality gap (by multiple times).

The remainder of this paper is organized as follows. We first
review related work in Section II. In Section III we describe
our system model, formulate our joint problem and show its
NP-hardness. We present AVARDO and prove its optimality in
Section IV. We discuss illustrative trace-driven experimental
results in Section V, and conclude in Section VI.

II. RELATED WORK

Content replication over a cloud has been widely studied by
abstracting a data center as a super server. The work in [3] ele-
vates a traditional CDN to cloud paradigm and decomposes the
problem into a graph partitioning and replica placement prob-
lems. Other work includes user access pattern detection at differ-
ent geographical region [4], collaborative cache strategy [5]–[7],
delivery through software-defined networking [8], [9] and so-
cial UGC propagation over a cloud CDN [10]–[12]. Content
placement for a cloud-based VoD system has been discussed
in [13]–[16]. Recent work on energy efficiency [17], femto-
cell networks [18] and optimization based on machine learn-
ing [19] provides sophisticated cost models and proposes im-
pressive replication schemes to achieve low operational cost with
QoS guarantees, but such research has yet to consider some of
the important features of cloud computing inside the data center
due to model abstraction. Our work, in contrast, complements to
these studies by investigating video replication, server selection
and traffic dispatching in auto-scaling data center from a more
detailed point of view.

There has been previous work to address content replica-
tion problem in both traditional and cloud-based VoD data
center [20]–[22]. Such work assumes that there is no dynam-
ics within the data center, in which the server configurations
and bandwidth reservation are rarely changed. Some other

work [23]–[25] is scalable in terms of the number of requests,
but has not considered the change of storage and video repli-
cation of the auto-scaling servers. Dynamic data replication [4]
needs extra network and time cost to load the video content into
the server dynamically, which is not necessary in our scenario
as we preload the content due to the relatively stable video pop-
ularity. For auto-scaling servers, we have to optimize content
replication for every possible auto-scaling levels, and adjust the
traffic dispatching scheme to adapt to the changing environment.
Furthermore, our trace-driven experimental results are based on
large-scale real world data, which effectively validate the per-
formance in the real-world settings.

How to efficiently auto-scale cloud resources has attracted
much interest of researchers in recent years. The work in [26]–
[30] focuses on effective predicting the user demand in order to
scale up and down of the servers. The work in [31] considers
the problem of reducing the response time for the auto-scaling
features. Such work optimizes the auto-scaling system in the
online phase such that it predict the user demand and improves
the performance in the coming few hours, which is orthogonal
to our work as the time scale we are considering is much longer.
The related work and our work can work together to achieve
better overall performance.

Various schemes have been proposed to address the cost opti-
mization of an auto-scaling system. The work in [32]–[34] con-
siders the general problem of jointly optimizing the resource al-
location and server selection problem. The work in [35]–[39] ex-
plores how auto-scaling cloud can support live streaming video
service. The work in [40] considers auto-scaling network to man-
age the camera surveillance network using the algorithm given
in [41]. The work in [42], [43] considers management of traffic
network through auto-scaling. These problems, while challeng-
ing, are different from our work because each request or task
considered in the problems is served by only one server. For a
VoD service, as some videos are too popular to be served by
one server, we have to consider both replicating of the video
files and dispatching the user requests. The approaches they are
using cannot be directly applied to our problem.

Note that the research works on user demand prediction [44],
[45], user start-up delay reduction, and server oscillation avoid-
ance are orthogonal to ours. Advancement in these fields would
benefit the performance of our auto-scaling VoD data center,
which focuses on the maximization of the user capacity given
dynamic user traffic.

III. PROBLEM FORMULATION AND ITS NP-HARDNESS

In this section, we first describe the system model of a
cloud-based VoD data center in Section III-A, and formulate
the optimization problem in Section III-B. Then we show its
NP-hardness in Section III-C. The major symbols used in the
formulation are given in Table I.

A. System Model

As we partition the videos into fixed-size blocks in our system,
a block is the basic storage unit (i.e., it is either entirely stored on
a server or not at all). Each block has the same file size f (bits).
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TABLE I
MAJOR SYMBOLS USED IN FORMULATION.

A smaller f leads to better optimality, but this comes with a
substantial increase in management overhead of video blocks.
Therefore, in practice, the block size cannot be too small to strike
a good trade-off between system optimality and management
complexity (though the transmission of these blocks may be in
segments of very small size using, say DASH).

In adaptive streaming, a video may have different quality ver-
sions. The number of blocks of the high-quality version is more
than its low-quality counterpart. In video transmission, when a
change in end-to-end bandwidth is detected, the corresponding
quality version of the video block is then identified, switched
and streamed. As different blocks have different access proba-
bility, such adaptive streaming mechanism does not affect our
problem formulation and our work can be extended to the case.

In our system, the video blocks are preloaded into the servers.
Due to the much longer lifetime of blockbuster video and its
relatively stable popularity as compared with auto-scaling deci-
sion interval, the interval between video update is much longer
than a typical auto-scaling interval. Also, such preload is usually
scheduled when the network traffic is low (e.g., early morning).
Therefore, the cost to preload videos has little impact on our
optimization problem, and we consider our auto-scaling opti-
mization independently from preloading cost.

A cloud VoD data center is composed of a number of servers,
which store videos and stream them to users. We denote the set
of all standby servers in the data center as V . Each server v ∈ V
has the same storage capacity c (bits) and streaming capacity
u (bits/second). With auto-scaling, the number of active servers
can adapt to the change of user traffic. When the traffic increases,
we activate more servers to ensure quality of service; when the
traffic decreases, we deactivate some servers to reduce the cost.

To describe the system in different states (i.e., with dif-
ferent active server set), we define the auto-scaling levels by
considering block request rate as thresholds. We numerate the

auto-scaling levels as {0, 1, . . . , n} and the corresponding re-
quest rate threshold as {λ0, λ1, . . . , λn}. We denote Vi, a subset
of V (i.e., Vi ⊆ V ), as the set of active servers when the sys-
tem is at auto-scaling level i (0 ≤ i ≤ n). For V0, we denote its
number of servers as ν (i.e., |V0| = ν). Surely, for the maximum
auto-scaling level n we have Vn = V , and for the number of
active servers we have |Vi| = ν + i.

