
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023 2839

Bi-Criteria Approximation for a Multi-Origin
Multi-Channel Auto-Scaling Live Streaming Cloud

Zhangyu Chang and S.-H. Gary Chan , Senior Member, IEEE

Abstract—Live video traffic has been widely observed to vary
significantly within short timescale. In order to manage such traffic
dynamic of overlay live streaming, the Content Provider (CP) may
deploy a set of geo-dispersed auto-scaling servers where the pay-as-
you-go deployment cost is charged by the amount of resources used
due to server uploading and data transmission between servers.
To support geo-distributed user demands, we study a novel multi-
origin multi-channel auto-scaling live streaming cloud that pushes
each channel stream in the core network overlay as a tree covering
the end servers who have local demand for the channel. The Origin-
to-End (O2E) delay from an origin to an end server is due to the
Server-to-Server (S2S) delays of the overlay links along the path.
By optimizing the overlay of the core network, we seek to minimize
the deployment cost and O2E delays of the channels (i.e., a bi-
criteria problem), which can be equivalently phrased as minimizing
the deployment cost while meeting certain given maximum O2E
delay constraints. We formulate a realistic problem capturing the
major cost and delay components, and show its NP-hardness.
We propose Cost-optimized Multi-Origin Multi-Channel Overlay
Streaming (COCOS), a novel, efficient and near-optimal bi-criteria
approximation algorithm with proven approximation ratio. Trace-
driven extensive experimental results based on real-world live
streaming service data validate that COCOS outperforms other
state-of-the-art schemes by a wide margin (cutting the cost in
general by more than 50%).

Index Terms—Auto-scaling, bi-criteria approximation, live
streaming cloud, multiple origins, multiple channels, overlay
optimization.

I. INTRODUCTION

I T HAS been estimated that video will account for 82% of
the global Internet traffic, and live video will reach 17% of

the Internet video traffic [1]. Meanwhile, it has been widely
observed that live streaming traffic varies significantly over a
day, by possibly more than an order of magnitude [2], [3]. We
consider the overlay distribution of live video channels for a
geo-distributed audience, whose network traffic has enormous
total volume and significant daily variation.

To cost-effectively respond to the live video traffic of such
volume and dynamic, the Content Provider (CP) can allocate
geo-dispersed auto-scaling servers (e.g., virtual machines or

Manuscript received 15 April 2021; revised 15 November 2021 and 8 February
2022; accepted 9 February 2022. Date of publication 16 February 2022; date
of current version 13 July 2023. This work was supported in part by Hong
Kong General Research Fund under Grant 16200120. The Associate Editor
coordinating the review of this manuscript and approving it for publication was
Dr. Ali C. Begen. (Corresponding author: Zhangyu Chang.)

The authors are with the Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Kowloon, Hong Kong
(e-mail: zchang@cse.ust.hk; gchan@cse.ust.hk).

Digital Object Identifier 10.1109/TMM.2022.3152093

instances) and overlay links between them on the fly. Com-
pared with the traditional infrastructure approach that statically
sets aside a certain number of geo-dispersed servers with fixed
streaming capacities which suffers from overprovisioning and
limited scalability, this auto-scaling system can hence elasti-
cally rescale the resources (e.g., Amazon EC2 [4] can rescale the
server capacity within minutes) with pay-as-you-go cost model
to reduce the deployment cost with high scalability.

For this novel live streaming cloud, the CP allocates geo-
dispersed auto-scaling servers on demand. To support geo-
distributed audience, each auto-scaling server streams the live
content to its associated local users.1 The active auto-scaling
servers form an overlay core network of the live streaming
cloud, relaying and streaming the live channels cooperatively.
(An auto-scaling server is inactive when it has no local user
demand.)

We study and optimize this core network of the multi-origin
and multi-channel live streaming cloud where live video chan-
nels originate from some geo-distributed origin servers and each
end server demands a set of channels requested by its local au-
dience. (How to deliver the live channels from an end server to
its local audience is orthogonal to this work, and we discuss the
related work in Section II.) These origin and end servers form
this overlay core network to deliver all the channels to meet the
local demand of each end server. To reduce overall delay, in the
core network of this cloud, the streams are pushed in stream-
ing fashion from the origin server to the end servers with local
demand.

Without loss of generality, we assume that a channel can only
originate from one origin server (if a channel originates from
multiple origin servers, we can create a single virtual super ori-
gin that directly connects to these origin servers with zero-delay,
zero-cost and infinite bandwidth virtual link). The channels may
have heterogeneous streaming rates. Each channel stream is de-
livered in a push manner, and its path forms a delivery tree, from
the origin server as the root, covering all the end servers with the
demand for this channel. Clearly, the aggregation of all delivery
trees for all the channels forms a mesh.

In Fig. 1, we illustrate the core network of an auto-scaling
live streaming cloud under our consideration. We consider the
overlay cloud as a complete graph of connectivity. Origin X
and Y originate channel 1 and 2, respectively. To serve their
local demand, Server E requests channels 1, Server D requests

1In this work, a server is a node that can relay streams and serve its local user
demand. In practice, it can be a CDN node, server farm, data center, etc.

1520-9210 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 14,2023 at 08:57:36 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1069-4048
https://orcid.org/0000-0003-4207-764X
mailto:zchang@cse.ust.hk
mailto:gchan@cse.ust.hk


2840 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

Fig. 1. A multi-origin multi-channel live streaming cloud.

channel 2, and Server A and C request both channel 1 and 2.
Note that we can activate (or deactivate) any end server, from
A to E, on demand. As Server B has no local demand, it is
inactive, and hence not to be paid for.

An end server receives a stream either from the origin server
directly, or from another end server who already has it. ServerA
directly receives all the channels from the origin servers while
Server C receives Channel 1 fromA but Channel 2 from Origin
Y . Server D receives Channel 2 from C, and Server E receives
Channel 1 from Origin X .

The Origin-to-End (O2E) delay of a channel (i.e., the delay
from the origin server to an end server that demands the channel)
is an important Quality-of-Experience (QoE) measure. It is the
sum of the Server-to-Server (S2S) delays of all the overlay links
forming the stream path from the origin to the end server. S2S
delay is the time for a signal to travel from one server to the next
over the overlay, given by half of the round-trip time (RTT).

The deployment cost of the cloud is the sum of server and link
costs. Server cost of a server depends on its uploading bandwidth
to the other servers. Link cost depends on the data transmis-
sion through the overlay link between servers. Both auto-scaling
servers and overlay links are shared with all the channels. Note
that, as we mainly consider the optimization of the core network,
given the local user demand, the cost for an end server to serve
its local demand is an independent problem rather than an opti-
mization parameter of our problem, and thus we do not include
it in our model.

We seek to minimize deployment cost and O2E delays of
the core network of this cloud (i.e., it is a bi-criteria problem).
Without loss of generality, the problem is equivalently posed as
minimizing deployment cost subject to certain given maximum
O2E delay constraints2 [5]. We refer to the decision variables of
this optimization as overlay construction of the core network,

2As a multi-criteria problem has multiple objectives, the optimum is given as
a set of solutions that follow Pareto optimality where no single objective can
be further better off without sacrificing the other objectives. Often we optimize
one objective and phrase the other objectives as constraints so that they satisfy
certain given bounds.

which is the construction of the delivery tree of each channel,
namely, to what servers and what streams an auto-scaling server
should forward.

As the system parameters (e.g., user demand, S2S delays,
server and link prices, etc.) may change over time, we have to
regularly re-optimize the overlay such that, within each opti-
mization period, the variations of these system parameters are
negligible. To achieve this, we have a central optimizer that com-
putes the overlay trees given the up-to-date parameters for the
upcoming time period.

