
1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3152093, IEEE
Transactions on Multimedia

1

Bi-criteria Approximation for a Multi-origin
Multi-channel Auto-scaling Live Streaming Cloud

Zhangyu Chang and S.-H. Gary Chan, Senior Member, IEEE,

Abstract—Live video traffic has been widely observed to vary
significantly within short timescale. In order to manage such
traffic dynamic of overlay live streaming, the Content Provider
(CP) may deploy a set of geo-dispersed auto-scaling servers
where the pay-as-you-go deployment cost is charged by the
amount of resources used due to server uploading and data
transmission between servers. To support geo-distributed user
demands, we study a novel multi-origin multi-channel auto-
scaling live streaming cloud that pushes each channel stream
in the core network overlay as a tree covering the end servers
who have local demand for the channel. The Origin-to-End (O2E)
delay from an origin to an end server is due to the Server-to-
Server (S2S) delays of the overlay links along the path.

By optimizing the overlay of the core network, we seek to
minimize the deployment cost and O2E delays of the channels
(i.e., a bi-criteria problem), which can be equivalently phrased
as minimizing the deployment cost while meeting certain given
maximum O2E delay constraints. We formulate a realistic prob-
lem capturing the major cost and delay components, and show
its NP-hardness. We propose Cost-optimized Multi-Origin Multi-
Channel Overlay Streaming (COCOS), a novel, efficient and
near-optimal bi-criteria approximation algorithm with proven
approximation ratio. Trace-driven extensive experimental results
based on real-world live streaming service data validate that
COCOS outperforms other state-of-the-art schemes by a wide
margin (cutting the cost in general by more than 50%).

Index Terms—Auto-scaling, live streaming cloud, multiple
origins, multiple channels, bi-criteria approximation, overlay
optimization

I. INTRODUCTION

It has been estimated that video will account for 82% of
the global Internet traffic, and live video will reach 17% of
the Internet video traffic [1]. Meanwhile, it has been widely
observed that live streaming traffic varies significantly over a
day, by possibly more than an order of magnitude [2], [3]. We
consider the overlay distribution of live video channels for a
geo-distributed audience, whose network traffic has enormous
total volume and significant daily variation.

To cost-effectively respond to the live video traffic of such
volume and dynamic, the Content Provider (CP) can allocate
geo-dispersed auto-scaling servers (e.g., virtual machines or
instances) and overlay links between them on the fly. Com-
pared with the traditional infrastructure approach that statically
sets aside a certain number of geo-dispersed servers with
fixed streaming capacities which suffers from overprovisioning
and limited scalability, this auto-scaling system can hence
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elastically rescale the resources (e.g., Amazon EC2 [4] can
rescale the server capacity within minutes) with pay-as-you-go
cost model to reduce the deployment cost with high scalability.

For this novel live streaming cloud, the CP allocates geo-
dispersed auto-scaling servers on demand. To support geo-
distributed audience, each auto-scaling server streams the live
content to its associated local users.1 The active auto-scaling
servers form an overlay core network of the live streaming
cloud, relaying and streaming the live channels cooperatively.
(An auto-scaling server is inactive when it has no local user
demand.)

We study and optimize this core network of the multi-
origin and multi-channel live streaming cloud where live video
channels originate from some geo-distributed origin servers
and each end server demands a set of channels requested by
its local audience. (How to deliver the live channels from an
end server to its local audience is orthogonal to this work,
and we discuss the related work in Section II.) These origin
and end servers form this overlay core network to deliver all
the channels to meet the local demand of each end server.
To reduce overall delay, in the core network of this cloud, the
streams are pushed in streaming fashion from the origin server
to the end servers with local demand.

Without loss of generality, we assume that a channel can
only originate from one origin server (if a channel originates
from multiple origin servers, we can create a single virtual
super origin that directly connects to these origin servers
with zero-delay, zero-cost and infinite bandwidth virtual link).
The channels may have heterogeneous streaming rates. Each
channel stream is delivered in a push manner, and its path
forms a delivery tree, from the origin server as the root,
covering all the end servers with the demand for this channel.
Clearly, the aggregation of all delivery trees for all the channels
forms a mesh.

In Fig. 1, we illustrate the core network of an auto-scaling
live streaming cloud under our consideration. We consider the
overlay cloud as a complete graph of connectivity. Origin X
and Y originate channel 1 and 2, respectively. To serve their
local demand, Server E requests channels 1, Server D requests
channel 2, and Server A and C request both channel 1 and 2.
Note that we can activate (or deactivate) any end server, from
A to E, on demand. As Server B has no local demand, it is
inactive, and hence not to be paid for.

An end server receives a stream either from the origin server
directly, or from another end server who already has it. Server

1In this work, a server is a node that can relay streams and serve its local
user demand. In practice, it can be a CDN node, server farm, data center, etc.
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Fig. 1. A multi-origin multi-channel live streaming cloud.

A directly receives all the channels from the origin servers
while Server C receives Channel 1 from A but Channel 2
from Origin Y . Server D receives Channel 2 from C, and
Server E receives Channel 1 from Origin X .

The Origin-to-End (O2E) delay of a channel (i.e., the
delay from the origin server to an end server that demands
the channel) is an important Quality-of-Experience (QoE)
measure. It is the sum of the Server-to-Server (S2S) delays of
all the overlay links forming the stream path from the origin
to the end server. S2S delay is the time for a signal to travel
from one server to the next over the overlay, given by half of
the round-trip time (RTT).

The deployment cost of the cloud is the sum of server and
link costs. Server cost of a server depends on its uploading
bandwidth to the other servers. Link cost depends on the data
transmission through the overlay link between servers. Both
auto-scaling servers and overlay links are shared with all the
channels. Note that, as we mainly consider the optimization
of the core network, given the local user demand, the cost
for an end server to serve its local demand is an independent
problem rather than an optimization parameter of our problem,
and thus we do not include it in our model.

