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Abstract—In peer-to-peer (P2P) live streaming using unstruc-
tured mesh, packet scheduling is an important factor in overall
playback delay. In this paper, we propose a scheduling algo-
rithm to minimize scheduling delay. To achieve low delay, our
scheduling is predominantly push in nature, and the schedule
needs to be changed only upon significant change in network
states (due to, for examples, bandwidth change or parent churns).
QOur scheme, termed SPANC (Substream Pushing and Network
Coding), pushes video packets in substreams and recovers packet
loss using network coding. Given heterogeneous contents, delays,
and bandwidths of parents of a peer, we formulate the substream
assignment (SA) problem to assign substreams to parents with
minimum delay. The SA problem can be optimally solved in
polynomial time by transforming it to a max-weighted bipartite
matching problem. We then formulate the fast recovery with
network coding (FRNC) problem, which is to assign network
coded packets to each parent to achieve minimum recovery delay.
The FRNC problem can also be solved exactly in polynomial time
with dynamic programming. Simulation results show that SPANC
achieves substantially lower delay with little cost in bandwidth, as
compared with recent approaches based on pull, network coding
and hybrid pull-push.

Index Terms—Network coding, optimization, peer-to-peer (P2P)
streaming, scheduling, substream pushing.

I. INTRODUCTION

N RECENT years, we have witnessed many successful
I applications of peer-to-peer (P2P) technologies for live
streaming, such as PPLive,! PPStream?2, and SopCast.3 In P2P
live streaming, peers collaboratively organize themselves into
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an overlay and share their upload capacities to serve others. In
order to provide robustness against peer churns and to meet the
streaming bandwidth requirement, a mesh overlay is usually
constructed in a distributed manner, where each peer connects
to some other peers as its parents. By retrieving packets from
its parents, a child can aggregate and assemble a full stream to
achieve stream continuity. Given a number of parents, a child
needs to determine which parents are to deliver which packets,
given their heterogeneous bandwidths, delays and available
contents. This is called scheduling, which incurs delay due to
control messaging, packet buffering and transmission.

In an overlay, the scheduling delay can be substantial if the
scheduling is not designed properly. The playback delays for
popular P2P live streaming applications nowadays have been
measured ranging from tens of seconds to several minutes [1].
In order to achieve low delay in P2P live streaming, reducing or
optimizing such scheduling delay is therefore critical.

Traditionally, mesh-pull is used on mesh overlay due to its
simplicity, robustness, and high-bandwidth utilization (as used
in Coolstreaming [2]). Mesh-pull is based on buffermap ex-
change, because of which a child knows exactly the packets
that each parent has and can explicitly pull packets from each of
them. However, the buffermap formation and the pulling process
significantly delay packets in parent buffer [3]. Because sched-
uling delay propagates and accumulates along the overlay path,
mesh-pull often results in high delay, especially in large net-
work.

Push mechanism has hence been proposed to reduce sched-
uling delay, where parents push their packets to a child based
on a predetermined schedule (without explicit pull from the
child). The schedule only needs to be changed when there is
significant change in network conditions (e.g., in terms of fail-
ures, bandwidth, or loss). In a traditional tree-push approach,
the video stream is divided into independent substreams of sim-
ilar bandwidth (achieved simply by, for example, packet multi-
plexing), and each substream is pushed along different “struc-
tured” overlay trees [4]-[6]. A peer can then reassemble the
whole stream after receiving all the substreams from different
trees.

In this paper, we study the use of network coding combined
with substream pushing for P2P live streaming. Given an arbi-
trary mesh overlay, we focus on efficient scheduling to minimize
scheduling delay of a child. Our scheme, substream pushing
and network coding (SPANC), is predominantly push in nature
and achieves optimal delay in polynomial time. SPANC is in-
dependent of mesh construction algorithms (i.e., search algo-
rithms for parents) and can be used on any overlay. Given a set
of parents, the child computes an optimal push schedule for its

1520-9210/$26.00 © 2010 IEEE



744

.
LT« TsTelz s To o]

Child buffer:

segment i

Fig. 1. Child recovers a segment using NC packets.

parents. As long as the network conditions do not change con-
siderably, the schedule does not need to be adjusted, thereof
achieving push-based performance. In SPANC, parents push
network-coded (NC) packets with the substream packets to the
child. Any lost substream packets can be recovered by the pig-
gybacked NC packets, leading to efficient and fast recovery.

