
A Distributed Protocol to Serve Dynamic
Groups for Peer-to-Peer Streaming

Xing Jin, S.-H. Gary Chan, Senior Member, IEEE Computer Society,

Wan-Ching Wong, and Ali C. Begen, Member, IEEE Computer Society

Abstract—Peer-to-peer (P2P) streaming has been widely deployed over the Internet. A streaming system usually has multiple

channels, and peers may form multiple groups for content distribution. In this paper, we propose a distributed overlay framework

(called SMesh) for dynamic groups where users may frequently hop from one group to another while the total pool of users remain

stable. SMesh first builds a relatively stable mesh consisting of all hosts for control messaging. The mesh supports dynamic host

joining and leaving, and will guide the construction of delivery trees. Using the Delaunay Triangulation (DT) protocol as an example, we

show how to construct an efficient mesh with low maintenance cost. We further study various tree construction mechanisms based on

the mesh, including embedded, bypass, and intermediate trees. Through simulations on Internet-like topologies, we show that SMesh

achieves low delay and low link stress.

Index Terms—Peer-to-peer streaming, dynamic group, Delaunay triangulation.

Ç

1 INTRODUCTION

WITH the penetration of broadband Internet access,
there has been an increasing interest in media

streaming services. Recently, P2P streaming has been
proposed and developed to overcome the limitations of
traditional server-based streaming. In a P2P streaming
system, cooperative peers self-organize themselves into an
overlay network via unicast connections. They cache and
relay data for each other, thereby eliminating the need for
resourceful servers from the system. Today, several
practical P2P streaming software implementations have
been shown to be able to serve up to thousands of peers
with acceptable quality of service [1], [2], [3].

In a P2P streaming system, the server (or a set of servers)
usually provides multiple channels. A peer can freely switch
from one channel to another. For example, one of the most
popular P2P streaming systems, PPLive, has provided over
400 channels in September 2007 [4]. According to a measure-
ment study from the Polytechnic University, the total number
of peers in PPLive during a day in 2007 varies from around
50 thousand to 400 thousand, and the number of peers in a
single channel, e.g., CCTV1, varies from several hundred to
several thousand [5], [6]. We can see that there is a large pool
of peers in the streaming network. Peers are divided into
multiple small groups, each corresponding to a channel.

Peers in the same group share and relay the same streaming
content for each other. In another study, a six-month 150-
channel IPTV trace shows that people frequently change from
one channel to another, with the median and mean channel
holding time being 8 seconds and 14.8 minutes, respectively
[7]. The trace also shows that a household (among those
watching TV for the longest time) on average watches
2.54 hours and 6.3 distinct channels of TV a day.

In fact, there are many other similar applications over the
Internet. In the application, the system contains multiple
groups with different sources and contents. A user may join a
specific group according to its interest. While the lifetime of
users in the system is relatively long and the user pool is rather
stable, users may hop from one group to another quite
frequently. Examples include stock quotes, news-on-de-
mand, and multisession conferencing. A more typical exam-
ple is group chat of Skype [8]. Skype allows up to around
100 users to chat together. While millions of Skype users stay
online and relay data for each other, the users may form
multiple small groups for group chat. According to Rossi et al.
[9], except for very short sessions, most Skype peers are alive
for about one third of a day. Generally, such lifetime of a Skype
peer is longer than the duration of a group chat.

In above applications, as peers may dynamically hop from
one group to another, it becomes an important issue to
efficiently deliver specific contents to peers. One obvious
approach is to broadcast all contents to all hosts and let them
select the contents. Clearly, this is not efficient in terms of
bandwidth and end-to-end delay, especially for unpopular
channels. Maintaining a separate and distinct delivery
overlay for each channel appears to be another solution.
However, this approach introduces high control overhead to
maintain multiple dynamic overlays. When users frequently
hop from one channel to another, overlay reformation
becomes costly and may lead to high packet loss.