We seek to minimize deployment cost and O2E delays of
the core network of this cloud (i.e., it is a bi-criteria problem).
Without loss of generality, the problem is equivalently posed
as minimizing deployment cost subject to certain given max-
imum O2E delay constraints2 [5]. We refer to the decision
variables of this optimization as overlay construction of the
core network, which is the construction of the delivery tree of

2As a multi-criteria problem has multiple objectives, the optimum is given
as a set of solutions that follow Pareto optimality where no single objective
can be further better off without sacrificing the other objectives. Often we
optimize one objective and phrase the other objectives as constraints so that
they satisfy certain given bounds.

each channel, namely, to what servers and what streams an
auto-scaling server should forward.

As the system parameters (e.g., user demand, S2S delays,
server and link prices, etc.) may change over time, we have
to regularly re-optimize the overlay such that, within each
optimization period, the variations of these system parameters
are negligible. To achieve this, we have a central optimizer that
computes the overlay trees given the up-to-date parameters for
the upcoming time period.

To the best of our knowledge, this is the first piece of work
on bi-criteria optimization of streaming delay and deployment
cost of the core network of a multi-origin multi-channel
live streaming cloud with proven approximation ratio. Our
contributions are as follows:

• Bi-criteria problem formulation and complexity analysis:
We formulate a novel, comprehensive and realistic model
for this bi-criteria problem, which captures cost and delay
components. We formulate the Minimum Cost Streaming
with Delay Constraints (MCSDC) problem that constructs
multiple channel delivery trees to minimize the total
deployment cost while meeting the given QoE (O2E
delay) constraints. We prove that the problem is NP-hard.

• COCOS: A novel bi-criteria approximation algorithm:
We propose an efficient and implementable bi-criteria
approximation algorithm, termed Cost-optimized Multi-
Origin Multi-Channel Overlay Streaming (COCOS), for
an auto-scaling multi-origin multi-channel overlay live
streaming cloud. We demonstrate that COCOS achieves
low deployment cost with proven worst-case approxima-
tion ratio, strictly meets the QoE constraints, and has
polynomial time complexity.

• Extensive experimental results: We conduct extensive
trace-driven experimental studies based on real-world
user trace (from a leading Chinese video service provider)
and S2S delays from a real live streaming network. We
show that COCOS significantly reduces the deployment
cost and tightly meet the QoE constraints, cutting the
cost significantly as compared with the state of the arts
(in general by more than 50%).

This work is organized as follows. We first briefly review re-
lated work in Section II. We formulate the bi-criteria optimiza-
tion MCSDC problem of minimizing the total deployment cost
with the given delay constraints, and prove its NP-hardness in
Section III. We present the bi-criteria approximation algorithm
COCOS, and show its optimality in Section IV. We show
illustrative experimental results and comparisons with other
state-of-art schemes in Section V, and conclude in Section VI.

II. RELATED WORK

We briefly discuss related work in this section. We show the
major concerns of the related work and the comparison with
our work in Table I.

There has been much work on optimization of video-
on-demand (VoD) service over content distribution network
(CDN) or peer-to-peer (P2P) network with different objectives
and constraints. The work on CDN-based VoD in [6], [7]
mainly considers maximizing the hit ratio by optimizing the
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TABLE I
MAJOR CONCERNS OF THE RELATED WORK

Category Work Major concerns Comparison with our work
VoD (CDN) [6], [7] Maximize the hit ratio Different network architecture and objectivesVoD (P2P) [8]–[10] Minimize the channel switching delay
Data Center [11]–[14] Optimize the internal operation Orthogonal work: Focusing on different part of

Crowdsourced streaming [15]–[18] Deliver content from end server to users the network

Overlay live streaming

[19]–[21] Minimize inter-ISP traffic
[22]–[25] Minimize deployment cost
[26]–[29] Minimize O2E delay Our work is bi-criteria optimization that considers
[30]–[34] Minimize overall delay both deployment cost and O2E delay together
[35], [36] Reduce channel switching delay
[37]–[41] Reduce the server load

Measurement study [3], [42], [43] Draw the overall picture of a live cloud Our work aims at optimizing the system
Streaming multicasting [44]–[47] Create minimum cost topology Our work considers O2E delay besides cost

caching strategies. By contrast, we consider a live streaming
network where the contents are not cached and the origin
pushes the contents to all users in real time. The work on P2P-
based VoD [8]–[10] mainly considers minimizing the channel
switching delay, or minimizing the server load by effectively
using the resource from peers. In such VoD network, the O2E
delay is not a major QoE concern due to the VoD contents.

Work on auto-scaling servers [11]–[14] mainly focuses on
the internal operation within a data center instead of the live
streaming network as a whole. Recent work on crowdsourced
live streaming [15]–[18] focuses on how to effectively deliver
live contents from a CDN server (i.e., an end server) to its
local audience while our work deals with how to form a core
network overlay that timely and cost-effectively deliver the
streams from the origin servers to the end servers. Though the
advancement in such fields is beneficial to our live streaming
cloud, these schemes are orthogonal to our problem of opti-
mizing the core network overlay of a live streaming cloud.

While cost and delay optimization of overlay live streaming
has been studied, most of the work only focuses on one of
the objectives. Some works [22]–[25] seek to minimize total
cost while others [26]–[29] focuses on minimizing O2E delay.
We cannot directly extend these schemes to our bi-criteria
optimization of the core network as applying them without
considering the tradeoff between delay and cost would lead to
either excessive overprovisioning of resource or unsatisfactory
O2E delay.