To the best of our knowledge, this is the first piece of work on
bi-criteria optimization of streaming delay and deployment cost
of the core network of a multi-origin multi-channel live stream-
ing cloud with proven approximation ratio. Our contributions
are as follows:
� Bi-criteria problem formulation and complexity analysis:

We formulate a novel, comprehensive and realistic model
for this bi-criteria problem, which captures cost and delay
components. We formulate the Minimum Cost Streaming
with Delay Constraints (MCSDC) problem that constructs
multiple channel delivery trees to minimize the total de-
ployment cost while meeting the given QoE (O2E delay)
constraints. We prove that the problem is NP-hard.

� COCOS: A novel bi-criteria approximation algorithm: We
propose an efficient and implementable bi-criteria approx-
imation algorithm, termed Cost-optimized Multi-Origin
Multi-Channel Overlay Streaming (COCOS), for an auto-
scaling multi-origin multi-channel overlay live streaming
cloud. We demonstrate that COCOS achieves low deploy-
ment cost with proven worst-case approximation ratio,
strictly meets the QoE constraints, and has polynomial time
complexity.

� Extensive experimental results: We conduct extensive
trace-driven experimental studies based on real-world user
trace (from a leading Chinese video service provider) and
S2S delays from a real live streaming network. We show
that COCOS significantly reduces the deployment cost and
tightly meet the QoE constraints, cutting the cost signifi-
cantly as compared with the state of the arts (in general by
more than 50%).

This work is organized as follows. We first briefly review re-
lated work in Section II. We formulate the bi-criteria optimiza-
tion MCSDC problem of minimizing the total deployment cost
with the given delay constraints, and prove its NP-hardness in
Section III. We present the bi-criteria approximation algorithm
COCOS, and show its optimality in Section IV. We show illustra-
tive experimental results and comparisons with other state-of-art
schemes in Section V, and conclude in Section VI.

II. RELATED WORK

We briefly discuss related work in this section. We show the
major concerns of the related work and the comparison with our
work in Table I.

There has been much work on optimization of video-on-
demand (VoD) service over content distribution network (CDN)
or peer-to-peer (P2P) network with different objectives and
constraints. The work on CDN-based VoD in [6], [7] mainly

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 14,2023 at 08:57:36 UTC from IEEE Xplore.  Restrictions apply. 



CHANG AND CHAN: BI-CRITERIA APPROXIMATION FOR A MULTI-ORIGIN MULTI-CHANNEL AUTO-SCALING LIVE STREAMING CLOUD 2841

TABLE I
MAJOR CONCERNS OF THE RELATED WORK

considers maximizing the hit ratio by optimizing the caching
strategies. By contrast, we consider a live streaming network
where the contents are not cached and the origin pushes the
contents to all users in real time. The work on P2P-based
VoD [8]–[10] mainly considers minimizing the channel switch-
ing delay, or minimizing the server load by effectively using
the resource from peers. In such VoD network, the O2E delay
is not a major QoE concern due to the VoD contents.

Work on auto-scaling servers [11]–[14] mainly focuses on
the internal operation within a data center instead of the live
streaming network as a whole. Recent work on crowdsourced
live streaming [15]–[18] focuses on how to effectively deliver
live contents from a CDN server (i.e., an end server) to its local
audience while our work deals with how to form a core network
overlay that timely and cost-effectively deliver the streams from
the origin servers to the end servers. Though the advancement
in such fields is beneficial to our live streaming cloud, these
schemes are orthogonal to our problem of optimizing the core
network overlay of a live streaming cloud.

While cost and delay optimization of overlay live streaming
has been studied, most of the work only focuses on one of the
objectives. Some works [22]–[25] seek to minimize total cost
while others [26]–[29] focuses on minimizing O2E delay. We
cannot directly extend these schemes to our bi-criteria optimiza-
tion of the core network as applying them without considering
the tradeoff between delay and cost would lead to either exces-
sive overprovisioning of resource or unsatisfactory O2E delay.

Work on multi-origin multi-channel overlay design has con-
sidered various different objectives from ours, such as mini-
mizing inter-ISP traffic [19]–[21], minimizing the overall de-
lay [30]–[34], reducing channel switching delay [35], [36],
or maximize the number of delivered channels while reduc-
ing the server load [37]–[41]. The multi-origin multi-channel
auto-scaling live overlay network we formulate here is novel,
with a general and realistic cost and delay model. To the best of
our knowledge, our work is the first to consider both O2E delay
and deployment cost of the core network of such live stream-
ing cloud. Previous work even does not consider single-channel
version of this optimization problem.

The measurement studies in [3], [42], [43] indicates that it is
challenging to guarantee QoE for live contents for multi-origin
multi-channel live streaming network, though they have not
given a solution. Some work on streaming multicasting [44]–
[47] aims at creating a minimum cost multicast topology on
multiple streams, but they have not considered the O2E delay.

TABLE II
MAJOR SYMBOLS USED IN THE FORMULATION

Meanwhile, the scheme in [45] assumes a homogeneous band-
width pricing schemes across all geographical locations, which
only applies to the network with fixed unit price of data trans-
mission from server to server. By contrast, the model we con-
sider is general, realistic and comprehensive, capturing the cost
of auto-scaling servers and link capacities with heterogeneous
pricing. To address QoE, we also consider the major components
of O2E delay as a bi-criteria problem, and propose a bi-criteria
approximation algorithm with proven approximation ratio.

III. BI-CRITERIA PROBLEM FORMULATION AND ITS

NP-HARDNESS

Our bi-criteria problem is to minimize deployment cost and
O2E delays, which is equivalently posed as minimum cost
streaming with given delay constraints. In this section, we first
present the formulation of bi-criteria problem in Section III-A,
followed by proving its NP-hardness in Section III-B. We show
the major symbols used in this section in Table II.

A. Cost Minimization With Delay Constraints

We model the live streaming cloud overlay as a directed com-
plete graph G = (V,E), where V is the set of vertices corre-
sponding to both origin and end servers. (If we cannot set up

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 14,2023 at 08:57:36 UTC from IEEE Xplore.  Restrictions apply. 



2842 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

an overlay link between 2 servers, we can set the corresponding
link price to a very large value so that any practical solution will
not use this link.) Let S be the set of origin servers andR be the
set of end servers, where V = S ∪R. Without loss of general-
ity, we consider that the origin servers have no local users, i.e.,
S ∩R = ∅ (If not, we may split the server into two parts, one
being the origin server with all the channels and the other being
the end servers with all the local users. The two parts are then
connected by a link of zero cost, zero delay and infinite band-
width). We denote 〈i, j〉 as the directed overlay link from server
i to j, and let E ⊆ V × V be the set of overlay links between
servers (i.e., 〈i, j〉 ∈ E).

LetM be the set of channels and s(m) ∈ S be the origin server
of channelm ∈M and τ(m) be the streaming rate of channelm.
We denote R(m) as the set of end servers that demand channel
m. Each channel m ∈M is delivered to all servers in R(m)
through a delivery tree T (m), and hence we have a total of |M |
delivery trees. Note that in this delivery tree T (m), the origin
server s(m) is the root and all the other end servers form the set
R(m).