At auto-scaling level 0 where the total block request rate is no
more than λ0 (i.e., λ < λ0), servers in V0 shall serve all requests,
and we deactivate all the other servers. As we must ensure that we
can serve the request of any video block, the servers in V0 have
to collectively store all the blocks m ∈ M even if the request
rate is minimum, namely, we must have νc > |M |f . At level
i (i ≥ 1) where the request rate is between λi−1 and λi (i.e.,
λi−1 < λ < λi), our active server set Vi has ν + i servers in
total to fulfill the request. Note that, in our problem formulation,
we do not enforce the stack operation (i.e., it is not necessary
that V0 ⊆ V1 ⊆ . . . ⊆ Vn).

B. Problem Formulation

Let M be the set of all video blocks. For a block m ∈ M ,
we denote the access probability as pm (

∑
m∈M pm = 1) and

streaming rate as bm (bits/second). Given the total block request
rate λ (requests per second) and access probability pm, the re-
quest rate for a block m is given as λpm. We denote Lm as the
average holding (or viewing) time for block m. As we consider
the traffic at quasi-steady state, the distribution of the holding
time may be different for different blocks, and we are interested
in the average holding time. Denoting the traffic of a video block
m at request rate λ as Rm(λ) (bits/s), we have

Rm(λ) = λpmLmbm, ∀m ∈ M. (1)

To indicate whether server v stores block m, we denoteMv as
the set of video blocks stored on server v, and the binary block
allocation variable as

Imv =

{
1, if m ∈ Mv,

0, otherwise.
(2)

As we do not change the block allocation within the timescale
of optimization, the binary block allocation variables Imv are
invariant for all the request rate λ. As a server cannot store blocks
beyond its storage capacity limit c (bits), we have∑

m∈Mv

Imv f ≤ c, ∀v ∈ V. (3)

Having stored the video block set Mv , a server v has to serve
the corresponding traffic. For auto-scaling level i, we denote
rmv (i) as the probability of streaming a request of block m from
server v. A server v ∈ Vi can serve the traffic of a block m only
if it stores this block, i.e.,

rmv (i) ≤ Imv , ∀v ∈ Vi,m ∈ M, i = 0, 1, . . . , n. (4)

To ensure that we serve all the user requests for each block, we
shall have Rm(λi) ≤

∑
v∈Vi

rmv (i)Rm(λi) for all m ∈ M , or
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simply ∑
v∈Vi

rmv (i) ≥ 1, ∀m ∈ M, i = 0, 1, . . . , n. (5)

At request rate threshold λi, the traffic of block m served by
server v ∈ Vi is rmv (i)Rm(λi) for all m ∈ M . The total traffic
served by server v is given as

∑
m∈M rmv (i)Rm(λi) for any v ∈

Vi. To ensure the video playback performance, the utilization
of the streaming capacity of every server should not exceed a
certain limit μ, i.e.,∑

m∈M
rmv (i)Rm(λi) ≤ μu, ∀v ∈ Vi, i = 0, 1, . . . , n. (6)

The number of active servers of each auto-scaling level is
another constraint, which is given as

|Vi| = ν + i. (7)

Recall that for V0 we must have νc > |M |f to store all the video
blocks, and ν can be treated as a given parameter.

Formally, our Auto-scaling Video Allocation and Request
Dispatching (AVARD) problem is formulated as follows: given
server set V , streaming capacity u, storage capacity c, video
block set M , access probability {pm}, file size f , average hold-
ing time {Lm}, streaming rate {bm} and server utilization limit
μ, we seek to maximize all the request rate threshold {λi}, i.e.,

max(λ0, λ1, . . . , λn) (8)

subject to constraints from (1) to (7). For every λi, the optimal
solution consists of the block stored on each server (i.e., the
block allocation decision{Imv }), the set of active servers (i.e., the
server selection decision {Vi}) and the probability of streaming a
request of video to a server (i.e., the request dispatching decision
{rmv (i)}).

Note that {Imv } is the same for all λi, but each λi has its own
Vi and {rmv (i)}. For an arbitrary λ < λi, Rm(λ) satisfies all the
constraints from (1) to (7) by keeping the current {Imv }, Vi and
{rmv (i)}.

C. The NP-Hardness of AVARD Problem

We prove that the Partition Problem, a known NP-complete
problem in number theory, is polynomial-time reducible to
AVARD. The partition problem is to decide whether a given
multiset S = {s1, s2, . . ., sn} of n positive integers can be di-
vided into 2 subsetsS1 andS2 such that the sums of the numbers
in S1 and S2 are the same.

Given S, we construct an instance of AVARD with auto-
scaling level 0 as follows. We denote the sum of all numbers
in S as s. We have 2 servers v1 and v2 both with storage capac-
ity c = n, streaming capacity u = s/2 + n and utilization limit
μ = 1. We have 2n video blocks with size f = 1. The required
trafficRm of the firstn blocks is related to the numbers inS (i.e.,
Rm = Rm(λ0) = sm + 1 for 1 ≤ m ≤ n). The required traffic
of the other n blocks is 1 (i.e., Rm = 1 for n+ 1 ≤ m ≤ 2n).
The decision version of AVARD is whether these 2 servers can
accommodate all the required traffic.

Theorem 1: The partition problem is polynomial-time re-
ducible to AVARD problem.

Proof: We show that we can partition the numbers in S into 2
subsets with the same sum if and only if the 2 servers can serve
all the required traffic.

If there is a solution to AVARD that makes the servers to serve
all the required traffic, the streaming capacity of both servers
must be fully utilized (i.e.,

∑
m∈Mv1

Rm =
∑

m∈Mv2
Rm =

s/2 + n). As we have exactly 2n storage for 2n blocks, each
block must have exactly one replica. To construct the solution
to the partition problem, for every number in S, if its associated
video block is in Mv1

, we put it in S1, otherwise it is in S2.
Conversely, if we can partition the numbers successfully, we

construct the solution to AVARD as follows. For the numbers in
S1, we put the associated blocks in Mv1

, and the other blocks
in Mv2

. The unused storage shall be filled with blocks with the
required traffic Rm = 1. �

IV. AVARDO: AN APPROXIMATION ALGORITHM FOR

AUTO-SCALING BLOCK ALLOCATION AND REQUEST

DISPATCHING

In this section, we present AVARDO (Auto-scaling Video
Allocation and Request Dispatching Optimization) to jointly op-
timize video allocation, server selection, and request dispatching
for a large video pool.