Work on multi-origin multi-channel overlay design has
considered various different objectives from ours, such as
minimizing inter-ISP traffic [19]–[21], minimizing the overall
delay [30]–[34], reducing channel switching delay [35], [36],
or maximize the number of delivered channels while reducing
the server load [37]–[41]. The multi-origin multi-channel auto-
scaling live overlay network we formulate here is novel, with
a general and realistic cost and delay model. To the best of
our knowledge, our work is the first to consider both O2E
delay and deployment cost of the core network of such live
streaming cloud. Previous work even does not consider single-
channel version of this optimization problem.

The measurement studies in [3], [42], [43] indicates that it
is challenging to guarantee QoE for live contents for multi-
origin multi-channel live streaming network, though they have
not given a solution. Some work on streaming multicasting

[44]–[47] aims at creating a minimum cost multicast topology
on multiple streams, but they have not considered the O2E
delay. Meanwhile, the scheme in [45] assumes a homogeneous
bandwidth pricing schemes across all geographical locations,
which only applies to the network with fixed unit price of
data transmission from server to server. By contrast, the
model we consider is general, realistic and comprehensive,
capturing the cost of auto-scaling servers and link capacities
with heterogeneous pricing. To address QoE, we also consider
the major components of O2E delay as a bi-criteria problem,
and propose a bi-criteria approximation algorithm with proven
approximation ratio.

III. BI-CRITERIA PROBLEM FORMULATION AND ITS
NP-HARDNESS

Our bi-criteria problem is to minimize deployment cost and
O2E delays, which is equivalently posed as minimum cost
streaming with given delay constraints. In this section, we first
present the formulation of bi-criteria problem in Section III-A,
followed by proving its NP-hardness in Section III-B. We show
the major symbols used in this section in Table II.

A. Cost Minimization with Delay Constraints

We model the live streaming cloud overlay as a directed
complete graph G = (V,E), where V is the set of vertices
corresponding to both origin and end servers. (If we cannot
set up an overlay link between 2 servers, we can set the
corresponding link price to a very large value so that any
practical solution will not use this link.) Let S be the set
of origin servers and R be the set of end servers, where
V = S ∪ R. Without loss of generality, we consider that the
origin servers have no local users, i.e., S ∩R = ∅ (If not, we
may split the server into two parts, one being the origin server
with all the channels and the other being the end servers with
all the local users. The two parts are then connected by a link
of zero cost, zero delay and infinite bandwidth). We denote
〈i, j〉 as the directed overlay link from server i to j, and let
E ⊆ V × V be the set of overlay links between servers (i.e.,
〈i, j〉 ∈ E).

Let M be the set of channels and s(m) ∈ S be the origin
server of channel m ∈M and τ(m) be the streaming rate of
channel m. We denote R(m) as the set of end servers that
demand channel m. Each channel m ∈ M is delivered to all
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TABLE II
MAJOR SYMBOLS USED IN THE FORMULATION

Notation Definition
S The set of origin servers
R The set of end servers
V The set of both origin and end servers (V = S ∪R)
〈i, j〉 The directed overlay link from server i to j
E The set of all overlay links
M The set of all channels
R(m) The set of end servers that demand channel m
Mi The set of channels that end server i demands
τ(m) Streaming rate of channel m (bit/s)
s(m) Origin server of channel m
ui Uploading rate at server i (bit/s)
bij Transmission rate through link 〈i, j〉 (bit/s)
T (m) The delivery tree of channel m
xij(m) Binary variable indicating whether link 〈i, j〉 is in T (m)
Lij Server-to-Server (S2S) delay of link 〈i, j〉 (in second)
Di(m) Origin-to-End (O2E) delay of channel m at server i (in

second)
Di(m) O2E delay upper bound of channel m at server i (in second)
Θi Server cost of server i (per second)
θi Unit price of uploading streaming at server i (per bit)
Φij Link cost due to traffic through link 〈i, j〉 (per second)
φij Unit price of data transmission through link 〈i, j〉 (per bit)
C Total deployment cost (per second)

servers in R(m) through a delivery tree T (m), and hence we
have a total of |M | delivery trees. Note that in this delivery
tree T (m), the origin server s(m) is the root and all the other
end servers form the set R(m).

Let xij(m) be a binary variable indicating whether link
〈i, j〉 is used in the delivery tree T (m), so we have

xij(m) =

{
1, if 〈i, j〉 ∈ T (m);

0, otherwise .
(1)

As every end server i ∈ R(m) needs to get channel m, we
have ∑

〈i,j〉∈E

xij(m) ≥ 1, ∀j ∈ R(m),m ∈M. (2)

To mathematically specify that T (m) is a tree structure, we
have to ensure that T (m) has |R(m)| edges, i.e.,∑

〈i,j〉∈E

xij(m) = |R(m)|, ∀m ∈M, (3)

and T (m) has no cycle, which can be equivalently expressed
as that, for any subset of the vertices of T (m) denoted as T ′,
we must have at most |T ′| − 1 edges in this subset, namely,∑
i,j∈T ′,〈i,j〉∈E

xij(m) ≤ |T ′| − 1, ∀T ′ ⊆ T (m),m ∈M. (4)

For each link 〈i, j〉 ∈ E, the transmission rate bij through
the link is given as

bij =
∑
m∈M

xij(m)τ(m), ∀ 〈i, j〉 ∈ E, (5)

and the uploading rate ui at server i ∈ V to serve other end
servers is therefore given as

ui =
∑
〈i,j〉∈E

bij , ∀i ∈ V. (6)

We denote the server-to-server (S2S) delay of link 〈i, j〉 as
Lij and the origin-to-end (O2E) delay of server j in tree T (m)
as Dj(m), which is equal to the delay of its direct parent i in
tree T (m) plus the S2S delay of link 〈i, j〉, i.e.,

Dj(m) = Di(m) + Lij , if 〈i, j〉 ∈ T (m). (7)

By definition, the O2E delay is 0 for the origin server of each
channel (i.e., Di(m) = 0,∀i = s(m),m ∈M ).