Let xij(m) be a binary variable indicating whether link 〈i, j〉
is used in the delivery tree T (m), so we have

xij(m) =

{
1, if 〈i, j〉 ∈ T (m);

0, otherwise .
(1)

As every end server i ∈ R(m) needs to get channel m, we have∑
〈i,j〉∈E

xij(m) ≥ 1, ∀j ∈ R(m),m ∈M. (2)

To mathematically specify that T (m) is a tree structure, we
have to ensure that T (m) has |R(m)| edges, i.e.,∑

〈i,j〉∈E
xij(m) = |R(m)|, ∀m ∈M, (3)

and T (m) has no cycle, which can be equivalently expressed as
that, for any subset of the vertices of T (m) denoted as T ′, we
must have at most |T ′| − 1 edges in this subset, namely,∑

i,j∈T,′〈i,j〉∈E
xij(m) ≤ |T ′| − 1, ∀T ′ ⊆ T (m),m ∈M. (4)

For each link 〈i, j〉 ∈ E, the transmission rate bij through the
link is given as

bij =
∑
m∈M

xij(m)τ(m), ∀〈i, j〉 ∈ E, (5)

and the uploading rate ui at server i ∈ V to serve other end
servers is therefore given as

ui =
∑

〈i,j〉∈E
bij , ∀i ∈ V. (6)

We denote the server-to-server (S2S) delay of link 〈i, j〉 as
Lij and the origin-to-end (O2E) delay of server j in tree T (m)
as Dj(m), which is equal to the delay of its direct parent i in
tree T (m) plus the S2S delay of link 〈i, j〉, i.e.,

Dj(m) = Di(m) + Lij , if〈i, j〉 ∈ T (m). (7)

By definition, the O2E delay is 0 for the origin server of each
channel (i.e., Di(m) = 0, ∀i = s(m),m ∈M ).

To guarantee the QoE, we have to ensure that, for an end server
i that demands channelm, the O2E delayDi(m) is bounded by
a given parameter termed as O2E delay upper bound Di(m),
i.e., we must have

Di(m) ≤ Di(m), ∀i ∈ R(m),m ∈M. (8)

The deployment cost consists of server and link cost. We adopt
a general linear cost model, which is widely used in practice
(e.g., a very popular 95th-percentile pricing scheme [48] is a
special case of linear cost). Let Θi be the server cost of server
i, and θi be its unit price of uploading streaming. Θi is charged
by the server uploading rate ui of server i, i.e.,

Θi = θiui, ∀i ∈ V. (9)

Let Φij be the link cost of link 〈i, j〉, and φij be its unit price of
data transmission. Φij depends on the transmission rate bij of
link 〈i, j〉, i.e.,

Φij = φijbij , ∀〈i, j〉 ∈ E. (10)

Note that Θi = 0 indicates that server i is not in use, and simi-
larly Φij = 0 indicates that link 〈i, j〉 is not in use.

The total deployment costC is the sum of server cost and link
cost, given by

C =
∑
i∈V

Θi +
∑

〈i,j〉∈E
Φij . (11)

We state our cost optimization problem of Minimum Cost
Streaming with Delay Constraints (MCSDC) as follows: given
overlay topology G, origin server {s(m)}, end server set
{R(m)}, S2S delay{Lij}, unit price of server uploading stream-
ing {θi} and link data transmission {φij}, and O2E delay up-
per bounds {Di(m)}, we seek to find the overlay construction
{xij(m)} for streams of all channels m ∈M to minimize the
total deployment cost C subject to constraints from (2) to (10).

B. The NP-Hardness of MCSDC Problem

MCSDC is NP-hard since the NP-hard Shallow-Light Span-
ning Tree (SLST) Problem [49] is reducible to our MCSDC
problem.

We state the SLST problem as follows. In a directed graph
G(V,E), each link 〈i, j〉 ∈ E has an associated positive cost
Φij and a positive delay Lij . Let s ∈ V be the origin vertex,
and for the other vertices v ∈ V we associate each vertex with a
given delay upper bound Dv . SLST is to find the spanning tree
from s as the root in G with minimum total cost such that the
delay measured from origin vertex s to any vertex v along this
spanning tree is no greater than Dv .

It is straightforward to see that SLST problem is a special case
of MCSDC problem with only one origin server corresponding
to one channel and all the other end servers demanding this
channel. Meanwhile, the server cost in the graph is omitted, and
we only consider the S2S delay and link cost. Hence, it is clear
that SLST is polynomial-time reducible to MCSDC.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 14,2023 at 08:57:36 UTC from IEEE Xplore.  Restrictions apply. 



CHANG AND CHAN: BI-CRITERIA APPROXIMATION FOR A MULTI-ORIGIN MULTI-CHANNEL AUTO-SCALING LIVE STREAMING CLOUD 2843

TABLE III
MAJOR SYMBOLS USED IN COCOS ALGORITHM

IV. COCOS: A BI-CRITERIA APPROXIMATION ALGORITHM FOR

AN AUTO-SCALING LIVE CLOUD

In this section, we present a bi-criteria approximation al-
gorithm termed Cost-optimized Multi-Origin Multi-Channel
Overlay Streaming (COCOS). We first present the overall idea
and basic concepts of bi-criteria approximation in Section IV-A,
and reformulate the original MCSDC problem as a Linear Pro-
gramming (LP) problem in Section IV-B. Then, in Section IV-C,
we present the COCOS algorithm to construct low-cost and
QoE-assured delivery trees for each channel based on the LP
solution. We analyze the algorithmic complexity and prove the
approximation ratio of COCOS in Section IV-D. We show the
major symbols used in this section in Table III.

A. Preliminaries for Bi-Criteria Approximation

1) Optimal Solution: We first discuss the optimal solution
of the MCSDC problem. As we have shown in Section III-B
that the original MCSDC problem is NP-hard, it is very unlikely
to find the exact optimal solution efficiently in both theory and
practice. In Section IV-B, we reformulate the original MCSDC
problem as an efficiently solvable LP problem by relaxing some
constraints so we can treat each channel as an infinitesimally
divisible stream (i.e., we can split a channel stream into an ar-
bitrary number of fractional streams). We denote the optimal
solutions of the MCSDC problem and the LP problem as the
exact optimum and the super optimum, and their corresponding
deployment cost as CEO and CSO, respectively. A feasible (but
not necessarily optimal) solution of the original MCSDC prob-
lem must be a feasible solution of the LP problem, and thus the
deployment cost of the exact optimum cannot be better than the
super optimum (i.e., CSO ≤ CEO). Note that, as we cannot get
the exact optimum, we only compare COCOS with the super op-
timum. If we can give an approximation ratio with respect to the
super optimum, this ratio must also hold for the exact optimum.

2) Approximation Ratio: We then briefly introduce the ap-
proximation ratio of this bi-criteria problem. As the bi-criteria
problem of MCSDC considers both the deployment cost and the
O2E delay, to address the optimality of COCOS as an approxi-
mation algorithm, we have to show that the difference between
the solution given by COCOS and the super/exact optimum is

Fig. 2. An example of substream solution for k = 2.

bounded by a specific ratio in terms of both cost and delay. With
the deployment cost given by COCOS as CCC, we denote the
approximation ratio of the deployment cost as α+ δ and that of
the O2E delay as β, which means that CCC ≤ αCEO and the
delay at each end server for channel m is at most β times the
optimum solution.

Specifically, COCOS achieves α = 1 + ε and β = 1 + 1/ε
where ε, as a positive real number, is given as a tunable
parameter that allows tradeoff between the optimality of cost
and delay, and the positive real number δ is also a tunable
parameter that allows tradeoff between cost and algorithmic
time complexity, which can be arbitrarily close to 0 at the
expense of computation time. Note that by cancelling ε in the
equations, we have 1/α+ 1/β = 1. We evaluate the impact of
ε through experiments in Section V-B.

3) Approximation Solution: We outline the overall structure
of the algorithm of COCOS that constructs the core network
overlay from the LP solution. When computing the LP solution
(i.e., the super optimum), we first let the delay constraints in LP
formulation be 1/β of the given delay upper bound Di(m) such
that, even with the O2E delay approximation ratio β, COCOS
can still meet the delay constraints given in (8) of the original
MCSDC problem formulation in Section III-A. To efficiently
approximate the LP solution, we then construct a k-substream
solution as an intermediate step such that we evenly divide a
channel stream into k substreams, and the substream solution
approaches the super optimum with the cost approximation ratio
α as k goes to infinity (k → ∞). We call this the COCOS-ID
solution as it would be the solution of COCOS if we allow all
the streams to be infinitesimally divisible, and we denote the
corresponding deployment cost as CID. For a finite k, we can
get k candidate substream delivery trees, and we choose the
topology of the substream tree with the lowest cost as the final
solution of COCOS.