Given the available bandwidth from each parent to the child,
there are indeed multiple feasible substream assignments so that
each substream is assigned to only one parent. However, dif-
ferent assignments result in different delays at the child. For ex-
ample, closer parents with more updated contents should push
more substreams to reduce the delay at the child. Given the
available contents and uplink bandwidths of parents, there is
hence an optimal assignment to achieve the lowest delay. This is
the so-called substream assignment (SA) problem in this paper.

In SPANC, video packets are sequenced and consecutive
packets are grouped into segments. For each segment, the
parents generate some NC packets and send them to the child
in parallel with the source packets (this saves the turnaround
time for packet recovery at some expense of overhead). The
child, upon receiving the source* and NC packets, tries to
recover the whole segment. Refer to Fig. 1. Suppose a segment
is composed of ten packets and a child lost three packets in a
segment from substream push. With three NC packets, the three
lost packets from substream push can be recovered without
the need of retransmission, as the substream packets and the
NC packets are pushed by the parents at the same time. Given
the heterogeneous available contents, uplink bandwidths and
loss rates of the parents, we study how to optimally assign NC
packets to each parent to minimize the recovery delay. This
is the so-called fast recovery with network coding (FRNC)
problem in this paper.

There has been relatively little work on the analytic formula-
tion and optimization of scheduling problem. We address such
issues in this work by means of the following approaches.

1) Formulation and optimized solution of the SA problem:
We formulate the SA problem as an optimization problem
to minimize the overall delay of the packets. We show
that, by transforming to a max-weighted bipartite matching
(MWBM) problem, the SA problem can be solved exactly
and efficiently in polynomial time.

2) Formulation and optimized solution of the FRNC problem:
We first estimate the number of required NC packets for
recovery. The FRNC problem is to minimize the worst-
case delay of the NC packets, so that the recovery delay
at the child is minimized. We formulate the problem and
present an optimized and efficient solution in polynomial
time with dynamic programming.

4“Source packet” refers to the original packet in the video stream.
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3) Simulation studies and comparisons: With the optimal
solutions of SA and FRNC problems, we present a simple
and distributed scheduling algorithm called SPANC which
achieves low scheduling delay. Using simulations, we
study SPANC and compare it with current approaches
based on pull, network coding and hybrid pull-push. Our
results show that SPANC indeed achieves substantially
lower playback delay with little bandwidth cost. SPANC
can also perform well with peer churn.

The remainder of this paper is organized as follows. We
first overview related work in Section II. Then, we present
in Section III the system design of SPANC. We present the
formulations and solutions of the SA and FRNC problems in
Sections IV and V, respectively. In Section VI, we discuss
illustrative simulation results. We conclude in Section VII.

II. RELATED WORK

Traditional approaches for P2P live streaming can be classi-
fied into two categories: tree-push and mesh-pull. In tree-push
approach, peers organize themselves into overlay multicast trees
[6]. The video is usually decomposed into substreams, which are
pushed along different trees. A snowball scheduling which fo-
cuses on minimizing delay is proposed and analytically studied
in [7]. Multiple description coding (MDC) is studied in [5],
[8] to improve bandwidth utilization. Clearly, the tree-push ap-
proach achieves low delays. It requires little or no packet sched-
uling complexity. However, it needs to maintain a structured
overlay among peers, which requires much effort and is chal-
lenging with peer churns. Therefore, SPANC focuses on mesh
overlay, which can achieve resilience to peer dynamics and is
easier to implement [9].

In mesh-pull, a peer pulls on the per-packet basis based on
periodic exchange of buffermap. There has been much work
on mesh construction [10]-[13]. Bandwidth allocation in P2P
systems has also been discussed in [14]. Our work is orthog-
onal to them and focuses on the scheduling problem given a
mesh; SPANC can apply on their work to achieve better perfor-
mance. The scheduling problem in mesh-pull has been richly
studied. The global scheduling problem has been analytically
studied in [15] by modeling it as a minimum-cost network flow
problem. The local scheduling problem given a set of pull par-
ents and their buffermap has been found to be NP-hard in [2].
Various pull scheduling approaches have been proposed in [2]
and [16]-[18]. Though mesh-pull has been demonstrated to pro-
vide simplicity, robustness and high bandwidth utilization, the
pull mechanism leads to long delay [3]. In SPANC, parents ac-
tively push substreams and NC packets to a child based on a pre-
determined schedule, which is shown to achieve lower delay.