To guarantee the QoE, we have to ensure that, for an end
server i that demands channel m, the O2E delay Di(m) is
bounded by a given parameter termed as O2E delay upper
bound Di(m), i.e., we must have

Di(m) ≤ Di(m), ∀i ∈ R(m),m ∈M. (8)

The deployment cost consists of server and link cost. We
adopt a general linear cost model, which is widely used in
practice (e.g., a very popular 95th-percentile pricing scheme
[48] is a special case of linear cost). Let Θi be the server cost
of server i, and θi be its unit price of uploading streaming. Θi

is charged by the server uploading rate ui of server i, i.e.,

Θi = θiui, ∀i ∈ V. (9)

Let Φij be the link cost of link 〈i, j〉, and φij be its unit price
of data transmission. Φij depends on the transmission rate bij
of link 〈i, j〉, i.e.,

Φij = φijbij , ∀ 〈i, j〉 ∈ E. (10)

Note that Θi = 0 indicates that server i is not in use, and
similarly Φij = 0 indicates that link 〈i, j〉 is not in use.

The total deployment cost C is the sum of server cost and
link cost, given by

C =
∑
i∈V

Θi +
∑
〈i,j〉∈E

Φij . (11)

We state our cost optimization problem of Minimum Cost
Streaming with Delay Constraints (MCSDC) as follows: given
overlay topology G, origin server {s(m)}, end server set
{R(m)}, S2S delay {Lij}, unit price of server uploading
streaming {θi} and link data transmission {φij}, and O2E
delay upper bounds {Di(m)}, we seek to find the overlay
construction {xij(m)} for streams of all channels m ∈M to
minimize the total deployment cost C subject to constraints
from (2) to (10).

B. The NP-Hardness of MCSDC Problem

MCSDC is NP-hard since the NP-hard Shallow-Light Span-
ning Tree (SLST) Problem [49] is reducible to our MCSDC
problem.

We state the SLST problem as follows. In a directed graph
G(V,E), each link 〈i, j〉 ∈ E has an associated positive cost
Φij and a positive delay Lij . Let s ∈ V be the origin vertex,
and for the other vertices v ∈ V we associate each vertex with
a given delay upper bound Dv . SLST is to find the spanning
tree from s as the root in G with minimum total cost such
that the delay measured from origin vertex s to any vertex v
along this spanning tree is no greater than Dv .
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TABLE III
MAJOR SYMBOLS USED IN COCOS ALGORITHM

Notation Definition
α+ δ COCOS approximation ratio of the deployment cost
β COCOS approximation ratio of the O2E delay
k Number of substreams for a channel
CSO Deployment cost of LP super optimum solution (per second)
CEO Deployment cost of exact optimum solution (per second)
CID Deployment cost of COCOS given k → ∞ (per second)
CCC Deployment cost of COCOS (per second)
zij(m) Fractional stream of channel m through link 〈i, j〉
f lij(m) Flow fraction of channel m to server l through link 〈i, j〉
ui(m) Uploading rate of channel m at server i in LP (bit/s)
bij(m) Transmission rate of channel m through link 〈i, j〉 in LP

(bit/s)
C(m) Deployment cost due to channel m in LP (per second)
k Number of substreams for a channel
Ψ(m) The set of substreams of channel m
Γ(ψ) The delivery tree of substream ψ
nij(m) Number substreams allowed on link 〈i, j〉 for channel m

It is straightforward to see that SLST problem is a spe-
cial case of MCSDC problem with only one origin server
corresponding to one channel and all the other end servers
demanding this channel. Meanwhile, the server cost in the
graph is omitted, and we only consider the S2S delay and link
cost. Hence, it is clear that SLST is polynomial-time reducible
to MCSDC.

IV. COCOS: A BI-CRITERIA APPROXIMATION
ALGORITHM FOR AN AUTO-SCALING LIVE CLOUD

In this section, we present a bi-criteria approximation al-
gorithm termed Cost-optimized Multi-Origin Multi-Channel
Overlay Streaming (COCOS). We first present the overall
idea and basic concepts of bi-criteria approximation in Sec-
tion IV-A, and reformulate the original MCSDC problem
as a Linear Programming (LP) problem in Section IV-B.
Then, in Section IV-C, we present the COCOS algorithm to
construct low-cost and QoE-assured delivery trees for each
channel based on the LP solution. We analyze the algorithmic
complexity and prove the approximation ratio of COCOS
in Section IV-D. We show the major symbols used in this
section in Table III.

A. Preliminaries for Bi-criteria Approximation

1) Optimal Solution: We first discuss the optimal solution
of the MCSDC problem. As we have shown in Section III-B
that the original MCSDC problem is NP-hard, it is very unlike-
ly to find the exact optimal solution efficiently in both theory
and practice. In Section IV-B, we reformulate the original
MCSDC problem as an efficiently solvable LP problem by
relaxing some constraints so we can treat each channel as an
infinitesimally divisible stream (i.e., we can split a channel
stream into an arbitrary number of fractional streams). We
denote the optimal solutions of the MCSDC problem and the
LP problem as the exact optimum and the super optimum,
and their corresponding deployment cost as CEO and CSO,
respectively. A feasible (but not necessarily optimal) solution
of the original MCSDC problem must be a feasible solution
of the LP problem, and thus the deployment cost of the

exact optimum cannot be better than the super optimum (i.e.,
CSO ≤ CEO). Note that, as we cannot get the exact optimum,
we only compare COCOS with the super optimum. If we can
give an approximation ratio with respect to the super optimum,
this ratio must also hold for the exact optimum.