We give an example of substream solution in Fig. 2. Unlike
the original system in Fig. 1, here both Channel 1 and 2 have 2
substreams. (We have no upper limit for number of substreams,

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 14,2023 at 08:57:36 UTC from IEEE Xplore.  Restrictions apply. 



2844 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

and here we choose k = 2 substreams only for simplicity.) Each
channel is evenly divided into 2 substreams, and every end server
that demands this channel shall get both substreams.

4) Theoretical Proof: We finally outline the proof of the ap-
proximation ratio. To prove the cost approximation ratio of
COCOS, we show that CID ≤ αCSO (thus CID ≤ αCEO). In
Section IV-D, we further prove that the gap between CID and
CCC can be arbitrarily close to 0 (i.e., δ → 0) as k increases,
which finally shows the deployment cost approximation ra-
tio α+ δ. Note that our theoretical approximation ratio gives
the performance guarantee in the worst-case scenario, which
rarely happens in practice. In Section V-B, we show that, under
practical setting, COCOS gives near-optimal solution through
trace-driven experiments based on real-world data.

B. Relaxing MCSDC Problem to an LP Formulation

The solution of the LP formulation serves as the super op-
timum and the basis of constructing the approximation solu-
tion in COCOS. Instead of considering the deployment cost
C as a whole, we can decompose the original multi-origin
multi-channel problem, and optimize each channel separately
and independently. Specifically, we denote ui(m) as the upload-
ing rate of channelm at server i, bij(m) as the transmission rate
of channel m through link 〈i, j〉, and C(m) as the deployment
cost due to channel m.

Furthermore, instead of considering the channel stream as a
whole in the LP formulation, we treat it as an infinitesimally
divisible stream. By relaxing (1), we use a continuous vari-
able zij(m) to replace the binary variables xij(m) for m ∈M .
Specifically, we let zij(m) be the fraction of the stream of
channel m that transmitting through link 〈i, j〉, and we have
0 ≤ zij(m) ≤ 1 by definition. Hence,

bij(m) = zij(m)τ(m), ∀〈i, j〉 ∈ E,m ∈M. (12)

Accordingly, we also have

ui(m) =
∑

〈i,j〉∈E
bij(m), ∀i ∈ V,m ∈M, (13)

and the deployment cost due to channel m is given as,

C(m) =
∑
i∈V

θiui(m) +
∑

〈i,j〉∈E
φijbij(m), ∀m ∈M. (14)

We further replace the constraints in (2) by using the property
of flow conservation. We denote f lij(m) as the fraction of con-
ceptual stream flow of channelm from the origin server s(m) to
a destination end server l ∈ R(m) via link 〈i, j〉. By considering
the flows that go out of and come into the server j, we have

∑
〈j,k〉∈E

f ljk(m)−
∑

〈i,j〉∈E
f lij(m) =

⎧⎪⎨
⎪⎩
1, if j = s(m);

−1, if j = l;

0, otherwise.
(15)

In other words, we only have outgoing flow for the origin server
s(m), and only have incoming flow for the destination end server
l. For the other servers, the incoming flow shall be equal to the
outgoing flow. As f lij(m) only consider the flow to end server

l, for the transmission rate of channel m on link 〈i, j〉, we have

0 ≤ f lij(m) ≤ zij(m) ≤ 1, ∀l ∈ R(m), 〈i, j〉 ∈ E. (16)

Instead of letting every fractional flow satisfy the delay upper
bound, we relax (8) such that we only let the average delay of
all flows satisfy the delay upper bound where we can write the
average delay for fractional stream as

∑
f lij(m)Lij . Meanwhile,

we let the delay upper bound be Dl(m)/β so that COCOS can
still satisfy the delay upper bound Dl(m) given in (8) even with
the delay approximation ratio β. So we have∑

〈i,j〉∈E
f lij(m)Lij ≤ 1

β
Dl(m), ∀l ∈ R(m),m ∈M. (17)

Note that a very large β or a too small Dl(m) may let the whole
problem have no feasible solution. Thus, we have to set an ap-
propriate Dl(m) to avoid such situation.

It is straightforward that CSO =
∑

m∈M C(m). Hence, to
minimize CSO, we just need to optimize the LP formulation for
each channel m independently whose objective is minimizing
C(m) given the constraints (12) to (17).

C. Overlay Construction From LP Solution

To efficiently approximate the LP solution, we first construct
a substream solution where we split each channel evenly into
k substreams, and thus each substream has a streaming rate of
τ(m)/k. With more substreams, we can make the cost approx-
imation ratio of the substream solution closer to α. Especially,
when k goes to infinity, our substream solution is infinitesimally
divisible, and thus the approximation ratio is α (i.e., δ → 0).

To construct the overlay topology for finite numbers of sub-
streams k, we first compute how many substreams can be allo-
cated in each link. As our proposed cost approximation ratio for
CID is α, for channel m on link 〈i, j〉, the transmission rate is
therefore given as αbij(m), and the uploading rate at server i is
given asαui(m). Denoting the number of substreams of channel
m on link 〈i, j〉 as nij(m), we further round up bij a little bit so
that we have integral number of substreams, and thus we have

nij(m) = �αkbij(m)/τ(m)�. (18)

Given nij(m), we start to construct k delivery trees for chan-
nel m. We denote the set of substreams of channel m as Ψ(m),
and delivery trees of the substream ψ ∈ Ψ(m) as Γ(ψ). To con-
struct one tree, we set the origin server s(m) as the root, and use
Dijkstra’s algorithm to include all the end servers inR(m) such
that, in this substream delivery tree, each end server achieves
the minimum delay with the links who have nij(m) > 0.

After constructing a substream delivery tree, if we have used
link 〈i, j〉, we deduct nij(m) by 1. We repeat the Dijkstra’s
algorithm until we have all the k substream delivery trees. Note
that this algorithm is extended from the greedy arborescence
packing algorithm introduced in [50], which also gives the proof
that our algorithm can correctly generate k trees. We give the
pseudocode of the whole process of constructing all k delivery
trees in Algorithm 1.

Given these k substream delivery trees for channel m, we
choose the substream ψ ∈ Ψ(m) whose delivery tree Γ(ψ) has

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 14,2023 at 08:57:36 UTC from IEEE Xplore.  Restrictions apply. 



CHANG AND CHAN: BI-CRITERIA APPROXIMATION FOR A MULTI-ORIGIN MULTI-CHANNEL AUTO-SCALING LIVE STREAMING CLOUD 2845

the minimum cost, and deliver the whole channel through this
tree (i.e., we let T (m) = Γ(ψ)). As this tree has minimum cost
among the substreams, the final single stream solution of CO-
COS is no worse than the substream solution.

Note that it is very likely that this algorithm would first gen-
erate substream delivery trees with very high cost despite of low
delay. Therefore, to find a good approximation solution for this
bi-criteria optimization problem with balanced cost and delay,
we have to generate enough trees as candidates.

D. Algorithmic Complexity and Approximation Ratio

For the algorithmic complexity of solving the LP problem,
it has been proven that this method has O(N3) overall time
complexity, where N is the number of variables in the linear
program [51]. As there are |V |3 variables in the linear program
for each channel, the time complexity of LP is O(|V |9) for one
channel, and O(|V |9|M |) for the whole problem.

In the overlay topology construction step, the major part of
algorithmic time complexity is to compute all the substream
delivery trees, which runs in O(|E|+ |V | log(|V |) time for the
Dijkstra’s algorithm to generate a substream delivery tree. As we
are considering a complete graph whereO(|E|) = O(|V |2), and
we have k|M | substreams in total for all the channels, COCOS
runs inO(|V |9|M |+ k|V |2|M |) time in total. With a moderate
number of k, the predominant term is O(|V |9|M |).