To address the auto-scaling, AVARDO has a stack-based
server selection scheme such that, besides the servers in V0,
we arrange servers in an orderly sequence {v1, v2, . . . , vn}
and consider the set of active servers as a stack, namely,
Vn+1 = Vn ∪ {vn+1}. Each server stores a predefined set of
video with a good mix of both hot and cold contents. We denote
vn0 (1 ≤ n ≤ ν) as the servers in V0 which are always in the
stack for any auto-scaling levels. When the request rate exceeds
threshold λn, we push (activate) server vn+1 on the stack. When
the request rate falls under threshold λn, we just pop (deactivate)
the top server vn+1 off the stack. After the stack operations, we
update the request dispatching accordingly.

In Section IV-A, we propose the preprocessing stages of
AVARDO where we replicated the video blocks and put them
into clusters for easier management. In Section IV-B, we propose
the details of AVARDO for all the auto-scaling levels. In Sec-
tion IV-C, we show the optimality gap by comparing λn given
by AVARDO and the theoretical upper bound λ̄n. The major
symbols used in this section are given in Table II.

A. Preprocessing: Block Replication and Clustering

To reduce the complexity of our optimization, we need to
replicate popular video blocks and put the blocks into clusters.
By replicating popular blocks, we avoid the situation that too
many users demand the same block. By clustering the blocks,
we can let each cluster be a mega video file with the same size
and nearly same access probability. Then, the BA decision of
AVARDO simply becomes picking clusters for each server in-
stead of choosing numerous video blocks.

Denoting G as the set of video clusters, we aims at putting
the videos into ν2 video clusters g ∈ G such that each server
gets ν clusters. At auto-scaling level 0, servers in V0 have all
the ν2 clusters to ensure the full replication of the video blocks.
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TABLE II
MAJOR SYMBOLS USED IN AVARDO ALGORITHM

For a server v which is not in V0, v and any server in V0 al-
ways have a same cluster. When a new server v is activated, its
preloaded contents can effectively offload the traffic from the
existing active servers.

To clarify the relation between the storage and streaming, we
denote the streaming ratio of video block m as Pm such that

Pm =
pmLmbm∑

m∈M pmLmbm
, ∀m ∈ M. (9)

According to (1), Pm is proportional to the traffic of block m
(e.g., a block m with Pm = 0.1 accounts for 10% of the total
traffic). Clearly, we have

∑
m∈M Pm = 1.

Denote Nm as the number of replicas for block m stored in
V0. For each replica of block m, its average streaming ratio σm

is defined as

σm = Pm/Nm, ∀m ∈ M. (10)

Note that σm is only for auto-scaling level 0, and it is not neces-
sary to evenly distribute the request of a block m to its replicas.

We denote P (g) as the streaming ratio distributed to cluster
g, which has

P (g) =
∑
m∈g

σm, ∀g ∈ G. (11)

The ideal situation is that the traffic is evenly distributed to each
cluster, (i.e., P (g) = 1/ν2 for all n).

Therefore, AVARDO consists of two preprocessing stages:
� The block replication stage decides how many replicas are

required for a video block (i.e., Nm).
� The replica clustering stage decides which replicas are in

a cluster (i.e., g).
The block replication is a popularity-based (in terms of Pm)

scheme with the following properties:
1) The least popular block has at least one replica in V0 (i.e.,

Nm ≥ 1).
2) For the most popular blocks m, each server has at most

one replica (i.e., Nm ≤ ν).
3) For the other blocks, Nm is proportional to Pm.

DenoteNT = νc/f as the number of replicas can be stored in
V0. As V0 must store all the video blocks, we must have NT ≥
|M |, and the number of surplus replicas is denoted as NA =
NT − |M |. If V0 can only store |M | replicas (i.e., NT = |M |),
we skip this block replication stage. If we have extra storage
(i.e., NA > 0), as the required traffic of a hot video block may
be more than the streaming capacity of a server, we wish to store
such block into multiple servers so that each server only needs
to serve a fraction of its required traffic.

We introduce a tunable parameter called average replica
streaming ratio threshold σ such that σm ≤ σ for all the blocks
withNm < ν. In other words, besides the blocks that have repli-
cas in all the servers, each replica is expected to accommodate
at most σ of the total traffic. Therefore, we have

Nm =

⎧⎪⎨
⎪⎩
ν, if Pm > νσ,

�Pm/σ	, if σ < Pm ≤ νσ,

1, if Pm ≤ σ.

(12)

For blocks that has replicas in all the servers (i.e., Nm = ν), we
call them as fully replicated blocks. For the other blocks, we call
them as partially replicated blocks.

A smaller σ will increase the number of replicas. To avoid
wasting storage, we find the smallest possible σ through binary
search. In the binary search, we can set the initial lower bound
of σ as σL = 1/NT and upper bound as σH = 1/NA. In each
iteration of the search, we let σ = (σL + σH)/2. If σ makes
too many replicas, we let σ be the new σL. If σ makes too few
replicas, we let σ be the new σH . We keep iterating until we find
the suitable σ.

For the replica clustering, we denote C(g) as the used storage
capacity for cluster g. Initially, we let P (g) = 0 and C(g) = 0.
We first put all the replicas of partially replicated blocks into
a priority queue Q. We then repeatedly take top ν2 replicas
with maximum σm from the queue Q and let every cluster take
a replica such that the cluster g with smaller P (g) can get a
replica with larger σm. We give the pseudocode in Algorithm 1.

The preprocessing has efficient algorithmic time complexity.
It has been shown that searching for σ can be done in O(|M |)
[46]. The major component of clustering is to get the replicas
from the priority queue, which is equivalent to sort the replicas
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by their σm. As the number of replicas is comparable to |M |,
the time complexity of preprocessing is O(|M | log |M |).

B. Block Allocation and Request Dispatching

After the preprocessing stage, the optimization becomes how
to manage video clusters. For the auto scaling level i > 0, we
can write i = kν + j such that k ≥ 0 and 1 ≤ j ≤ ν.

We make the block allocation decisions as follows:
� All the servers shall store fully replicated blocks.
� For the servers in V0, we distribute the ν2 clusters into the
ν servers such that each server v ∈ V0 stores ν clusters.

� For server vi such that i ≤ ν, it shall pick one cluster from
each server v ∈ V0 where the cluster has not been picked
by the other server vl such that l ≤ ν.

� For server vi such that i = kν + j with k ≥ 1, we simply
let G(i) = G(j) (i.e., server vi and vj have the same block
replication).