Recently, a hybrid pull-push approach has been proposed to
incorporate the benefits of low-delay pushing and high-band-
width utilization of pulling [3], [19], [20]. In this approach,
packets are divided into substreams and are pushed to peers. The
missing packets are then recovered using traditional pulling. In
[3], the substream scheduling is done greedily, which does not
achieve delay optimality. A substream trading scheme is pro-
posed in [21] that aims to provide differentiated video quality
with the aid of layered coding. A max-flow model has been used
to address the substream assignment problem [22]. However,
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the pulling of the lost packets still incurs high overall playback
delay. In SPANC, we further reduce the delay by the use of net-
work coding and pushing NC packets optimally.

A preliminary version of this work has been reported in [23].
As compared to it, the current work further reduces the sched-
uling delay through the use of NC. The new approach (SPANC)
is a push-based scheme without the need of the previous pull
mechanism. Moreover, we optimize the NC packet schedule by
an efficient algorithm based on dynamic programming.

Network coding has been proposed for multicast network
and has been shown to improve the throughput in P2P network
[24]-[26]. The benefits of using network coding in P2P live
streaming has also been analytically studied in [27]. Lava is
a scheme which uses network coding with traditional pulling,
while R? uses a randomized push algorithm [28], [29]. They
have not focused on reducing the source-to-peer delay of a P2P
network. A multiple-segment playback buffer is required in R2
to accommodate randomized selection, which leads to some un-
necessary source-to-peer delay. On the other hand, SPANC is
based on estimation of NC packets and does not require large
buffer for randomized selection. It also addresses the scheduling
problem by optimizing push schedule to achieve minimal delay.

III. SYSTEM DESIGN OF SPANC

We describe the system design of SPANC in this section. We
start our discussion by presenting our model in Section III-A.
The NC recovery is discussed in Section III-B.

A. Model

Let R bits/s be the streaming rate of the video stream. The
stream is composed of packets of constant size L bits that are
uniquely identified by sequence numbers. The packets are inter-
leaved into N substreams of bitrate R/N bits/s, i.e., substream
7 contains all packets whose sequence numbers and j are con-
gruent modulo N. A group of every S consecutive packets is
called a segment, and hence a segment period is given by

SL
T = IR (1)

We consider a simple multithread design of the system, where
each child is served by a new thread of the parent. Each thread
is allocated a certain bandwidth (which can be implemented
simply by certain bit transmission quota per some time interval).
As compared with the round-robin scheduling, such multithread
system has the strength that a parent—child connection of low
end-to-end bandwidth would not starve out other children in the
service queue (the so-called head-of-line blocking). Using this
design, without loss of generality, we can focus on a certain child
and its parents, as illustrated in Fig. 2. The child has a set of par-
ents denoted by P. For parent ¢ in P, it allocates a certain uplink
bandwidth B; bits/s to the child for substreams and NC packets.

We consider that control messages are sent through reliable
channel (using TCP) while data packets are subject to losses
(due to deadline missing or using UDP). For any parent ¢ € P,
the transmission loss rate is ¢;. We assume packets received by
parents are generally sequential within a segment, as parents are
also receiving their substream and NC packets for streaming.
Each parent in P then notifies the child the latest packet of each

P set of parents

Push substream(s) and/ or NC packets

child

Fig. 2. Parent—child relationship.

TABLE I
NOMENCLATURE
Notation Definition

P Set of all parents

N Number of substreams

S Number of packets in a segment

R Streaming rate (bits/s)

L Packet size (bit)

T Segment period (s) (T' = SL/R)

/l\j The sequence number of the last packet for sub-
stream j in the coming segment at the child

Ui, The latest packet sequence number at parent ¢ for
substream j

€; Loss rate of data packets between parent ¢ and
the child

B; Total uplink bandwidth that parent 7 allocated to
the child (bits/s)

ms Maximum number of substreams that parent ¢

allocated to the child
M M = Zie’f’ my

T Uplink bandwidth for NC packets of parent ¢
(bits/s)
Ti The time when the most updated vector [l; ;] is

received at the child from parent ¢

C(i,7) | Delay cost of assigning parent 4 to substream j
X Total number of requested NC packets per seg-
ment
D;(z) Delay cost of receiving  NC packets from par-
ent ¢
t; Segment formation time for parent ¢ (s)
substream in its buffer, denoted by a vector [l; 1,0 2, ..., 0 n].

where I; ; is the latest packet sequence number of substream
j at parent ¢ € P. Let 7; be the time when the vector [/; ;] is
received at the child from parent ;. Some important notations
are summarized in Table I.