For a typical large-scale real-world system (e.g., the system
under study in our trace-driven experiments in Section V), it
takes less than a minute to run the algorithm on a normal desktop
PC. The frequency to execute the algorithm depends on the time
scale of the system parameters. Normally, as the parameters vary
very little within an hour, the time scale is in the order of an hour.

To prove the the delay approximation ratio β, we first show
that COCOS can generate k substream trees that satisfy the O2E
delay constraint in (8). In the LP formulation, we require that the
average delay of channelm at end server i is bounded Di(m)/β.
By considering the Markov’s inequality, at least 1/α = 1− 1/β
of the fractional stream must satisfy the delay bound Di(m).
Therefore, as COCOS allocates the resource that can accom-
modate �αk� substreams, at least we have k substreams whose
delay are bounded by Di(m). Note that, because the Markov’s
inequality describes the worst case, usually more than 1/α frac-
tion of flow is bounded by Dl(m).

Fig. 3. Average user number over a typical day.

For the cost approximation ratio α+ δ, we prove it in 2
steps. We first show that CID ≤ αCEO. It is because that, in
COCOS-ID, we directly let all the flow fraction parameter
f lij(m) be α times of the original value given by the super
optimum so that each end server can get enough fraction of
the stream that satisfies the O2E delay constraint in (8). Conse-
quently,ui and bij are at mostα times of the super optimum (i.e.,
ui = α

∑
m∈M ui(m) and bij = α

∑
m∈M bij(m)), and the de-

ployment cost CID is at most αCSO. As CSO ≤ CEO, it is clear
that CID ≤ αCEO.

We finally show that δ → 0 as we increase k to infinity. In
fact, the gap between COCOS and COCOS-ID is due to that we
have to round up the link and server resources to ensure that
an integral number of substreams in a link or a server. As the
resource to round up is at most for one substream whose bitrate is
τ(m)/k, with a greater k, each substream requests less resource,
and when k goes to infinity, the substream bitrate τ(m)/k goes
to 0. In Section V, we show that, with a moderate number of k
(e.g., k = 10), the gap between CCC and CID is negligible, and
COCOS achieves near-optimal performance.

V. DATA-DRIVEN EXPERIMENTAL RESULTS

In this section, we first present our trace-driven experimental
environment and performance metrics in Section V-A. Then we
discuss the illustrative results based on real-world video service
data in Section V-B.

A. Experimental Setup and Performance Metrics

We have implemented our experiments based on real-world
network topology and user traces to study our algorithm. The ex-
periments are carried out on a real Internet topology provided by
CAIDA. The round trip times (RTTs) between inter-connected
routers are also given in the topology. In underlay routing, we
use distance-vector to compute the S2S delay between any two
servers in the network. To generate the experimental environ-
ment, origins and end servers are randomly attached to the router
nodes in this live streaming network. From Fig. 5 to 10, the re-
gional demand of channels is based on real-word data trace from
a leading video service website in China over 2 weeks. We give
the average user number over a typical day in Fig. 3 and the

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 14,2023 at 08:57:36 UTC from IEEE Xplore.  Restrictions apply. 



2846 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

Fig. 4. Access probability of the channels.

TABLE IV
BASELINE PARAMETERS USED IN OUR STUDY

access probability of the channels in Fig. 4. We re-optimize the
system every hour, and take the average of the deployment cost
in each hour as the result.

As COCOS is applicable to any channel popularity distri-
bution and network environment, to further validate COCOS’s
performance, we also use synthetic data for the regional demand
in our experiments from Fig. 11 to 15 where the channel pop-
ularity follows the Zipf’s distribution. With Zipf’s parameter
z, the mth popular channel has the demanded server number
R(m) ∝ 1/mz . Channels are randomly assigned to the servers.
A greater Zipf’s parameter indicates that a popular channel has
more servers demanding it and an unpopular channel has fewer
servers demanding it.

We show the baseline parameters in Table IV. Unless other-
wise stated, we use the following parameters in our experiments:
number of origin and end servers |V | = 100, number of channels
|M | = 60, and delay upper bound D = 800ms. The streaming
rates of the channels have a mean of 1.2 Mbps and a standard
deviation of 0.2 Mbps. The prices of link data transmission have
a mean of 0.1 per Mbit and a standard deviation of 0.05 per Mbit.
The prices of server uploading streaming have a mean of 0.1 per
Mbit and a standard deviation of 0.05 per Mbit.

As mentioned in Section II, previous work seldom consid-
ers the bi-criteria problem of minimizing deployment cost and
O2E delays. To capture all the important components, we extend
some of the traditional and state-of-the-art work as comparison
schemes.
� Nearest Peer [28], [32]: which is an overlay construction

algorithm used in many state-of-the-art work, whose objec-
tive is to minimize the local streaming latency. With minor

Fig. 5. Deployment cost versus approximation ratio tradeoff parameter.

modification, we can easily adapt this algorithm into our
network setting. A server gets its demanding channels from
the origin or another end server so that its peer-to-peer de-
lay is minimized.

� Prim: which is a well-known optimization algorithm for
minimum cost delivery tree construction. However, it does
not consider the delay constraints. To address this, after
the construction of the deliver tree through Prim, if an end
server violates the delay constraint, it gets the stream from
another server so that it can meet the delay constraint with
minimum cost.

� Super Optimum: which serves as the theoretical perfor-
mance bound (i.e., no scheme performs better than super
optimum). The super optimum in this work is the optimal
solution of the LP formulation from Section IV-B.

We evaluate the performance of our proposed algorithm and
the comparison schemes mainly by several delay and cost met-
rics:
� Deployment Cost, which is the sum of server cost and link

cost according to (11). This is the deployment cost of the
whole live streaming cloud.

� Cost Component, which consists of server cost and link
cost. We are also interested in each cost component as they
reflect how the optimization works.

� Delay Constraint, which is the maximum O2E delay al-
lowed in this system.

B. Illustrative Experimental Results

We compare in Fig. 5 the total deployment cost versus the
approximation ratio tradeoff parameter ε. A smaller ε indicates
a smaller cost approximation ratio α but a greater delay approx-
imation ratio parameter β. With small ε, though we have a small
α, the delay upper bound for super optimum is tighter and leads
to a much greater CSO. With great ε, a great α causes the cost
of COCOS to increase though we have a small CSO. Therefore,
both a too small and a too great ε can impede the optimality of
COCOS. The deployment cost of COCOS is closer to the super
optimum rather than the upper bound given by the approxima-
tion ratio (i.e., CCC is closer to CSO rather than αCSO), which
shows that it is more likely that COCOS achieves near-optimal
performance in practice.

We compare in Fig. 6 the total deployment cost versus the
O2E delay upper bound for different number of substreams k.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 14,2023 at 08:57:36 UTC from IEEE Xplore.  Restrictions apply. 



CHANG AND CHAN: BI-CRITERIA APPROXIMATION FOR A MULTI-ORIGIN MULTI-CHANNEL AUTO-SCALING LIVE STREAMING CLOUD 2847

Fig. 6. Deployment cost versus delay upper bound given different number of
substreams.

Fig. 7. Deployment cost versus delay upper bound given different schemes.

As k increases, the deployment cost approaches CID given by
COCOS-ID (i.e.,k → ∞). With humble value ofk (sayk = 10),
the performance is already very close to CID. This shows that
with reasonable computation time, COCOS can achieve near-
optimal performance.