2) Approximation Ratio: We then briefly introduce the
approximation ratio of this bi-criteria problem. As the bi-
criteria problem of MCSDC considers both the deployment
cost and the O2E delay, to address the optimality of COCOS
as an approximation algorithm, we have to show that the
difference between the solution given by COCOS and the
super/exact optimum is bounded by a specific ratio in terms
of both cost and delay. With the deployment cost given by
COCOS as CCC, we denote the approximation ratio of the
deployment cost as α + δ and that of the O2E delay as β,
which means that CCC ≤ αCEO and the delay at each end
server for channel m is at most β times the optimum solution.

Specifically, COCOS achieves α = 1 + ε and β = 1 +
1/ε where ε, as a positive real number, is given as a tunable
parameter that allows tradeoff between the optimality of cost
and delay, and the positive real number δ is also a tunable
parameter that allows tradeoff between cost and algorithmic
time complexity, which can be arbitrarily close to 0 at the
expense of computation time. Note that by cancelling ε in the
equations, we have 1/α + 1/β = 1. We evaluate the impact
of ε through experiments in Section V-B.

3) Approximation Solution: We outline the overall structure
of the algorithm of COCOS that constructs the core network
overlay from the LP solution. When computing the LP solution
(i.e., the super optimum), we first let the delay constraints in
LP formulation be 1/β of the given delay upper bound Di(m)
such that, even with the O2E delay approximation ratio β,
COCOS can still meet the delay constraints given in (8) of
the original MCSDC problem formulation in Section III-A.
To efficiently approximate the LP solution, we then construct
a k-substream solution as an intermediate step such that we
evenly divide a channel stream into k substreams, and the
substream solution approaches the super optimum with the
cost approximation ratio α as k goes to infinity (k →∞). We
call this the COCOS-ID solution as it would be the solution
of COCOS if we allow all the streams to be infinitesimally
divisible, and we denote the corresponding deployment cost as
CID. For a finite k, we can get k candidate substream delivery
trees, and we choose the topology of the substream tree with
the lowest cost as the final solution of COCOS.

We give an example of substream solution in Fig. 2. Unlike
the original system in Fig. 1, here both Channel 1 and 2 have 2
substreams. (We have no upper limit for number of substreams,
and here we choose k = 2 substreams only for simplicity.)
Each channel is evenly divided into 2 substreams, and every
end server that demands this channel shall get both substreams.

4) Theoretical Proof: We finally outline the proof of the
approximation ratio. To prove the cost approximation ratio of
COCOS, we show that CID ≤ αCSO (thus CID ≤ αCEO). In
Section IV-D, we further prove that the gap between CID and
CCC can be arbitrarily close to 0 (i.e., δ → 0) as k increases,
which finally shows the deployment cost approximation ratio
α + δ. Note that our theoretical approximation ratio gives
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Fig. 2. An example of substream solution for k = 2.

the performance guarantee in the worst-case scenario, which
rarely happens in practice. In Section V-B, we show that, under
practical setting, COCOS gives near-optimal solution through
trace-driven experiments based on real-world data.

B. Relaxing MCSDC Problem to an LP Formulation

The solution of the LP formulation serves as the super opti-
mum and the basis of constructing the approximation solution
in COCOS. Instead of considering the deployment cost C as
a whole, we can decompose the original multi-origin multi-
channel problem, and optimize each channel separately and
independently. Specifically, we denote ui(m) as the uploading
rate of channel m at server i, bij(m) as the transmission rate
of channel m through link 〈i, j〉, and C(m) as the deployment
cost due to channel m.

Furthermore, instead of considering the channel stream as a
whole in the LP formulation, we treat it as an infinitesimally
divisible stream. By relaxing (1), we use a continuous variable
zij(m) to replace the binary variables xij(m) for m ∈ M .
Specifically, we let zij(m) be the fraction of the stream of
channel m that transmitting through link 〈i, j〉, and we have
0 ≤ zij(m) ≤ 1 by definition. Hence,

bij(m) = zij(m)τ(m), ∀ 〈i, j〉 ∈ E,m ∈M. (12)

Accordingly, we also have

ui(m) =
∑
〈i,j〉∈E

bij(m), ∀i ∈ V,m ∈M, (13)

and the deployment cost due to channel m is given as,

C(m) =
∑
i∈V

θiui(m) +
∑
〈i,j〉∈E

φijbij(m), ∀m ∈M. (14)

We further replace the constraints in (2) by using the prop-
erty of flow conservation. We denote f lij(m) as the fraction of

conceptual stream flow of channel m from the origin server
s(m) to a destination end server l ∈ R(m) via link 〈i, j〉. By
considering the flows that go out of and come into the server
j, we have

∑
〈j,k〉∈E

f ljk(m)−
∑
〈i,j〉∈E

f lij(m) =


1, if j = s(m);

−1, if j = l;

0, otherwise.
(15)

In other words, we only have outgoing flow for the origin
server s(m), and only have incoming flow for the destination
end server l. For the other servers, the incoming flow shall be
equal to the outgoing flow. As f lij(m) only consider the flow
to end server l, for the transmission rate of channel m on link
〈i, j〉, we have

0 ≤ f lij(m) ≤ zij(m) ≤ 1, ∀l ∈ R(m), 〈i, j〉 ∈ E. (16)

Instead of letting every fractional flow satisfy the delay
upper bound, we relax (8) such that we only let the average
delay of all flows satisfy the delay upper bound where we can
write the average delay for fractional stream as

∑
f lij(m)Lij .

Meanwhile, we let the delay upper bound be Dl(m)/β so that
COCOS can still satisfy the delay upper bound Dl(m) given
in (8) even with the delay approximation ratio β. So we have∑
〈i,j〉∈E

f lij(m)Lij ≤
1

β
Dl(m), ∀l ∈ R(m),m ∈M. (17)

Note that a very large β or a too small Dl(m) may let the
whole problem have no feasible solution. Thus, we have to
set an appropriate Dl(m) to avoid such situation.