When a child first joins the system, it connects to its parents
and asks for their buffer information (i.e., the [/; ;]’s). Upon
the receipt of the vector [I; ;] from all its parents, the child
computes a new push schedule for upcoming packets. The
child recomputes a new schedule when it experiences changes
in network conditions, such as the departure of a parent, or
a change in the uplink bandwidth (e.g. by 10%), etc. In the
worst case of peer churn, the child using our algorithm would
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adapt the schedule for each segment. The child computes the
schedule in two phases. The child first computes a substream
push schedule for its parents according to the SA algorithm
(presented in Section IV). With the SA solution, the child
estimates the number of NC packets required for upcoming
segments. Then it computes the number of NC packets to
be pushed by each parent according to the FRNC algorithm
(presented in Section V). The child then issues its requests for
substreams and NC packets to corresponding parents. The same
schedule will be used until a new schedule is computed or the
child is dead.

B. NC Recovery

NC packets are used to recover lost packets in a segment of
the child. The NC packets are computed at a parent by gener-
ating a linear combination of the source packets in a segment,
where coding coefficients are arbitrarily chosen (similar to [28],
[29]). The child, upon receiving N linearly independent packets
(including both source and NC packets), can recover the whole
segment by traditional NC decoding schemes (such as Gaussian
elimination).

For a segment to be fully recovered, the total number of re-
ceived NC packets and source packets for the segment must be
no less than S. Let X be the total number of requested NC
packets per segment by the child. Note that, as the child does
not continuously feed back to parents for overhead considera-
tion, X must be sufficiently high so that it can mitigate statis-
tical fluctuation of packet loss while low enough not to incur too
much bandwidth cost. This estimation is performed as follows.

For every segment, the child records X', the number of NC
packets necessary for recovery, which is simply the number
of source packets lost in the segment. To smooth out statis-
tical fluctuation, the child also keeps a “smoothed” version of
X', denoted as X: with a new sample X', the child updates
X as X « (1 — a1)X’ + a1 X and the variance as ox/ «
(1 — a2)|X — X'| + aox, where 0 < g, a0 < 1 are some
smoothing factors.

In order to recover error with high probability, the child sets
a “cushion” to accommodate the statistical fluctuations. X is
hence set to be

X <—Y~|—[30’Xl 2)

where 3 is some multiplier greater than zero. In our scheme,
X is updated by the child only when the estimation differs by
more than a certain threshold (i.e., 2 in our simulations). Parents
would not resend its packets to a downstream child. If the child
fails to carry out NC recovery continuously, it would recompute
a new schedule based on (2).

IV. SA PROBLEM

We first formulate the SA problem as a delay optimization
problem (Section I'V-A), and then present an exact polynomial-
time solution (Section IV-B). As mentioned before, given our
operation model, without loss of generality we can focus on a
child with multiple parents as shown in Fig. 2.
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A. Problem Formulation

Let m; be the maximum number of substreams that can be
pushed to the child for parent ¢ € P (m; € N) given by

N
—J . 3)

Given the latest packet vector [I; ;] from parent 4 (received
at some time 7;), and the maximum number of substreams al-
located to the child m;, the SA problem is to find a substream
assignment achieving the minimum total source-to-child delay.
Note that not all parents in PP have to be assigned.

Let C(1, 7) be a function denoting the (delay) cost of packets
if parent 7 is assigned to substream j, where a larger C(3, j)
means higher source-to-child delay. Note that SA problem does
not assume any form of C(i, ).

The goal of the SA problem is to find an assignment of sub-
streams to parents in P, i.e., find A : {1,2,---,N} — P,
such that substream j is assigned to parent A(j) € P for j €
{1,2,---,N}, so as to

m; = \‘Bi .

N
Minimize Z C(A(Y),J) “4)

j=1
subject to the bandwidth constraint
|[ATN@)| < mi, VieP 5)

where A71(i) is the set of assigned substream(s) to parent i in
A, and |A~1(7)| is the size of the set.