We compare in Fig. 7 the total deployment cost versus the
O2E delay upper bound for different schemes. Total cost in-
creases with a tighter delay constraint. COCOS clearly achieves
the lowest deployment cost as the gap between COCOS and
other schemes is usually beyond 100 percent. When the delay
constraint is relaxed to some extent (e.g.> 1000ms), the cost of
all the schemes remains steady as the delay constraint can be eas-
ily satisfied with an arbitrary overlay topology. However, in this
case, the deployment cost of COCOS is still significantly lower
than the comparison schemes. The deployment cost of Prim de-
creases with a loose delay constraint as more cheap links can
be used at the cost of S2S delay. For Nearest Peer, as S2S delay
weighs more in its delay components, its deployment cost is not
sensitive to the change of delay constraint.

We show in Fig. 8 the components of deployment cost versus
delay upper bound for COCOS. Server cost remains steady as
the delay constrain changes, but the link cost first decreases with
a larger delay constraint, and then keeps steady after the delay
constraint exceeds a certain extent. This trend of cost component
shows that a higher QoE constraint demands mainly on links
with small S2S delay despite the cost.

Fig. 8. Components of deployment cost versus delay upper bound for COCOS.

Fig. 9. Deployment cost versus average link price given different schemes.

We compare in Fig. 9 the deployment cost versus average link
price given different schemes. The deployment cost for all the
schemes increase with the increasing of the link price, but the
increasing trends of the deployment cost of COCOS and Prim
are not that steep when the price is too high or too low. Such
trend shows the effect of the tradeoff between cost and delay.
When the link price is higher, the overlay topology tends to use
cheap link. On the other hand, when the link price is low, the
price difference between links is also small. Note that with a
higher link price, the gap of deployment cost between COCOS
and other comparison schemes become larger, which shows that
COCOS has a stronger capability of finding and using cheap
resource. The cost of Nearest Peer increases sharply as it has a
rigid topology construction step and cannot effectively use cheap
resource. On the other hand, Prim has a more flexible topology
construction method and is able to find some cheap resource.

We show in Fig. 10 the components of deployment cost versus
average link price for COCOS. The server cost remains nearly
unchanged as the link price increases, but the link cost increases,
which contributes most of the increase of the total deployment
cost. As the server number and the number of demanded chan-
nels at each server do not change, the workload to deliver live
content keeps same. Therefore, the demand of server uploading
remains almost steady.

We show in Fig. 11 the deployment cost versus the number
of servers given different schemes. The deployment costs for

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 14,2023 at 08:57:36 UTC from IEEE Xplore.  Restrictions apply. 



2848 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

Fig. 10. Components of deployment cost versus average link price for CO-
COS.

Fig. 11. Deployment cost versus number of servers given different schemes.

Fig. 12. Deployment cost versus number of channels given different schemes.

COCOS and Prim increase moderately with the increasing of
the number of servers, but the cost increment of Nearest Peer
is sharper with a larger server number. With more servers and
more total demands for channels, we need more links to cover
all the demands and deliver the live contents. Cost of Nearest
Peer increases more sharply compared with other 2 schemes
because it always tries to deliver content to its nearest peers
despite the cost. With more servers, its overlay topology will be
unnecessarily expensive.

We plot in Fig. 12 the deployment cost versus the number of
channels. The deployment cost increases as the channel number
increases for all schemes. The number of demanded channels for

Fig. 13. Deployment cost versus average streaming bitrate given different
schemes.

Fig. 14. Deployment cost versus average number of demanded channels per
server given different schemes.

each server increases with the rise of the number of channels.
COCOS enjoys lower deployment cost because it comprehen-
sively considers the cost components and delay constraints by
balancing between them, and constructing connectivity with low
cost through server collaboration. On the other hand, with more
channel number, Nearest Peer will blindly deliver channels to
its neighbor peers in some scenario. Some unpopular channels
cause extra cost and can be delivered more efficiently with some
longer and direct links with less hops.

We show in Fig. 13 the deployment cost versus average
streaming bitrate given different schemes. The deployment cost
for all the schemes increase with the increasing of the average
streaming rate. Obviously, with higher streaming rate, more re-
source is used in links and servers. With the link price fixed, this
increment of streaming rate has little impact on the topology.
Therefore, the deployment cost increases almost linearly with
the streaming bitrate.

We plot in Fig. 14 the deployment cost versus average number
of demanded channels per each server given different schemes
to validate COCOS under different levels of traffic. The deploy-
ment cost for all the schemes increase with the increasing of de-
manded channel number for each server given different schemes.
More demanded channel on a server will not change too much
on the topology but will ask for more resource to ensure the
QoE. Therefore, more deployment cost is required.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 14,2023 at 08:57:36 UTC from IEEE Xplore.  Restrictions apply. 



CHANG AND CHAN: BI-CRITERIA APPROXIMATION FOR A MULTI-ORIGIN MULTI-CHANNEL AUTO-SCALING LIVE STREAMING CLOUD 2849

Fig. 15. Deployment cost versus Zipf’s parameter of popularity skewness
given different schemes.

We show in Fig. 15 the deployment cost versus the Zipf’s
parameter given different schemes. The deployment cost for all
the schemes decreases with the increasing of the Zipf’s param-
eter. With a higher Zipf’s parameter, the number of servers that
demands cold channels is decreased. As the increment of de-
ployment cost for popular channels is limited (at most all servers
demand it), the decreasing of cold channel demand will decrease
the total deployment cost.

VI. CONCLUSION

Auto-scaling cloud computing can elastically rescale system
resources to support dynamic video traffic. We have studied
a novel multi-origin multi-channel auto-scaling live streaming
cloud where each channel stream is pushed in a delivery tree
covering the end servers that demand the channels. We con-
sider a pay-as-you-go cost model where the deployment cost is
charged by the actual amount of resources used due to server
uploading and data transmission between servers. Our problem
is bi-criteria in nature as we aim at minimizing both the O2E
delay of the channels and the deployment cost. Equivalently, we
formulate the MCSDC problem as optimizing the overlay topol-
ogy to minimize the deployment cost given certain maximum
O2E delay constraints of the channels.

We present a realistic model capturing major costs and delay
components, and show the NP-hardness of this problem. We
reformulate the original MCSDC problem as an LP problem by
relaxing some constraints, propose an efficient and near-optimal
bi-criteria approximation algorithm termed COCOS based on LP
solution, and prove its worst-case approximation ratio. We have
conducted extensive trace-driven experiments under real-world
settings to evaluate COCOS based on real-world video service
data. Our results demonstrate that COCOS achieves much lower
deployment cost while tightly meeting the delay constraints,
outperforming other traditional and state-of-art schemes by a
wide margin (cutting the cost in general by more than 50%).

REFERENCES

[1] T. Barnett, S. Jain, U. Andra, and T. Khurana, “Cisco visual network-
ing index (VNI): Complete forecast update, 2017–2022,” Accessed:
Feb. 21, 2022. [Online]. Available: https://bit.ly/385BAhJ

[2] E. Veloso, V. Almeida, W. Meira. Jr., A. Bestavros, and S. Jin, “A hierar-
chical characterization of a live streaming media workload,” IEEE/ACM
Trans. Netw., vol. 14, no. 1, pp. 133–146, Feb. 2006.

[3] C. Zhang and J. Liu, “On crowdsourced interactive live streaming: A
Twitch.tv-based measurement study,” in Proc. 25th ACM Workshop Netw.
Operating Syst. Support Digit. Audio Video, 2015, pp. 55–60.

[4] A. Wittig and M. Wittig, “Amazon web services in action,” New York, NY,
U.S.: Simon and Schuster, 2018. [Online]. Available: http://aws.amazon.
com

[5] M. V. Marathe et al., “Bicriteria network design problems,” J. Algorithms,
vol. 28, no. 1, pp. 142–171, 1998.