It is straightforward that CSO =
∑

m∈M C(m). Hence, to
minimize CSO, we just need to optimize the LP formulation
for each channel m independently whose objective is mini-
mizing C(m) given the constraints (12) to (17).

C. Overlay Construction from LP Solution

To efficiently approximate the LP solution, we first con-
struct a substream solution where we split each channel evenly
into k substreams, and thus each substream has a streaming
rate of τ(m)/k. With more substreams, we can make the cost
approximation ratio of the substream solution closer to α.
Especially, when k goes to infinity, our substream solution
is infinitesimally divisible, and thus the approximation ratio is
α (i.e., δ → 0).

To construct the overlay topology for finite numbers of
substreams k, we first compute how many substreams can be
allocated in each link. As our proposed cost approximation
ratio for CID is α, for channel m on link 〈i, j〉, the trans-
mission rate is therefore given as αbij(m), and the uploading
rate at server i is given as αui(m). Denoting the number of
substreams of channel m on link 〈i, j〉 as nij(m), we further
round up bij a little bit so that we have integral number of
substreams, and thus we have

nij(m) = dαkbij(m)/τ(m)e. (18)

Given nij(m), we start to construct k delivery trees for
channel m. We denote the set of substreams of channel m
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as Ψ(m), and delivery trees of the substream ψ ∈ Ψ(m) as
Γ(ψ). To construct one tree, we set the origin server s(m) as
the root, and use Dijkstra’s algorithm to include all the end
servers in R(m) such that, in this substream delivery tree,
each end server achieves the minimum delay with the links
who have nij(m) > 0.

After constructing a substream delivery tree, if we have used
link 〈i, j〉, we deduct nij(m) by 1. We repeat the Dijkstra’s
algorithm until we have all the k substream delivery trees. Note
that this algorithm is extended from the greedy arborescence
packing algorithm introduced in [50], which also gives the
proof that our algorithm can correctly generate k trees. We
give the pseudocode of the whole process of constructing all
k delivery trees in Algorithm 1.

Algorithm 1: Substream Delivery Trees

1 foreach ψ ∈ Ψ(m) do
2 source ← s(m)
3 nodes ← R(m)
4 links ← {〈i, j〉 |nij(m) > 0, 〈i, j〉 ∈ E}
5 Γ(ψ) = Dijkstra(source, nodes, links)
6 foreach 〈i, j〉 ∈ E do
7 if 〈i, j〉 ∈ Γ(ψ) then
8 nij(m)− = 1
9 end

10 end
11 end

Given these k substream delivery trees for channel m, we
choose the substream ψ ∈ Ψ(m) whose delivery tree Γ(ψ) has
the minimum cost, and deliver the whole channel through this
tree (i.e., we let T (m) = Γ(ψ)). As this tree has minimum
cost among the substreams, the final single stream solution of
COCOS is no worse than the substream solution.

Note that it is very likely that this algorithm would first
generate substream delivery trees with very high cost despite
of low delay. Therefore, to find a good approximation solution
for this bi-criteria optimization problem with balanced cost and
delay, we have to generate enough trees as candidates.

D. Algorithmic Complexity and Approximation Ratio

For the algorithmic complexity of solving the LP problem,
it has been proven that this method has O(N3) overall time
complexity, where N is the number of variables in the linear
program [51]. As there are |V |3 variables in the linear program
for each channel, the time complexity of LP is O(|V |9) for
one channel, and O(|V |9|M |) for the whole problem.

In the overlay topology construction step, the major part of
algorithmic time complexity is to compute all the substream
delivery trees, which runs in O(|E| + |V | log(|V |) time for
the Dijkstra’s algorithm to generate a substream delivery tree.
As we are considering a complete graph where O(|E|) =
O(|V |2), and we have k|M | substreams in total for all the
channels, COCOS runs in O(|V |9|M | + k|V |2|M |) time in
total. With a moderate number of k, the predominant term is
O(|V |9|M |).

For a typical large-scale real-world system (e.g., the system
under study in our trace-driven experiments in Section V), it
takes less than a minute to run the algorithm on a normal
desktop PC. The frequency to execute the algorithm depends
on the time scale of the system parameters. Normally, as the
parameters vary very little within an hour, the time scale is in
the order of an hour.

To prove the the delay approximation ratio β, we first
show that COCOS can generate k substream trees that satisfy
the O2E delay constraint in (8). In the LP formulation, we
require that the average delay of channel m at end server i is
bounded Di(m)/β. By considering the Markov’s inequality,
at least 1/α = 1 − 1/β of the fractional stream must satisfy
the delay bound Di(m). Therefore, as COCOS allocates the
resource that can accommodate dαke substreams, at least we
have k substreams whose delay are bounded by Di(m). Note
that, because the Markov’s inequality describes the worst case,
usually more than 1/α fraction of flow is bounded by Dl(m).

For the cost approximation ratio α+δ, we prove it in 2 steps.
We first show that CID ≤ αCEO. It is because that, in COCOS-
ID, we directly let all the flow fraction parameter f lij(m) be
α times of the original value given by the super optimum so
that each end server can get enough fraction of the stream
that satisfies the O2E delay constraint in (8). Consequently,
ui and bij are at most α times of the super optimum (i.e.,
ui = α

∑
m∈M ui(m) and bij = α

∑
m∈M bij(m)), and the

deployment cost CID is at most αCSO. As CSO ≤ CEO, it is
clear that CID ≤ αCEO.