One may consider a delay cost as follows. We illustrate in
Fig. 3 the timeline to send substreams from parent ¢ to the child,
where Point 1 is the time the parent ¢ sends packet sequence
numbers of [/; ;] to the child. Since the packet sequence numbers
are received at time 7;, ; — I; ;(L/R) (Point 2) represents the
arrival time of packet 0 if it were pushed to the child. This can
be interpreted as the “virtual” starting time for substream j at
the child from parent ¢, which can also be viewed as a reference
for the “timeliness” of the substream. Clearly, the earlier this
virtual arrival time is, the lower is the delay. Therefore, we may
consider the delay cost, C(i, j), as

L
C(Z“}) =T; — Z,L'?j (E) . (6)

B. Exact Solution Based on Max-Weighted Bipartite Matching

The SA problem can be solved exactly in polynomial time, as
it can be transformed to an equivalent MWBM problem. This
is shown as follows. We consider a complete bipartite graph
G = (V, ) with bipartition V = X' U Y, as illustrated in Fig. 4.
X = {:L’Z('k) : parent ¢ € P;k = 1,---,m;}. We have |[X]| =
M, where M = 3., m;. Each zgk) € X represents a possible
assignment slot for substream. Y = {y; : j = 1,2,..., N},
where y; € ) represents substream j, therefore |Y| = N. The

objective of SA problem in (4) is to minimize 3" C(A(j), j).
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Fig. 3. Timeline for virtual arrival between parent ¢ and the child.
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Fig. 4. Bipartite graph for SA solution.

which is equivalent to maximize — Zj\;l C(A(j),7). There-

fore, the weight of each edge (:v(-k)

i ,y;) issettobe —C(4, 7).
Clearly, the MWBM solution on G is the optimal solution
of the SA problem, whose solution is to assign substream j to
parent ¢ for every matching (xgk), y;) in the MWBM problem.
The MWBM problem can be solved efficiently by the Hungarian
Algorithm [30]. Therefore, the time complexity of SA problem

follows with the MWBM problem, which is O(N? + M3).

V. FRNC PROBLEM

In this section, we describe the formulation and solution of
the FRNC problem, which minimizes the recovery time by as-
signing NC packets to parents.

A. Problem Formulation

Let r; bits/s be the uplink bandwidth of parent ¢ for sending
NC packets to the child. Given the SA solution A, the residual
uplink bandwidth of parent ¢ is given by

ri =B — |AT(4)| - (%) ) ©)

Let z; be the number of NC packets received from parent
i € P for each segment (z; € N). In other words, if ¢; is the
loss rate of parent i, parent ¢ expects to send [z;/(1 — ¢;)] NC
packets. To recover a segment, we hence require

S > X ®)
i€P

Note that, for stability and continuity, all NC packets of a
segment have to be sent within the segment period 7', which
means

{iiej = (Tf) T
2 < (%) T-(1-¢) ©)

where T is given in (1).

A parent generates and sends NC packets of a segment after
it has received most of the packets in the segment.> This in-
curs a waiting time called segment formation time labeled as
t; for parent ¢. To estimate ¢;, the child first computes /;, the
sequence number of the last packets for substream j in its up-
coming (yet-to-be received) segment. Clearly, if /; is no larger
than [; ;, parent ¢ has already had all the packets for substream j
in the coming segment of the child; therefore no waiting time is
needed. On the other hand, if /; is larger than [; ;, parent ¢ is ex-
pected to wait for (Tj —1; ;) /N packets (NC or source packets)
to arrive. Given the above, the child estimates the segment for-
mation time t; for parent ¢ as

L N
- T 7. )t
ti= g | o —1i)

=1

(10)

where 2 = max(0, ).

Let D;(x;) be the delay (cost) of receiving x; NC packets
from parent: € P. Itrepresents the delay introduced to the child
as shown in Fig. 5, consisting of the time when [; ; is received
at 7;, segment formation time and transmission delay according
to

0., lf.TL =0
D) = Titti+ [121 , ifz; >0

SA parent forms NC packets if the segment is fully received, or with period
S, whichever is earlier. If the segment is incomplete, the parent still forms NC
packets based on the received packets in the segment.

6Note that l: — [,,; must be an integral multiple of N as they refer to the
sequence number of packets in the same substream.

Y
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Fig. 5. Timeline for delay components for FRNC between parent ¢ and the
child.

The FRNC problem is to find an assignment which minimizes
the worst-case delay (cost) over all parents, i.e., to find z;’s so
as to

12)

Minimize max D;(x;),
Vi € P, subject to (8) and (9).