[6] Y. Zhao, H. Jiang, K. Zhou, Z. Huang, and P. Huang, “Meeting service
level agreement cost-effectively for video-on-demand applications in the
cloud,” in Proc. IEEE Conf. Comput. Commun., 2014, pp. 298–306.

[7] X. Jin and S.-H. G. Chan, Unstructured Peer-to-Peer Network Architec-
tures in Handbook of Peer-to-Peer Networking. Berlin, Germany: Springer,
2010, pp. 117–142.

[8] B. Tan and L. Massoulié, “Optimal content placement for peer-to-peer
video-on-demand systems,” IEEE/ACM Trans. Netw., vol. 21, no. 2,
pp. 566–579, Apr. 2013.

[9] S. Yun, H. Lim, and K. Chung, “The biometric signature delegation scheme
to balance the load of digital signing in hybrid P2P networks,” Peer-to-Peer
Netw. Appl., vol. 8, no. 4, pp. 631–640, 2014.

[10] D. Wu, C. Liang, Y. Liu, and K. Ross, “View-upload decoupling: A re-
design of multi-channel P2P video systems,” in Proc. IEEE Conf. Comput.
Commun., 2009, pp. 2726–2730.

[11] H. Zhao, J. Wang, Q. Wang, and F. Liu, “Queue-based and learning-
based dynamic resources allocation for virtual streaming media server
cluster of multi-version VoD system,” Multimedia Tools Appl., vol. 78,
pp. 21827–21852, Apr. 2019.

[12] J. Niño-Mora, “Resource allocation and routing in parallel multi-server
queues with abandonments for cloud profit maximization,” Comput. Op-
erations Res., vol. 103, pp. 221–236, 2019.

[13] C. Valliyammai and R. Mythreyi, “A dynamic resource allocation strat-
egy to minimize the operational cost in cloud,” in Emerging Technologies
in Data Mining and Information Security, A. Abraham, P. Dutta, J. K.
Mandal, A. Bhattacharya, and S. Dutta, Eds. Singapore: Springer, 2019,
pp. 309–317.

[14] Z. Chang and S.-H. G. Chan, “An approximation algorithm to maximize
user capacity for an auto-scaling VoD system,” IEEE Trans. Multimedia,
vol. 23, pp. 3714–3725, 2021.

[15] R.-X. Zhang et al., “Livesmart: A QoS-guaranteed cost-minimum frame-
work of viewer scheduling for crowdsourced live streaming,” in Proc. 27th
ACM Int. Conf. Multimed., New York, NY, USA: Assoc. Comput. Mach.,
2019, pp. 420–428.

[16] R.-X. Zhang et al., “Leveraging QoE heterogenity for large-scale livecaset
scheduling,” in Proc. 28th ACM Int. Conf. Multimed., New York, NY, USA:
Assoc. Comput. Mach., 2020, pp. 3678–3686.

[17] R.-X. Zhang et al., “Enhancing the crowdsourced live streaming: A deep
reinforcement learning approach,” in Proc. 29th ACM Workshop Netw.
Operat. Syst. Support Digit. Audio Video, New York, NY, USA: Assoc.
Comput. Mach., 2019, pp. 55–60.

[18] F. Haouari, E. Baccour, A. Erbad, A. Mohamed, and M. Guizani,
“QoE-aware resource allocation for crowdsourced live streaming: A ma-
chine learning approach,” in Proc. IEEE Int. Conf. Commun., 2019,
pp. 1–6.

[19] T. Fernando and C. Keppetiyagama, “ISP friendly peer selection
in bittorrent,” in Proc. Int. Conf. Adv. ICT Emerg. Regions„ 2013,
pp. 160–167.

[20] N. Magharei, R. Rejaie, I. Rimac, V. Hilt, and M. Hofmann, “ISP-friendly
live P2P streaming,” IEEE/ACM Trans. Netw., vol. 22, no. 1, pp. 244–256,
Feb. 2014.

[21] S. Hu, M. Xu, H. Zhang, C. Xiao, and C. Gui, “Affective content-
aware adaptation scheme on QoE optimization of adaptive streaming over
HTTP,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 15, no. 3s,
pp. 1–18, Dec. 2019.

[22] J. Liu and G. Simon, “Fast near-optimal algorithm for delivering multiple
live video channels in CDNs,” in Proc. 22nd Int. Conf. Comput. Commun.
Netw., 2013, pp. 1–7.

[23] X. Tan and S. Datta, “Building multicast trees for multimedia stream-
ing in heterogeneous P2P networks,” in Proc. Syst. Commun., 2005,
pp. 141–146.

[24] C. Ding, Y. Chen, T. Xu, and X. Fu, “CloudGPS: A scalable and ISP-
friendly server selection scheme in cloud computing environments,” in
Proc. IEEE 20th Int. Workshop Qual. Serv., 2012, pp. 1–9.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 14,2023 at 08:57:36 UTC from IEEE Xplore.  Restrictions apply. 

https://bit.ly/385BAhJ
http://aws.amazon.com
http://aws.amazon.com


2850 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

[25] I. Irondi, Q. Wang, C. Grecos, J. M. A. Calero, and P. Casaseca-De-La-
Higuera, “Efficient QoE-Aware scheme for video quality switching oper-
ations in dynamic adaptive streaming,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 15, no. 1, pp. 1–23, Feb. 2019.

[26] N. Magharei and R. Rejaie, “PRIME: Peer-to-peer receiver-driven mesh-
based streaming,” IEEE/ACM Trans. Netw., vol. 17, no. 4, pp. 1052–1065,
Aug. 2009.

[27] D. Ren, Y.-T. H. Li, and S.-H. G. Chan, “Fast-mesh: A low-delay high-
bandwidth mesh for peer-to-peer live streaming,” IEEE Trans. Multimedia,
vol. 11, no. 8, pp. 1446–1456, Dec. 2009.

[28] Z. Lu, X. Gao, S. Huang, and Y. Huang, “Scalable and reliable live stream-
ing service through coordinating CDN and P2P,” in Proc. IEEE 17th Int.
Conf. Parallel Distrib. Syst., 2011, pp. 581–588.

[29] H. K. Yarnagula, P. Juluri, S. K. Mehr, V. Tamarapalli, and D. Medhi, “QoE
for mobile clients with segment-aware rate adaptation algorithm (SARA)
for DASH video streaming,” ACM Trans. Multimedia Comput. Commun.
Appl., vol. 15, no. 2, pp. 1–23, Jun. 2019.

[30] J. Dai, Z. Chang, and S.-H. G. Chan, “Delay optimization for multi-source
multi-channel overlay live streaming,” in Proc. IEEE Commun. Softw.,
Serv. Multimedia Appl. Symp., London, U.K., 2015, pp. 6959–6964.

[31] X. Liao, H. Jin, Y. Liu, and L. M. Ni, “Scalable live streaming service
based on interoverlay optimization,” IEEE Trans. Parallel Distrib. Syst.,
vol. 18, no. 12, pp. 1663–1674, Dec. 2007.

[32] X. Liao, H. Jin, Y. Liu, L. M. Ni, and D. Deng, “AnySee: Peer-to-Peer live
streaming,” in Proc. IEEE Int. Conf. Comput. Commun., 2006, pp. 1–10.

[33] K. Pires and G. Simon, “DASH in twitch: Adaptive bitrate streaming in live
game streaming platforms,” in Proc. Workshop Des., Qual. Deployment
Adaptive Video Streaming, 2014, pp. 13–18.

[34] A. Bentaleb, P. K. Yadav, W. T. Ooi, and R. Zimmermann, “DQ-DASH: A
queuing theory approach to distributed adaptive video streaming,” ACM
Trans. Multimedia Comput. Commun. Appl., vol. 16, no. 1, pp. 1–14,
Mar. 2020.