As some clusters may have the same video blocks and these
clusters may be put into the same server, a server can have mul-
tiple replicas of the same video block. In this case, the solution
may be sub-optimal, but we still have a good approximation ratio
as shown in Section IV-C.

For traffic dispatching, we hope to evenly distribute the traffic
to each server. It can be solved as a MaxFlow or Linear Program
problem, but we have a very simple closed-form solution. The
traffic of the fully replicated blocks is evenly distributed to each
server. For the partially replicated blocks at auto-scaling level i,
we consider the i = 0 and i > 0 cases separately.

We first consider the i = 0 case. For all g ∈ G and m ∈ M ,
we denote qmg as the probability of streaming a request of block
m from cluster g at auto-scaling level 0, which is given as

qmg =

{
1/Nm, if m ∈ g;

0, otherwise.
(13)

For fully replicated blocks, the traffic is evenly distributed to
each server. We denoteG(v) as the set of video clusters on server
v. The probability of streaming request rmv (0) for the partially
replicated block is given as

rmv (0) =
∑

g∈G(v)

qmg , ∀m ∈ M, v ∈ V0. (14)

Note that our AVARDO works for any feasible V0. We can
set a larger ν for better request dispatching flexibility at the cost
of more active servers at auto-scaling level 0. By simply letting
V0 = V , AVARDO can also be applied to the traditional static
provisioning VoD data center.

We then consider the i > 0 case. At each level i, server vi is
added to the stack. We want vi to evenly offload the traffic of
the other servers. At auto-scaling level i = kν + j, some clusters
have k + 1 replicas while the others have k + 2 ones. We denote
the set of the former clusters as Gk+1, and the set of the latter
clusters as Gk+2.

The basic idea for RD is that each server shall have the same
traffic by adjusting the traffic distributed to the clusters, which
can be formulated as a linear equation. By solving this equation,
we get the following result:

� For the servers v ∈ v1, . . . , vi, we have

rmv (i) =
ν

ν + i

∑
g∈G(v)

qmg , ∀m ∈ M. (15)

� For the servers in v ∈ V0, denoting Gx = G(v) ∩Gk+2

and Gy = G(v) ∩Gk+1, we have

rmv (i) =
j

ν + i

∑
g∈Gx

qmg +
ν + j

ν + i

∑
g∈Gy

qmg , (16)

for all m ∈ M .

C. Optimality Gap

If the exact optimal solution has request rate threshold λop,
and our solution has threshold λ, the approximation ratio is given
as λop/λ. As the approximation ratio is always greater than 1, we
can define the optimality gap as λop/λ − 1. A smaller optimality
gap indicates a better performance of the solution.

We show the optimality gap of AVARDO by proving the fol-
lowing lemmas and theorem. In Lemma 1, we show the upper
bound of the average replica streaming ratio threshold σ. In
Lemma 2, we show the upper bound of the streaming ratio of
every video cluster g ∈ G. In Theorem 2, we calculate the opti-
mality gap of AVARDO.

Lemma 1: σ is less than 1/NA.
Proof: According to (12), a block m with Pm stream-

ing ratio has at most �Pm/σ	 replicas. As �Pm/σ	 <
Pm/σ + 1 and

∑
m∈M Pm = 1, the total number of replicas∑

m∈M Nm = NT = NA + |M | is less than
∑

m∈M (Pm/σ +
1) =

∑
m∈M Pm/σ + |M | = 1/σ + |M |. As NA + |M | <

1/σ + |M |, we have σ < 1/NA. �
Lemma 2: For every video cluster g ∈ G, its streaming ratio

P (g) is no more that 1/ν2 + σ.
Proof: We prove this by mathematical induction. We show

that, at each iteration of putting a replica into each cluster in our
replica clustering algorithm, the difference between maxP (g)
and minP (g) is always no greater than σ (i.e., maxP (g)−
minP (g) ≤ σ).

We first consider the base case where there is only one replica
in each cluster. As the largest σm is no greater than σ, it is
obvious that maxP (g)−minP (g) ≤ σ.

Suppose that when we have k replicas in each cluster,
maxP (g)−minP (g) ≤ σ still holds. When we put the (k +
1)th replica into each cluster, we always put the replica with
the larger σm into the cluster with smaller P (g). Therefore,
maxP (g)−minP (g) shall not increase, and maxP (g)−
minP (g) ≤ σ holds.

As we have ν2 clusters, on average, each cluster has 1/ν2

streaming ratio. For all g ∈ G, P (g) ≤ 1/ν2 + σ. �
Theorem 2: The optimality gap of AVARDO, given by

λop/λ − 1, is no more than ν2σ.
Proof: In the ideal case, each cluster has P (g) = 1/ν2 so the

traffic can be evenly distributed to servers. Consider the worst
case where a server has all clusters with P (g) = 1/ν2 + σ. For
this server, the ratio of its traffic versus the average server traf-
fic is (1/ν2 + σ)/(1/ν2) = 1 + ν2σ. As the most overloaded
server has 1 + ν2σ traffic compared with the ideal case, to meet
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TABLE III
BASELINE OF THE PARAMETERS

the constraint of streaming capacity utilization in (6), we have
to reduce λ threshold such that λop/λ = 1 + ν2σ. Thus, in the
worst case scenario, the approximation ratio of our algorithm is
1 + ν2σ, and the optimality gap is ν2σ. �

Consider the real-world settings, a nowadays video server
can easily have over 10 TB storage, which can store more than
105 videos. Therefore, it is easy to have NA ≥ 105 and σ ≤
10−5. For auto-scaling level 0, 30 servers are more than enough.
Therefore, the optimality gap ν2σ is less than 1%. We can further
reduce σ by partitioning the video files into blocks with smaller
size f .

Note that Theorem 2 gives the upper bound of the optimality
gap, which means AVARDO performs no worse than this bound.
There exists the probability that AVARDO performs as bad as
this bound, but such poor performance may not happen in reality.
The worst cases (i.e., AVARDO meets the upper limit) only
occurs when the file size of video block f is comparable to the
server storage c, or when the number of video blocks |M | is
comparable to the number of servers ν, which are both far from
the reality.

V. ILLUSTRATIVE EXPERIMENTAL RESULTS

In this section, we present experimental results based on real-
world data trace of AVARDO. In Section V-A, we first describe
our experimental settings and performance metrics. In Section V-
B, we present illustrative results of AVARDO.