B. Exact Solution Using Dynamic Programming

The FRNC problem can be solved efficiently by dynamic
programming as follows. Let ®[u,v] be the minimum delay
cost of receiving v < X NC packets (v € N) from parents
{1}u{2}u...u{u} C P,ie,

®[u, v] = min {mle (Di(z;)),Vi={1,2,--- u}} (13)

subject to (9) and

Z x; > .

’L'G[l...u]

(14)

Then, the solution to the FRNC problem is equivalent to
D[|P|, X].

For the boundary case of v = 1, if (9) is satisfied, then
x1 = v packets would be received from parent 1 with delay
cost ®[1, v] = D1 (v); otherwise, it is impossible to satisfy both
(9) and (14) and we have ®[1,v] = co. In other words

Q)[l’v]:{?ol(vL forv < (%) -T-(1—e) (15)

, otherwise.

We next derive the recurrence of ®[u,v] for 1 < u < |P).
Without loss of generality, we first decide z,,. From (9) and (14),
the possible range of z,, are 0 < z,, < min(v, (r,/L)-T-(1—
€x)), with delay cost D, (x,,). After that, the remaining v — x,,
packets are to be received from parents 1 to v — 1, which reduces
to a subproblem of finding ®[u — 1,v — x,]. In other words,
®[u, v] is given by the minimum of max(D,,(z,,), Plu—1,v —
x,]) over all possible z,,’s, i.e.,

®fu, v] = min max (D, (z,,), Plu — 1,v — z,,]) (16)

Ean
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for1 < u < |P|, where

0 <z, <min (v, (%) -T-(1— eu)) . 17
With the boundary condition of (15) and the recurrence rela-
tion of (16), the FRNC problem can hence be solved by dynamic
programming by building a 2-D array of ®[u, v] as presented in
Algorithm 1. Clearly, the time complexity is O(|P|X?).

Algorithm 1 Pseudo code of the FRNC dynamic programming
solution.

/* Initialization */
for1 <u<|P,0<v< Xdo
Dlu,v] «— —o0
end for
/* Boundary Case */
for 0 < v < X do
ifv < (r1/L)-T-(1—¢) then
®[1,v] «— D1(v)
else
®[1,v] « oo
end if
end for
/x Recurrence */
for u = 2to |P| do
for v = 0to X do
for 0 < k < min(v, (r,/L) - T- (1 —€,)) do

if ®[u,v] > max(P[u — 1,v — k], Dy(k))
then

®u,v] — max(Plu—1,v—k], Dy (k))
backtracklu,v] — k
end if
end for
end for
end for
/* Backtracking */
v— X
for u = |P| downto 1 do
Ty — backtrack[u,v]
v — v — backtrack[u, v]
end for

return z;, fori = 1,2,---,|P|
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VI. ILLUSTRATIVE SIMULATION RESULTS

‘We have conducted simulation study on SPANC. We present
the simulation environment and metrics in Section VI-A and
illustrative results in Section VI-B.

A. Simulation Environment and Metrics

We compare SPANC with the following approaches.

e Pull: The pull scheme adopts a rarest-first algorithm
(used in, for example, CoolStreaming [2]). After periodic
buffermap exchange, pull requests are issued at a child
to request packets from parents. If a packet is lost, the
same packet is pulled again (for at most two times in our
simulation).

* Hybrid: A hybrid pull-push scheme reduces the delay by
pushing substreams. Similar to the one used in [3], the sub-
stream assignment algorithm is done in a greedy fashion.
If a packet is lost, the same packet is pulled by the child.

* Lava: In order to compare SPANC with a pure network
coding approach, we compare our scheme with Lava [28].
Since SPANC and Lava have not focused on reducing the
source-to-peer delay, Lava can provide qualitatively sim-
ilar results for our comparison. In Lava, a child pulls NC
packets of a segment from its parents. The earliest segment
is given higher priority so as to ensure streaming conti-
nuity.

The pull and hybrid schemes repull packets after a certain
timeout if a pulled packet is lost. We use a timeout value of 1 s
for pull and hybrid, which can optimize their performances, in
terms of high lost detection and low delay.

We have implemented an event-driven simulator in C++.
We generate Internet-like two-level topologies using BRITE
consisting of many (5000) routers with default parameters
[31]. BRITE also provides the underlying link latency in mil-
liseconds. Peers are randomly attached to different underlying
routers. We assume the data packets are sent through UDP.
The Internet traffic is rather complex and diversified [32]. For
simplicity, we model the transmission loss rate for data packets
between two peers as uniformly distributed from 2% to 10%,
which are quite typical in the Internet environment [33]. The
uplink bandwidth of the server is 4 Mbps, while the uplink
bandwidth of a normal peer is uniformly distributed between
512 kbps and 1 Mbps. Unless otherwise stated, we use the
following baseline parameters: R = 512 kbps, L = 8kb,
N =8,T = 2s,a; = as = 0.875, f = 3.0 and the
number of peers = 500.