[35] D. Kondo, Y. Hirota, A. Fujimoto, H. Tode, and K. Murakami, “P2P live
streaming system for multi-view video with fast switching,” in Proc. 16th
Int. Telecommun. Netw. Strategy Plan. Symp., 2014, pp. 1–7.

[36] R. Jannapureddy, Q.-T. Vien, P. Shah, and R. Trestian, “An auto-scaling
framework for analyzing Big Data in the cloud environment,” Appl. Sci.,
vol. 9, no. 7, 2019, Art. no. 1417.

[37] F. Zhou, L. Jiayi, G. Simon, and R. Boutaba, “Joint optimization for the
delivery of multiple video channels in telco-CDN,” in Proc. Int. Conf.
Netw. Serv. Manage., 2013, pp. 161–165.

[38] Z. Zhuang and C. Guo, “Optimizing CDN infrastructure for live streaming
with constrained server chaining,” in Proc. IEEE 9th Int. Sympo. Parallel
Distrib. Process. Appl., 2011, pp. 183–188.

[39] C. Wu, B. Li, and S. Zhao, “Multi-channel live P2P streaming: Refocusing
on servers,” in Proc. IEEE Int. Conf. Comput. Commun., Phoenix, Arizona,
2008, pp. 1355–1363.

[40] F. Zhou, S. Ahmad, E. Buyukkaya, R. Hamzaoui, and G. Simon, “Mini-
mizing server throughput for low-delay live streaming in content delivery
networks,” in Proc. 22nd Int. Workshop Netw. Operating Syst. Support
Digit. Audio Video, 2012, pp. 65–70.

[41] C. Hu, M. Chen, C. Xing, and B. Xu, “EUE principle of resource schedul-
ing for live streaming systems underlying CDN-P2P hybrid architecture,”
Peer-to-Peer Netw. Appl., vol. 5, no. 4, pp. 312–322, 2012.

[42] F. Lombardi et al., “PASCAL: An architecture for proactive auto-scaling
of distributed services,” Future Gener. Comput. Syst., vol. 98, pp. 342–361,
2019.

[43] S. Budhkar and V. Tamarapalli, “An overlay management strategy to im-
prove QoS in CDN-P2P live streaming systems,” Peer-to-Peer Netw. Appl.,
vol. 13, no. 1, pp. 190–206, 2020.

[44] H. Azarpira and S. Yousefi, “On optimal topology in hierarchical P2P live
video streaming networks,” in Proc. 6th Int. Symp. Telecommun., 2012,
pp. 644–649.

[45] M. Kucharzak, K. Walkowiak, and M. Klinkowski, “On modeling of min-
imum cost multicast topology with multiple static streams in overlay com-
munication networks,” in Proc. 15th Int. Conf. Transparent Opt. Netw.,
2013, pp. 1–4.

[46] F. Zhang, X. Tang, X. Li, S. U. Khan, and Z. Li, “Quantifying cloud
elasticity with container-based autoscaling,” Future Gener. Comput. Syst.,
vol. 98, pp. 672–681, 2019.

[47] X. Jin, K.-L. Cheng, and S.-H. G. Chan, “Island multicast: Combining IP
multicast with overlay data distribution,” IEEE Trans. Multimedia, vol. 11,
no. 5, pp. 1024–1036, Aug. 2009.

[48] R. Singh, S. Agarwal, M. Calder, and P. Bahl, “Cost-effective cloud edge
traffic engineering with cascara,” in Proc. 18th USENIX Symp. Netw. Syst.
Des. Implementation, 2021, pp. 201–216.

[49] J. Naor and B. Schieber, “Improved approximations for shallow-light span-
ning trees,” in Proc. 38th Annu. Symp. Foundations Comput. Sci., 1997,
pp. 536–541.

[50] H. N. Gabow and K. Manu, “Packing algorithms for arborescences (and
spanning trees) in capacitated graphs,” Math. Program., vol. 82, no. 1,
pp. 83–109, 1998.

[51] D. Kraft et al., A Software Package for Sequential Quadratic Program-
ming. Germany: DFVLR Obersfaffeuhofen, Cologne, 1988.

Zhangyu Chang received the B.Sc. degree (Hons.) in
physics and computer science (double major) and the
M.Phil. degree in computer science and engineering,
in 2011 and 2015, respectively, from The Hong Kong
University of Science and Technology, Hong Kong,
where he is currently working toward the Ph.D. degree
with the Department of Computer Science and En-
gineering. His research interests include multimedia
networking, fog/edge computing, and video/location
data analytics.

S.-H. Gary Chan (Senior Member, IEEE) received
the B.S.E. degree (highest Hons.) in electrical en-
gineering from Princeton University, Princeton, NJ,
USA, in 1993, with certificates in applied and compu-
tational mathematics, engineering physics, and engi-
neering and management systems, and the M.S.E and
Ph.D. degrees in electrical engineering from Stanford
University, Stanford, CA, USA, in 1994 and 1999,
respectively, with a Minor in business administra-
tion. He is currently a Professor with the Depart-
ment of Computer Science and Engineering, Hong

Kong University of Science and Technology (HKUST), Hong Kong. He is also
an Affiliate Professor in innovation, policy and entrepreneurship thrust with
HKUST(GZ), the Chair of the Committee on Entrepreneurship Education Pro-
gram with HKUST, and Board Director of Hong Kong Logistics and Supply
Chain MultiTech R&D Center (LSCM). His research interest includes smart
sensing and IoT, cloud and fog/edge computing, indoor positioning and mobile
computing, video/location/user/data analytics, and IT entrepreneurship.

Prof. Chan has been an Associate Editor for the IEEE TRANSACTIONS ON

MULTIMEDIA during 2006–2011, and a Vice-Chair of Peer-to-Peer Networking
and Communications Technical Sub-Committee of IEEE Comsoc Emerging
Technologies Committee during 2006–2013. He was the Guest Editor of Else-
vier Computer Networks (2017), ACM Transactions on Multimedia Computing,
Communications and Applications (2016), IEEE TRANSACTIONS ON MULTIME-
DIA (2011), IEEE Signal Processing Magazine (2011), IEEE Communication
Magazine (2007), and Springer Multimedia Tools and Applications (2007). He
was the TPC Chair of IEEE Consumer Communications and Networking Confer-
ence (IEEE CCNC) 2010, Multimedia symposium of IEEE Globecom (2007 and
2006), IEEE ICC (2007 and 2005), and Workshop on Advances in Peer-to-Peer
Multimedia Streaming in ACM Multimedia Conference (2005).

Professor Chan has co-founded and transferred his research results to sev-
eral startups. Due to their innovations and commercial impacts, his startups and
research projects have received local and international awards (2012–2020).
Notably, he was the recipient of the Hong Kong Chief Executive’s Commenda-
tion for Community Service for “outstanding contribution to the fight against
COVID-19” in 2020. He was the recipient of Google Mobile 2014 Award (2010
and 2011) and Silver Award of Boeing Research and Technology (2009). He
was a Visiting Professor and Researcher with Microsoft Research (2000–11),
Princeton University (2009), Stanford University (2008–09), and University of
California at Davis, Davis, CA, USA, (1998–1999). He was the Director of
Entrepreneurship Center (2016–20), Undergraduate Programs Coordinator in
Department of Computer Science and Engineering (2013–15), Director of Sino
Software Research Institute (2012–15), Co-Director of Risk Management and
Business Intelligence program (2011–2013), and Director of Computer Engi-
neering Program (2006–2008) at HKUST. He was a William and Leila Fellow
with Stanford University (1993–94). He was also the recipient of the Charles Ira
Young Memorial Tablet and Medal, and POEM Newport Award of Excellence at
Princeton (1993). He is a Member of honor societies Tau Beta Pi, Sigma Xi, and
Phi Beta Kappa, and a Chartered Fellow of The Chartered Institute of Logistics
and Transport.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 14,2023 at 08:57:36 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