A. Experimental Environment and Performance Metrics

The real-world data trace for the experiment is from a leading
video service website in China over 2 weeks. The website has
around one hundred million daily active users (DAU). To collect
the user trace, the video player on the client side reports the
user status (e.g., videos being played and their network traffic)
every minute. We only consider the long videos where the length
of the video is longer than 10 minutes. There are around 1.5
million videos in total, where the top 20,000 videos account for
more than 60% of the total traffic. When a video has multiple
resolutions and bit rates, we treat them as multiple video files. In
our baseline parameters, we partition the videos into the blocks
of the same size of 100 MB, and we have around 3× 106 blocks.
At peak hour, there are around 2,500 block requests per second.
A server can store 6× 105 such blocks. Unless otherwise stated,
we used this trace data and the baseline value given in Table III
in our system parameters.

As AVARDO is applicable to any block access probability
distribution, we also use synthetic data in Fig. 8 and 9 where
the block access probability follows the Zipf distribution with

Fig. 3. Delay model for an auto-scaling server.

Zipf parameter z. For instance, the mth popular block has the
access probability pm ∝ 1/mz . In the experiment, the block
access probability is generated and normalized according to the
power-law x−z with x as the rank and z as the Zipf’s parameter.
A greater Zipf’s parameter indicates a wider gap of the video
block access probability between different ranks.

We show in Fig. 3 the relationship between the server delay
and utilization. The delay increases quite sharply when the server
is getting fully utilized, and the experimental results agree with
the M/M/1 queueing model. Due to the highly convex nature
of the curve, the servers should be uniformly loaded to achieve
overall low delay. A high fairness index indicates that no server’s
utilization is much higher than the other servers, and the load
on all the active servers is well balanced to achieve overall low
delay. As fairness is a good indicator of delay, we focus on the
fairness of active server utilization in the experiment.

We compare AVARDO with the following traditional and
state-of-the-art video replication schemes:
� Uniform replication, where every video has the same num-

ber of replicas. The videos are randomly stored in the
servers.

� Hierarchical popularity replication [47], [48], where we
have 2 types of server: repository and cache. The repository
serversV0 collaboratively store all the videos, and the cache
stores the videos based on video popularity. A video with
higher popularity has a higher chance to be stored in the
cache.

� Super optimum, which serves as the theoretical perfor-
mance bound (i.e., no scheme can perform better than su-
per optimum). In super optimum, we assume that a video
can be partitioned into blocks with infinitesimal size (i.e.,
f → 0). As a smaller f indicates smaller σ, when f → 0
our optimality gap ν2σ → 0. The super optimum cannot be
put into practice because it divides a video into too many
blocks, and the user has to set up the same number of con-
nections to fetch the whole video, which will incur a lot of
overhead.

For request dispatching of the comparison schemes, we
use the optimal dispatching strategy by solving the MaxFlow
problem. Note that the algorithmic complexity of MaxFlow

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 21,2021 at 02:03:27 UTC from IEEE Xplore.  Restrictions apply. 



3722 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 23, 2021

Fig. 4. Maximum request rate threshold versus auto-scaling level.

is O(|M |2|V |), which cannot be applied in a real world sys-
tem. Comparatively, the complexity of AVARDO’s RD is only
O(|M ||V |).

The performance metrics we are interested in are:
� Request rate threshold λn, which is the optimization ob-

jective of AVARDO.
� Optimality gap of λn, which reflects the difference between

scheme performance and the theoretical bound. Optimality
gap can be calculated as (λop/λn)− 1 where λop is the
result of the super optimum.

� Number of active servers, which is used to evaluate the
operation cost over a given time period.

� Fairness of active server utilization, which shows how the
load is distributed among active servers. We use the Jain’s
Fairness Index to indicate the fairness, which is between 0
and 1. The higher is the index, the fairer the load is shared.

B. Illustrative Data-Driven Experimental Results

We compare in Fig. 4 the maximum request rate threshold λi

versus the auto-scaling level for different schemes. The max-
imum request rate threshold increases with auto-scaling level
as we increase the number of active servers. AVARDO is very
close to the super optimum, and achieves significantly higher
request rate threshold than the other 2 schemes. In other words,
given the same request rate (i.e., concurrent users in the sys-
tem), AVARDO uses much fewer number of active servers. Hi-
erarchical replication’s performance is not as good as AVARDO
because it mainly relies on the repository to serve the unpopular
videos. Uniform replication, due to its popularity-blind nature,
stores insufficient replicas of the popular videos, leading to even
poorer performance. As the optimality gap is quite stable for each
auto-scaling level, for the following graphs, we use optimality
gap as the y-axis to compare the schemes.

In Fig. 5, we examine the effect of the surplus replica space
NA on the optimality gap. A largerNA allows AVARDO to have
more replicas for the popular video blocks. We alter the number
of extra storage NA in the server set V0. AVARDO performs
well as it can converge to the super optimum with very little
need of the extra storage. Even when NA = 0 (i.e., we cannot
replicate hot contents), AVARDO still has a small optimality
gap. In reality, the operator does not need to care much about

Fig. 5. Optimality gap versus number of surplus replicas.

Fig. 6. Optimality gap versus storage capacity ratio.

the extra storage issue as the performance is far better than the
theoretical bound.

In Fig. 6, we examine the effect of the storage capacity ratio
(given by NT /|M |) on the optimality gap. We alter the server
storage capacity ratio by changing the server storage capacity.
AVARDO is less sensitive to the storage capacity ratio as it has
already been close to the optimum. Uniform replication has con-
stant performance because it cannot utilize the extra space due
to the popularity-blindness. Hierarchical replication has better
performance with a large storage capacity ratio because it has
more space to store unpopular videos in both repository and
cache.

In Fig. 7, we examine the effect of block size on the optimality
gap. We alter the number of video blocks stored in a server by
changing the block file size. All three schemes tend to have
better performance with larger number of blocks in a server
(i.e., smaller block size) because the traffic of popular video can
be distributed to more servers if we partition it into more blocks.
AVARDO is less sensitive to the video file sizes as it already has
very small optimality gap for larger block size. The optimality
gap of AVARDO and the comparison schemes differ by a wide
margin until the block size becomes small enough. Note that our
baseline parameter (i.e., 100 MB block size) is the knee point of
AVARDO’s performance curve in this system. When the block
size further decreases, the performance gain is negligible.
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Fig. 7. Number of blocks in a server versus optimality gap.

Fig. 8. Optimality gap versus Zipf’s parameter of block access probability
distribution.