Our focus is on packet scheduling given a mesh topology. In
our simulation, we have used a random mesh topology for il-
lustration purpose; note that SPANC can apply on any overlay
construction schemes such as [10]-[13]. (Our results are quali-
tatively the same with other topology.) Every peer sequentially
joins the system and is randomly assigned to a default number
(i-e., 10) of peers as parents. In SPANC, every parent randomly
allocates some uplink bandwidth B; ~ U[0, R/2] for substream
pushing and NC packets.

We use the following performance metrics in our evaluation.

* Residual Loss Rate: It is the percentage of source packets
that cannot be successfully received after loss recovery at
a peer.
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* Packet Delay: It refers to the source-to-peer delay of each
packet for a peer, after loss recovery with NC packets. We
are interested in both its distribution and average.

* Playback Delay: While the packet delay shows the general
behavior of packet arrival, the video playback of a peer is
determined by the highest packet delay. We call the max-
imum packet delay of all packets as playback delay of a
peer (i.e., the packet delay of the latest received packet).
We are also interested in both its distribution and average.

* Bandwidth Dilation: 1t is defined as the percentage of
extra upload bandwidth consumed over the raw streaming
rate R. It measures the bandwidth overhead due to
packet retransmission, NC packet transmission, or control
messages.

B. Illustrative Results

We compare in Fig. 6(a) the average packet delay of different
schemes versus number of peers. Generally, the average packet
delay increases with number of peers, as the overlay size of
the network increases. The average packet delay of pull is rela-
tively high, due to the buffermap exchange and the pull requests
roundtrip. Lava reduces packet delay because of the use of net-
work coding. Hybrid is better than pull and Lava, because some
of the packets are pushed instead of pulled. SPANC achieves
substantially lower delay. This is due to its pure push nature
and the schedule optimality which pushes packets in a timely
manner to peers.
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Fig. 6(b) shows the CDF of the packet delay of various
schemes for the baseline case. We observe that pull-based
schemes (i.e. pull and Lava) have higher packet delays and
delay variation. This is because the mechanism of pull requests
are initiated at child side, which greatly delays a packet in
parent buffer after it is received. Similar situations also occur
for the hybrid scheme, where some packets are pulled. In
SPANC, the packet delays are rather concentrated and low.
This is again due to the pure push nature and the schedule
optimality of SPANC.

We compare in Fig. 7(a) the playback delay of the three
schemes versus number of peers. Similar trend is observed as
with the packet delay. SPANC achieves the lowest playback
delay. (It reduces the playback delay substantially by 65%,
55%, and 40% as compared with pull, Lava, and hybrid, re-
spectively.) The playback delay is usually resulted from the
recovered lost packets. In pull and hybrid, specific lost packets
are pulled after timeout. This passive recovery method greatly
affects the playback delay of a peer. In SPANC, lost packets are
recovered actively by pushing NC packets in advance of the lost
packets being discovered. This aggressive recovery scheme can
greatly reduce the messaging delay and timeout compared with
the other schemes. Therefore, the playback delay of SPANC
outperforms the other schemes.

The CDF of the playback delay of various schemes is shown
in Fig. 7(b). The playback delay of peers in pull, Lava, and
hybrid clearly show more variation as compared with peers in
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SPANC, which can be explained by the pure push nature of
SPANC.

Fig. 8 compares the residual loss rate against number of peers
for different schemes. The residual loss rate for all schemes are
low (around 1%). The low residual loss rate achieved by SPANC
confirms that our NC recovery is effective to recover packet loss.

Fig. 9 compares the bandwidth dilation of various schemes
versus number of peers. The bandwidth dilation of all schemes
are generally insensitive to the number of peers in the network.
The pull scheme has the lowest dilation because every packet
is pulled explicitly so data packets are seldom redundant. The
other schemes have similar dilation. In Lava, the redundant
packets are due to linearly dependent NC packets received at
the child. In hybrid, redundant packets are due to asynchrony
between push and pull, due to propagation delay of control
messages [3]. In SPANC, the surplus in NC estimation allows
good NC recovery, but also introduces some redundant NC
packets. From this and previous figures, we see that SPANC
achieves its better delay performance with a slightly higher
bandwidth dilation.