We finally show that δ → 0 as we increase k to infinity. In
fact, the gap between COCOS and COCOS-ID is due to that
we have to round up the link and server resources to ensure
that an integral number of substreams in a link or a server. As
the resource to round up is at most for one substream whose
bitrate is τ(m)/k, with a greater k, each substream requests
less resource, and when k goes to infinity, the substream bitrate
τ(m)/k goes to 0. In Section V, we show that, with a moderate
number of k (e.g., k = 10), the gap between CCC and CID is
negligible, and COCOS achieves near-optimal performance.

V. DATA-DRIVEN EXPERIMENTAL RESULTS

In this section, we first present our trace-driven experimental
environment and performance metrics in Section V-A. Then
we discuss the illustrative results based on real-world video
service data in Section V-B.

A. Experimental Setup and Performance Metrics

We have implemented our experiments based on real-world
network topology and user traces to study our algorithm.
The experiments are carried out on a real Internet topology
provided by CAIDA. The round trip times (RTTs) between
inter-connected routers are also given in the topology. In
underlay routing, we use distance-vector to compute the S2S
delay between any two servers in the network. To generate
the experimental environment, origins and end servers are
randomly attached to the router nodes in this live streaming
network. From Fig. 5 to 10, the regional demand of channels
is based on real-word data trace from a leading video service
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website in China over 2 weeks. We give the average user
number over a typical day in Fig. 3 and the access probability
of the channels in Fig. 4. We re-optimize the system every
hour, and take the average of the deployment cost in each
hour as the result.

As COCOS is applicable to any channel popularity distri-
bution and network environment, to further validate COCOS’s
performance, we also use synthetic data for the regional
demand in our experiments from Fig. 11 to 15 where the
channel popularity follows the Zipf’s distribution. With Zipf’s
parameter z, the mth popular channel has the demanded server
number R(m) ∝ 1/mz . Channels are randomly assigned to
the servers. A greater Zipf’s parameter indicates that a popular
channel has more servers demanding it and an unpopular
channel has fewer servers demanding it.

We show the baseline parameters in Table IV. Unless
otherwise stated, we use the following parameters in our
experiments: number of origin and end servers |V | = 100,
number of channels |M | = 60, and delay upper bound
D = 800ms. The streaming rates of the channels have a
mean of 1.2 Mbps and a standard deviation of 0.2 Mbps.
The prices of link data transmission have a mean of 0.1 per
Mbit and a standard deviation of 0.05 per Mbit. The prices of
server uploading streaming have a mean of 0.1 per Mbit and

TABLE IV
BASELINE PARAMETERS USED IN OUR STUDY.

Parameter Value
Server number (origin and end) |V | 100
Number of channels |M | 60
Delay upper bound D 800 ms
Streaming rate mean µτ 1.2 Mbps
Streaming rate standard deviation στ 0.2 Mbps
Server price mean µθ 0.1 per Mbit
Server price standard deviation σθ 0.05 per Mbit
Link price mean µφ 0.1 per Mbit
Link price standard deviation σφ 0.05 per Mbit
Zipf’s parameter z 0.5
Tradeoff parameter ε 5
Number of substreams k 10

a standard deviation of 0.05 per Mbit.
As mentioned in Section II, previous work seldom considers

the bi-criteria problem of minimizing deployment cost and
O2E delays. To capture all the important components, we
extend some of the traditional and state-of-the-art work as
comparison schemes.

• Nearest Peer [28], [32]: which is an overlay construction
algorithm used in many state-of-the-art work, whose
objective is to minimize the local streaming latency. With
minor modification, we can easily adapt this algorithm
into our network setting. A server gets its demanding
channels from the origin or another end server so that its
peer-to-peer delay is minimized.

• Prim: which is a well-known optimization algorithm for
minimum cost delivery tree construction. However, it
does not consider the delay constraints. To address this,
after the construction of the deliver tree through Prim,
if an end server violates the delay constraint, it gets the
stream from another server so that it can meet the delay
constraint with minimum cost.

• Super optimum: which serves as the theoretical perfor-
mance bound (i.e., no scheme performs better than super
optimum). The super optimum in this work is the optimal
solution of the LP formulation from Section IV-B.

We evaluate the performance of our proposed algorithm
and the comparison schemes mainly by several delay and cost
metrics:

• Deployment cost, which is the sum of server cost and link
cost according to (11). This is the deployment cost of the
whole live streaming cloud.

• Cost component, which consists of server cost and link
cost. We are also interested in each cost component as
they reflect how the optimization works.

• Delay Constraint, which is the maximum O2E delay
allowed in this system.

B. Illustrative Experimental Results

We compare in Fig. 5 the total deployment cost versus
the approximation ratio tradeoff parameter ε. A smaller ε
indicates a smaller cost approximation ratio α but a greater
delay approximation ratio parameter β. With small ε, though
we have a small α, the delay upper bound for super optimum
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is tighter and leads to a much greater CSO. With great ε, a
great α causes the cost of COCOS to increase though we have
a small CSO. Therefore, both a too small and a too great ε
can impede the optimality of COCOS. The deployment cost of
COCOS is closer to the super optimum rather than the upper
bound given by the approximation ratio (i.e., CCC is closer
to CSO rather than αCSO), which shows that it is more likely
that COCOS achieves near-optimal performance in practice.

We compare in Fig. 6 the total deployment cost versus the
O2E delay upper bound for different number of substreams
k. As k increases, the deployment cost approaches CID given
by COCOS-ID (i.e., k → ∞). With humble value of k (say
k = 10), the performance is already very close to CID. This
shows that with reasonable computation time, COCOS can
achieve near-optimal performance.