Fig. 9. Utilization fairness versus Zipf’s parameter of block access probability
distribution.

Fig. 8 and 9 use synthetic user trace data which follows the
Zipf distribution.

We show in Fig. 8 how the skewness factor affects the per-
formance of the three schemes. AVARDO is very insensitive
to skewness of block access probability. The optimality gap of
AVARDO is rather stable over the whole range of the skewness
factor. With small Zipf’s parameter, the difference of the blocks
is small, so uniform replication is indeed the close-to-optimum
solution. However, its performance degrades drastically with

Fig. 10. The request rate over a typical day.

Fig. 11. Number of active servers over a typical day.

larger Zipf’s parameter. Hierarchical replication does not per-
form well for small Zipf’s parameter because the popular videos
in its cache actually do not have so many requests.

We show in Fig. 9 the utilization fairness versus the Zipf’s pa-
rameter of block access probability distribution. AVARDO has
an overall good performance on fairness as we have a good mix-
ture of hot and cold contents in every server. The high fairness
index indicates that AVARDO can effectively balance the load
to all the active servers to achieve overall low delay. When the
Zipf’s parameter is higher, hierarchical replication replicates hot
contents at the newly activated servers, which will share a sig-
nificant amount of load. This leads to higher utilization fairness.
Uniform replication preforms worse as we increase the Zipf’s pa-
rameter because it randomly put the hot contents into the servers.
The fairness degrades when the hot contents have a larger frac-
tion of user demand. Note that the comparison schemes may
perform better than AVARDO in some scenario as they use the
optimal dispatching algorithm, which has higher algorithmic
complexity than AVARDO.

We show in Fig. 10 the trend of user request over a typi-
cal day in a large video service website. Request traffic can
vary by an order of magnitude over a day. We plot in Fig. 11
the number of active servers over a typical day given differ-
ent schemes. AVARDO uses significantly less number of active
servers, which agrees with the result shown in Fig. 4. At the peak
hour, AVARDO can save more numbers of active servers.
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VI. CONCLUSION

In this work, we have examined the problem of providing
blockbuster VoD service in a geographic region. To respond to
the dynamic user traffic in a cost-effective manner, we have con-
sidered a regional auto-scaling cloud-based data center where
servers may be activated or deactivated at any time. User traffic
is mapped to one of the auto-scaling levels where a certain set of
servers are activated. Videos are divided into fixed-size blocks.
To minimize cost, we seek to maximize user capacity at each
auto-scaling level by jointly optimizing block allocation at the
servers, server selection and request dispatching.

We have formulated the problem as a Multi-objective Mixed-
integer Linear Programming problem, and have shown that
the problem is NP-hard. We have proposed AVARDO, a
novel and efficient algorithm for a very large video pool with
O(|M | log |M |) algorithmic complexity, where |M | is the num-
ber of video blocks. AVARDO is a stack-based scheme, and has
a proven optimality gap of ν2σ, where ν is the number of ac-
tive servers at auto-scaling level 0 and σ is the average replica
streaming ratio threshold. The optimality gap is less than 1%
under practical settings. The approximation solution can further
approach the theoretical optimum as we reduce the block file
size in the optimization. We conduct extensive trace-driven ex-
periments under real-world settings. The results agree with the
theoretical proofs, and validate that AVARDO is closely optimal.
It outperforms substantially the traditional and state-of-the-art
schemes, narrowing the optimality gap by multiple times.

REFERENCES

[1] N. Liu, H. Cui, S.-H. G. Chan, Z. Chen, and Y. Zhuang, “Dissecting user
behaviors for a simultaneous live and VoD IPTV system,” ACM Trans. Mul-
timed. Comput. Commun. Appl., vol. 10, no. 3, pp. 23:1–23:16, Apr. 2014.

[2] A. W. Services, “Amazon web services,” accessed date October 20, 2020,
[Online]. Available: http://aws.amazon.com

[3] C. Papagianni, A. Leivadeas, and S. Papavassiliou, “A cloud-oriented con-
tent delivery network paradigm: Modeling and assessment,” IEEE Trans.
Dependable Secure Comput., vol. 10, no. 5, pp. 287–300, Sept./Oct. 2013.

[4] M. Jeon, K.-H. Lim, H. Ahn, and B.-D. Lee, “Dynamic data replication
scheme in the cloud computing environment,” in Proc. IEEE 2nd Symp.
Netw. Cloud Comput. Appl., 2012, pp. 40–47.

[5] G. Silvestre, S. Monnet, R. Krishnaswamy, and P. Sens, “AREN: A popu-
larity aware replication scheme for cloud storage,” in Proc. IEEE 18th Int.
Conf. Parallel Distrib. Syst., 2012, pp. 189–196.

[6] S. H. G. Chan, W. P. Yiu, and A. C. P. Lui, “Peer-to-peer interactive media-
on-demand,” U.S. Patent 9,325,786, Apr. 26 2016.

[7] S. H. G. Chan and W. P. Yiu, “Distributed storage to support user
interactivity in peer-to-peer video streaming,” U.S. Patent 7,925,781,
Apr. 12 2011.

[8] J. Yang et al., “Software-defined multimedia streaming system aided by
variable-length interval in-network caching,” IEEE Trans. Multimedia,
vol. 21, no. 2, pp. 494–509, Feb. 2019.

[9] E. Bourtsoulatze, N. Thomos, J. Saltarin, and T. Braun, “Content-aware de-
livery of scalable video in network coding enabled named data networks,”
IEEE Trans. Multimedia, vol. 20, no. 6, pp. 1561–1575, Jun. 2018.

[10] Z. Wang et al., “Propagation-based social-aware replication for social
video contents,” in Proc. 20th ACM Int. Conf. Multimedia, 2012, pp. 29–38.

[11] H. Hu et al., “Joint content replication and request routing for social
video distribution over cloud CDN: A community clustering method,”
IEEE Trans. Circuits Syst. Video Technol., vol. 26, no. 7, pp. 1320–1333,
Jul. 2016.

[12] J. Tang, X. Tang, and J. Yuan, “Traffic-optimized data placement for
social media,” IEEE Trans. Multimedia, vol. 20, no. 4, pp. 1008–1023,
Apr. 2018.

[13] D. Niu, C. Feng, and B. Li, “A theory of cloud bandwidth pric-
ing for video-on-demand providers,” in Proc. IEEE INFOCOM, 2012,
pp. 711–719.