We investigate the impact of segment period 7" on the delay
performance in Fig. 10(a). In general, the playback and packet
delay both increase with the segment period 7', due to the seg-
ment-based NC recovery. When T is small (such as 1 s), both
delays increase slowly with T'. However, both delays increase
rapidly with 7" when T is too large (such as 4 s).

We also study the impact of segment period 7" on the residual
loss rate in Fig. 10(b). The residual loss rate generally decreases
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Fig. 10. Impact of segment period T'. (a) Average packet delay and playback
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when T increases, as larger segments can better accommodate
the randomness in NC estimation. When 7" is too small (such as
1 second), the segment is too small to accommodate the random
or statistical fluctuation in the number of NC packets received,
leading to high residual loss rate. On the other hand, a higher T’
does not reduce the residual loss rate much. Therefore a good
value of T is around 2 s, which is the value we use in our sim-
ulations.

We investigate the impact of number of substreams N to the
delay performance in Fig. 11. With 7" and L are fixed, we in-
crease N from 2 to 16. We observe that both the average packet
delay and playback delay are high when N is too small. This
is because the substreams are too massive in unit so that it does
not allow flexibility for good substream assignment. When N is
large enough (such as 8), low delays are achieved, by the optimal
substream assignment of SA solution. As the delay reductions
are not significant with more substreams (N > 8), we choose N
to be 8 in our simulations to save the FRNC solution complexity.

The surplus of estimating the number of NC packets is con-
trolled by parameter 3. We show in Fig. 12 the effects of residual
loss rate versus (3. When 3 is small (i.e., 2), the residual loss rate
is high (around 10%). This is because the low surplus cannot
accommodate the random fluctuations of packet loss, leading to
poor NC recovery. Moreover, the high loss would propagates
along overlay path. On the other hand, when (3 is large (i.e., 3),
the surplus is able to allow good NC recovery. Given by (2),
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Fig. 11. Average packet delay and playback delay versus number of substreams
N.

12

Residual Loss Rate (%)

B

Fig. 12. Residual loss rate versus different values of 3.

larger (3 leads to more relax estimation and higher bandwidth
dilation. Therefore, § = 3 is a good value in our simulations.

We next study the effect of user dynamic on the performance
of SPANC. In Fig. 13 we illustrate the system dynamics when
one of the streaming parents of a child dies at the tenth second.
The number of NC packets requested X, averaged X, and actu-
ally required X’ are plotted against time in Fig. 13(a). We also
plot the corresponding bitrate after recovery in Fig. 13(b). Atthe
tenth second, a substream is lost due to parent failure, so there
is a sudden rise in the number of NC packets required. The NC
recovery therefore failed, leading to a drop in the good packets
received. The child adapts to this situation quite fast in SPANC
by computing a new schedule with the remaining parents so that
the subsequent stream is not affected. As is clear from (2), X is
usually higher than X'. Therefore the NC recovery is successful
in recovering the full stream. This figure shows that SPANC is
able to react quite quickly upon a peer churn to maintain high
stream continuity.

VII. CONCLUSION

In this paper, we study scheduling optimization for P2P live
streaming. Given a mesh overlay, we study how to minimize
scheduling delay of a child. Our scheme, termed SPANC,
achieves low delay by pushing video packets in substreams and
recovering packet loss using network coding. Given a set of
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parents, the child computes an optimal push schedule for its
parents.

We optimize the design of SPANC by addressing two of its
subproblems, the SA and FRNC problems . Given heteroge-
neous contents, delays, and bandwidths of parents, we formu-
late the SA problem to assign substreams to parents to achieve
minimum delay. The SA problem can be optimally and effi-
ciently solved in polynomial time by transforming to a MWBM
(max-weighted bipartite matching) problem. In order to assign
NC packets to each parent to achieve minimum recovery delay,
we also formulate the FRNC problem that assigns NC packets to
different parents. The FRNC problem can also be solved exactly
and efficiently in polynomial time with dynamic programming.

Simulation results show that SPANC achieves substantially
lower delay with comparable playback quality (in terms of
residual loss rate) and little cost in bandwidth, as compared
with current pull, network coding and hybrid pull-push ap-
proaches. SPANC is also reactive to network dynamic and
adapts to peer churns to maintain high stream quality.
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