We compare in Fig. 7 the total deployment cost versus
the O2E delay upper bound for different schemes. Total cost
increases with a tighter delay constraint. COCOS clearly
achieves the lowest deployment cost as the gap between
COCOS and other schemes is usually beyond 100 percent.
When the delay constraint is relaxed to some extent (e.g.
> 1000ms), the cost of all the schemes remains steady as
the delay constraint can be easily satisfied with an arbitrary
overlay topology. However, in this case, the deployment cost
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of COCOS is still significantly lower than the comparison
schemes. The deployment cost of Prim decreases with a loose
delay constraint as more cheap links can be used at the cost
of S2S delay. For Nearest Peer, as S2S delay weighs more in
its delay components, its deployment cost is not sensitive to
the change of delay constraint.

We show in Fig. 8 the components of deployment cost
versus delay upper bound for COCOS. Server cost remains
steady as the delay constrain changes, but the link cost first
decreases with a larger delay constraint, and then keeps steady
after the delay constraint exceeds a certain extent. This trend of
cost component shows that a higher QoE constraint demands
mainly on links with small S2S delay despite the cost.

We compare in Fig. 9 the deployment cost versus average
link price given different schemes. The deployment cost for
all the schemes increase with the increasing of the link price,
but the increasing trends of the deployment cost of COCOS
and Prim are not that steep when the price is too high or too
low. Such trend shows the effect of the tradeoff between cost
and delay. When the link price is higher, the overlay topology
tends to use cheap link. On the other hand, when the link
price is low, the price difference between links is also small.
Note that with a higher link price, the gap of deployment
cost between COCOS and other comparison schemes become
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larger, which shows that COCOS has a stronger capability of
finding and using cheap resource. The cost of Nearest Peer
increases sharply as it has a rigid topology construction step
and cannot effectively use cheap resource. On the other hand,
Prim has a more flexible topology construction method and is
able to find some cheap resource.

We show in Fig. 10 the components of deployment cost
versus average link price for COCOS. The server cost remains
nearly unchanged as the link price increases, but the link cost
increases, which contributes most of the increase of the total
deployment cost. As the server number and the number of
demanded channels at each server do not change, the workload
to deliver live content keeps same. Therefore, the demand of
server uploading remains almost steady.

We show in Fig. 11 the deployment cost versus the number
of servers given different schemes. The deployment costs for
COCOS and Prim increase moderately with the increasing of
the number of servers, but the cost increment of Nearest Peer
is sharper with a larger server number. With more servers and
more total demands for channels, we need more links to cover
all the demands and deliver the live contents. Cost of Nearest
Peer increases more sharply compared with other 2 schemes
because it always tries to deliver content to its nearest peers
despite the cost. With more servers, its overlay topology will
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Fig. 11. Deployment cost versus number of servers given different schemes.
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Fig. 12. Deployment cost versus number of channels given different schemes.

be unnecessarily expensive.
We plot in Fig. 12 the deployment cost versus the number

of channels. The deployment cost increases as the channel
number increases for all schemes. The number of demand-
ed channels for each server increases with the rise of the
number of channels. COCOS enjoys lower deployment cost
because it comprehensively considers the cost components and
delay constraints by balancing between them, and constructing
connectivity with low cost through server collaboration. On
the other hand, with more channel number, Nearest Peer will
blindly deliver channels to its neighbor peers in some scenario.
Some unpopular channels cause extra cost and can be delivered
more efficiently with some longer and direct links with less
hops.

We show in Fig. 13 the deployment cost versus average
streaming bitrate given different schemes. The deployment
cost for all the schemes increase with the increasing of the
average streaming rate. Obviously, with higher streaming rate,
more resource is used in links and servers. With the link price
fixed, this increment of streaming rate has little impact on
the topology. Therefore, the deployment cost increases almost
linearly with the streaming bitrate.

We plot in Fig. 14 the deployment cost versus average
number of demanded channels per each server given different
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schemes.
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server given different schemes.

schemes to validate COCOS under different levels of traffic.
The deployment cost for all the schemes increase with the
increasing of demanded channel number for each server given
different schemes. More demanded channel on a server will
not change too much on the topology but will ask for more
resource to ensure the QoE. Therefore, more deployment cost
is required.

We show in Fig. 15 the deployment cost versus the Zipf’s
parameter given different schemes. The deployment cost for
all the schemes decreases with the increasing of the Zipf’s
parameter. With a higher Zipf’s parameter, the number of
servers that demands cold channels is decreased. As the
increment of deployment cost for popular channels is limited
(at most all servers demand it), the decreasing of cold channel
demand will decrease the total deployment cost.

VI. CONCLUSION

Auto-scaling cloud computing can elastically rescale system
resources to support dynamic video traffic. We have studied a
novel multi-origin multi-channel auto-scaling live streaming
cloud where each channel stream is pushed in a delivery
tree covering the end servers that demand the channels. We
consider a pay-as-you-go cost model where the deployment
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Fig. 15. Deployment cost versus Zipf’s parameter of popularity skewness
given different schemes.

cost is charged by the actual amount of resources used due
to server uploading and data transmission between servers.
Our problem is bi-criteria in nature as we aim at minimizing
both the O2E delay of the channels and the deployment cost.
Equivalently, we formulate the MCSDC problem as optimizing
the overlay topology to minimize the deployment cost given
certain maximum O2E delay constraints of the channels.

We present a realistic model capturing major costs and delay
components, and show the NP-hardness of this problem. We
reformulate the original MCSDC problem as an LP problem
by relaxing some constraints, propose an efficient and near-
optimal bi-criteria approximation algorithm termed COCOS
based on LP solution, and prove its worst-case approximation
ratio. We have conducted extensive trace-driven experiments
under real-world settings to evaluate COCOS based on real-
world video service data. Our results demonstrate that COCOS
achieves much lower deployment cost while tightly meeting
the delay constraints, outperforming other traditional and state-
of-art schemes by a wide margin (cutting the cost in general
by more than 50%).
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