[14] D. Niu, H. Xu, B. Li, and S. Zhao, “Quality-assured cloud bandwidth auto-
scaling for video-on-demand applications,” in Proc. IEEE INFOCOM,
2012, pp. 460–468.

[15] D. Deng, Z. Lu, W. Fang, and J. Wu, “CloudStreamMedia: A cloud as-
sistant global video on demand leasing scheme,” in Proc. IEEE Int. Conf.
Services Comput. , 2013, pp. 486–493.

[16] S.-H. G. Chan and Z. F. Xu, “LP-SR: Approaching optimal storage and
retrieval for video-on-demand,” IEEE Trans. Multimed., vol. 15, no. 8,
pp. 2125–2136, Dec. 2013.

[17] O. Ayoub, F. Musumeci, M. Tornatore, and A. Pattavina, “Energy-efficient
video-on-demand content caching and distribution in metro area net-
works,” IEEE Trans. Green Commun. Netw., vol. 3, no. 1, pp. 159–169,
Mar. 2019.

[18] Z. Hajiakhondi-Meybodi, J. Abouei, and A. H. F. Raouf, “Cache replace-
ment schemes based on adaptive time window for video on demand ser-
vices in femtocell networks,” IEEE Trans. Mobile Comput., vol. 18, no. 7,
pp. 1476–1487, Jul. 2019.

[19] Y. Zhang et al., “Geo-edge: Geographical resource allocation on edge
caches for video-on-demand streaming,” in Proc. 4th Int. Conf. Big Data
Comput. Commun., Aug. 2018, pp. 189–194.

[20] D. Apple gate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K. Ramakr-
ishnan, “Optimal content placement for a large scale VoD system,” in Proc.
ACM Co NEXT, Nov. 2010, Art. no. 4.

[21] S. Borst, V. Gupt, and A. Walid, “Distributed caching algorithms for con-
tent distribution networks,” in Proc. IEEE INFOCOM, 2010, pp. 1–9.

[22] H. Zhao, Q. Zheng, W. Zhang, B. Du, and H. Li, “A segment-based storage
and transcoding trade-off strategy for multi-version VoD systems in the
cloud,” IEEE Trans. Multimedia, vol. 19, no. 1, pp. 149–159, Jan. 2017.

[23] G. Gao, Y. Wen, W. Zhang, and H. Hu, “Cost-efficient and QoS-aware
content management in media cloud: Implementation and evaluation,” in
Proc. IEEE Int. Conf. Commun., 2015, pp. 6880–6886.

[24] L. De Cicco, S. Mascolo, and D. Calamita, “A resource allocation con-
troller for cloud-based adaptive video streaming,” in Proc. IEEE Int. Conf.
Commun. Workshops, 2013, pp. 723–727.

[25] C. X. Cai, G. Liang, and U. C. Kozat, “Load balancing and dynamic
scaling of cache storage against zipfian workloads,” in Proc. IEEE Int.
Conf. Commun., 2014, pp. 4208–4214.

[26] M. Fallah, M. G. Arani, and M. Maeen, “NASLA: Novel auto scaling ap-
proach based on learning automata for web application in cloud computing
environment,” Int. J. Comput. Appl., vol. 117, no. 2, pp. 18–23, 2015.

[27] L. De Cicco, S. Mascolo, and V. Palmisano, “QoE driven resource alloca-
tion for massive video distribution,” Ad Hoc Netw., vol. 89, pp. 170–176,
2019.

[28] J. Yang et al., “A cost-aware auto-scaling approach using the workload
prediction in service clouds,” Inf. Syst. Frontiers, vol. 16, no. 1, pp. 7–18,
Mar. 2014.

[29] W. Iqbal, A. Erradi, and A. Mahmood, “Dynamic workload patterns pre-
diction for proactive auto-scaling of web applications,” J. Netw. Comput.
Appl., vol. 124, pp. 94–107, 2018.

[30] F. Tseng, X. Wang, L. Chou, H. Chao, and V. C. M. Leung, “Dynamic
resource prediction and allocation for cloud data center using the multi-
objective genetic algorithm,” IEEE Syst. J., vol. 12, no. 2, pp. 1688–1699,
Jun. 2018.

[31] W. Liao, S. Kuai, and Y. Leau, “Auto-scaling strategy for amazon
web services in cloud computing,” in Proc. IEEE Int. Conf. Smart
City/SocialCom/SustainCom (SmartCity), Dec. 2015, pp. 1059–1064.

[32] C. Valliyammai and R. Mythreyi, “A dynamic resource allocation strategy
to minimize the operational cost in cloud,” in Emerging Technologies in
Data Mining and Information Security, A. Abraham, P. Dutta, J. K. Man-
dal, A. Bhattacharya, and S. Dutta, Eds. Berlin, Germany: Springer, 2019,
pp. 309–317.

[33] S. Mousavi, A. Mosavi, and A. R. Varkonyi-Koczy, “A load balancing
algorithm for resource allocation in cloud computing,” in Recent Advances
in Technology Research and Education, D. Luca, L. Sirghi, and C. Costin,
Eds. Berlin, Germany: Springer, 2018, pp. 289–296.

[34] J. Niño-Mora, “Resource allocation and routing in parallel multi-server
queues with abandonments for cloud profit maximization,” Comput. Op-
erations Res., vol. 103, pp. 221–236, 2019.

[35] H. Zhao, J. Wang, Q. Wang, and F. Liu, “Queue based and learning based
dynamic resources allocation for virtual streaming media server cluster of
multi version VoD system,” Multimedia Tools Appl., vol. 78, pp. 21827–
21852, Apr. 2019.

[36] J. Du, C. Jiang, Y. Qian, Z. Han, and Y. Ren, “Resource allocation with
video traffic prediction in cloud-based space systems,” IEEE Trans. Mul-
timedia, vol. 18, no. 5, pp. 820–830, May 2016.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 21,2021 at 02:03:27 UTC from IEEE Xplore.  Restrictions apply. 

http://aws.amazon.com


CHANG AND CHAN: AN APPROXIMATION ALGORITHM TO MAXIMIZE USER CAPACITY FOR AN AUTO-SCALING VOD SYSTEM 3725

[37] A. Alasaad, K. Shafiee, H. M. Behairy, and V. C. M. Leung, “Innovative
schemes for resource allocation in the cloud for media streaming applica-
tions,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 1021–1033,
Apr. 2015.