In this paper, we consider building a data delivery tree for
each group. To reduce tree construction and maintenance
costs, we build a single shared overlay mesh. The mesh is
formed by all peers in the system and is, hence, independent

216 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2010

. X. Jin is with the Systems Technology Group, Oracle USA, Inc., 400
Oracle Parkway, Redwood Shores, CA 94065. E-mail: xing.jin@oracle.com.

. S.-H.G. Chan and W.-C. Wong are with the Department of Computer
Science and Engineering, The Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
E-mail: gchan@cse.ust.hk.

. A.C. Begen is with Video and Content Platforms Research and Advanced
Development Group, Cisco Systems, Inc., San Jose, CA 95134.
E-mail: abegen@cisco.com.

Manuscript received 22 Jan. 2008; revised 22 Feb. 2009; accepted 2 Mar. 2009;
published online 26 Mar. 2009.
Recommended for acceptance by P. Mohapatra.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-01-0026.
Digital Object Identifier no. 10.1109/TPDS.2009.58.

1045-9219/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 09,2010 at 00:15:43 EST from IEEE Xplore. Restrictions apply.

of joining and leaving events in any group. This relatively
stable mesh is used for control messaging and guiding the
construction of overlay trees. With the help of the mesh, trees
can be efficiently constructed with no need of loop detection
and elimination. Since an overlay tree serves only a subset of
peers in the network, we term this framework Subset-Mesh, or
SMesh.

Our framework may use any existing mesh-based over-
lay network. In this paper, we use Delaunay Triangulation
(DT) as an example [10]. We propose several techniques to
improve the DT mesh, e.g., for accurately estimating host
locations and distributed partition detection. Based on the
mesh, we study several tree construction mechanisms to
trade off delay and network resource consumption. We
investigate the following two important issues in SMesh:

. Mesh formation and maintenance: The mesh should be
efficiently formed and maintained in order to reduce
control and delivery overhead. We choose the DT
mesh as an example. We then use the Global
Network Positioning tool (GNP) [11] (or many other
equally good ones [12], [13], [14]) to estimate host
locations in the Internet in order to improve mesh
efficiency. We further present a distributed algo-
rithm on how to detect and recover mesh partitions.
Our mesh has the following properties:

- Low delivery delay: As mesh formation and
message forwarding are based on hosts’ net-
work locations, the delay for data delivery is
significantly reduced as compared to that in the
traditional DT mesh.

- Distributed: Unlike the traditional DT mesh,
SMesh does not require a central server for mesh
maintenance. It is fully distributed and scalable.

. Construction of data delivery trees: Given the mesh, we
study how source-specific overlay trees can be
efficiently constructed and maintained. We consider
three ways to construct a tree: 1) Embedded tree,
where tree branches are all mesh edges; 2) Bypass
tree, where tree nodes can only be group members
and tree branches may not be mesh edges; and
3) Intermediate tree, which is a trade-off between an
embedded tree and a bypass tree. These trees have
the following properties:

- Overhead reduction: As compared to traditional
tree-based protocols, SMesh achieves much
lower control overhead for tree construction
and maintenance. This is because the mesh has
maintained enough host information and can
efficiently deal with host hopping between
different groups.

- QoS provisioning: SMesh provides QoS in the
following senses: 1) It limits the node stress of a
host in a tree according to the host’s capability.
2) It aggregates long-delay paths and delegates
data delivery to shorter paths. As a result,
packets may take more hops to reach their
destinations, and this trades off end-to-end
delay with network resource consumption.

SMesh does not rely on a static mesh. In the case of host

joining or leaving, the underlying DT mesh can automatically

adjust itself to form a new mesh. The trees on top of it will then
accordingly adjust tree nodes and tree edges. Also note that in
SMesh a host may join as many groups as its local resource
allows. If a host joins multiple groups, its operations in
different groups are independent of each other.