[38] K. T. Bagci and A. M. Tekalp, “Dynamic resource allocation by batch op-
timization for value-added video services over SDN,” IEEE Trans. Multi-
media, vol. 20, no. 11, pp. 3084–3096, Nov. 2018.

[39] Y. Li, J. Liu, B. Cao, and C. Wang, “Joint optimization of radio and
virtual machine resources with uncertain user demands in mobile cloud
computing,” IEEE Trans. Multimedia, vol. 20, no. 9, pp. 2427–2438,
Sep. 2018.

[40] A. Mohan, A. S. Kaseb, Y. Lu, and T. Hacker, “Adaptive resource
management for analyzing video streams from globally distributed net-
work cameras,” IEEE Trans. Cloud Comput., 2008, to be published,
doi:10.1109/TCC.2018.2836907.

[41] T. G. Crainic, G. Perboli, W. Rei, and R. Tadei, “Efficient lower bounds
and heuristics for the variable cost and size bin packing problem,” Comput.
Operations Res., vol. 38, no. 11, pp. 1474–1482, 2011.

[42] O. Anisfeld, E. Biton, R. Milshtein, M. Shifrin, and O. Gurewitz, “Scal-
ing of cloud resources-principal component analysis and random forest
approach,” in Proc. IEEE Int. Conf. Sci. Elect. Eng. Israel, Dec. 2018,
pp. 1–5.

[43] L. Chen, J. Lingys, K. Chen, and F. Liu, “AuTO: Scaling deep reinforce-
ment learning for datacenter-scale automatic traffic optimization,” in Proc.
Conf. ACM Special Interest Group Data Commun., 2018, pp. 191–205.

[44] Y. Feng, P. Zhou, J. Xu, S. Ji, and D. Wu, “Video big data retrieval over
media cloud: A context-aware online learning approach,” IEEE Trans.
Multimedia, vol. 21, no. 7, pp. 1762–1777, Jul. 2019.

[45] P. Yang et al., “Content popularity prediction towards location-aware mo-
bile edge caching,” IEEE Trans. Multimedia, vol. 21, no. 4, pp. 915–929,
Apr. 2019.

[46] Z. Cheng and D. Eppstein, “Linear-time algorithms for proportional ap-
portionment,” in Proc. Int. Symp. Algorithms Comput., 2014, pp. 581–592.

[47] F. Chen et al., “Migrating big video data to cloud: A peer assisted approach
for VoD,” Peer to Peer Netw. Appl., vol. 11, pp. 1060–1074, 2018.

[48] Y. Zhou, T. Z. J. Fu, and D. M. Chiu, “A unifying model and analysis of
P2P VoD replication and scheduling,” IEEE/ACM Trans. Netw., vol. 23,
no. 4, pp. 1163–1175, Aug. 2015.

Zhangyu Chang received the B.Sc. degree (Hons.) in
physics and computer science (double major) and the
M.Phil. degree in computer science and engineering,
in 2011 and 2015, respectively, from The Hong Kong
University of Science and Technology, Hong Kong,
where he is currently working toward the Ph.D. degree
with the Department of Computer Science and En-
gineering. His research interests include multimedia
networking, fog/edge computing, and video/location
data analytics.

S.-H. Gary Chan (Senior Member, IEEE) received
the B.S.E. degree (Hons.) in electrical engineering
from Princeton University, Princeton, NJ, USA, in
1993, with certificates in applied and computational
mathematics, engineering physics, and engineering
and management systems, and the MSE and Ph.D.
degrees in electrical engineering from Stanford Uni-
versity, Stanford, CA, USA, in 1994 and 1999, re-
spectively, with a minor in business administration.
He is currently a Professor with the Department
of Computer Science and Engineering, The Hong

Kong University of Science and Technology (HKUST), Hong Kong. He is
also Chair of the Committee on Entrepreneurship Education Program with
HKUST, and Board Director of Hong Kong Logistics and Supply Chain Mul-
tiTech R&D Center (LSCM). His research interests include smart sensing and
IoT, cloud and fog/edge computing, indoor positioning and mobile comput-
ing, video/location/user/data analytics, and IT entrepreneurship. Prof. Chan
has been an Associate Editor for the IEEE TRANSACTIONS ON MULTIMEDIA

(2006–2011), and a Vice-Chair of Peer-to-Peer Networking and Communi-
cations Technical Sub-Committee of IEEE Comsoc Emerging Technologies
Committee (2006–2013). He has been a Guest Editor of Elsevier Computer
Networks (2017), ACM Transactions on Multimedia Computing, Communica-
tions and Applications (2016), IEEE TRANSACTIONS ON MULTIMEDIA (2011),
IEEE Signal Processing Magazine (2011), IEEE Communication Magazine
(2007), and Springer Multimedia Tools and Applications (2007). He was the TPC
Chair of IEEE Consumer Communications and Networking Conference (IEEE
CCNC) 2010, Multimedia symposium of IEEE Globecom (2007 and 2006),
IEEE ICC (2007 and 2005), and Workshop on Advances in Peer-to-Peer Mul-
timedia Streaming in ACM Multimedia Conference (2005). He has co-founded
and transferred his research results to several startups. Due to their innovations
and commercial impacts, his startups and research projects have received local
and international awards (2012–2020). Notably, he received Hong Kong Chief
Executive’s Commendation for Community Service for “outstanding contribu-
tion to the fight against COVID-19” in 2020. He was the recipient of Google
Mobile 2014 Award (2010 and 2011) and Silver Award of Boeing Research
and Technology (2009). He was a visiting professor and researcher with Mi-
crosoft Research (2000–2011), Princeton University (2009), Stanford University
(2008–2009), and University of California at Davis (1998–1999). He was the
Director of Entrepreneurship Center (2016–2020), Undergraduate Programs Co-
ordinator with the Department of Computer Science and Engineering (2013–15),
Director of Sino Software Research Institute (2012–2015), Co-Director of Risk
Management and Business Intelligence program (2011–2013), and Director of
Computer Engineering Program (2006–2008) with HKUST. He was a William
and Leila Fellow with Stanford University (1993–1994), and the recipient of the
Charles Ira Young Memorial Tablet and Medal, and the POEM Newport Award
of Excellence at Princeton (1993). He is a member of honor societies Tau Beta
Pi, Sigma Xi and Phi Beta Kappa, and a Chartered Fellow of The Chartered
Institute of Logistics and Transport (FCILT).

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 21,2021 at 02:03:27 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