The rest of the paper is organized as follows: In Section 2,
we review the GNP and DT protocols. In Section 3, we discuss
how to form and maintain an efficient mesh. In Section 4, we
study the tree construction mechanisms. In Section 5, we
present illustrative simulation results on Internet-like topol-
ogies. We discuss related work in Section 6, and finally
conclude the paper in Section 7.

2 REVIEW ON GNP AND DT

In this section, we briefly review the GNP and DT protocols.
We will construct our SMesh system based on these
building blocks.

2.1 Review on GNP Estimation

GNP estimates host coordinates in a multidimensional
euclidean space such that the distance between two hosts in
the euclidean space correlates well with the measured
round-trip time between them [11]. In GNP, a few hosts are
used as landmarks. Landmarks first measure the round-trip
time between each other and forward results to one of them.
The landmark receiving results uses the results to compute
the landmark coordinates in the euclidean space. The
coordinates are then disseminated back to the respective
landmarks. More specifically, to estimate landmark coordi-
nates, the following objective function is minimized1:

JlandmarkðL1; L2; . . . ; LMÞ
¼

X

Li;Lj2fL1;...;LMgji>j
kLi � Ljk �RTT ði; jÞ
� �2

; ð1Þ

where M is the number of landmarks, Li and Lj are the
coordinates of landmarks i and j in the euclidean space, and
RTT ði; jÞ is the round-trip time between i and j. As shown,
Jlandmark is the sum of the estimation error between the
measured round-trip time and the logical distances in the
euclidean space among the landmarks. Therefore, we seek a
set of landmark coordinates such that the sum is mini-
mized. If there are multiple sets of fL1; L1; . . . ; LMg to
minimize Jlandmark, any one set can be used.

Given the landmark coordinates, a normal host estimates
its coordinates by minimizing a similar objective function:

JhostðHuÞ ¼
X

Li2fL1;...;LMg
kHu � Lik �RTT ðu; iÞð Þ2; ð2Þ

where Hu is the coordinates of host u, and RTT ðu; iÞ is the
measured round-trip time between host u and landmark i.

Note that landmarks do not have to be permanent. It is easy
to modify (2) to remove a failed landmark or add a new
landmark. According to Ng and Zhang [11], GNP has shown
good enough performance when the number of landmarks is
a constant (9-15 as recommended in [11] and 20 in our
simulations). Therefore, each host can obtain its coordinates

JIN ET AL.: A DISTRIBUTED PROTOCOL TO SERVE DYNAMIC GROUPS FOR PEER-TO-PEER STREAMING 217

1. Equations (1) and (2) show the cases in two-dimensional space as
originally proposed in [11].

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 09,2010 at 00:15:43 EST from IEEE Xplore. Restrictions apply.

by pinging Oð1Þ landmarks and using Oð1Þ messages. It is
highly efficient and scalable.

2.2 Review on Delaunay Triangulation

In the traditional DT protocol, each host knows its
geographic coordinates [10]. Hosts form a DT mesh based
on their geographic coordinates. Compass routing, a kind of
local routing, is then used to route a message along the
mesh [15]. In this approach, a host only needs to know the
states of its immediate neighbors to construct and maintain
the mesh, and the mesh is adaptive to dynamic host joining
or leaving.

DT protocol connects hosts together so that the mesh
satisfies the DT property, i.e., the minimum internal angle
of the triangles in the mesh is maximized [16], [17]. Here
angles are computed according to the coordinates of hosts
as in traditional geometry. It has been shown that a mesh
formed in this way connects close hosts together. We
illustrate the triangulation process in Fig. 1. Suppose that
hosts a; b; c, and d form a convex quadrilateral abcd. Two
possible ways to triangulate it are shown in Figs. 1a and 1b,
respectively. Clearly, the minimum internal angle of 4abc
and 4acd is smaller than that of 4abd and 4bcd. DT
protocol then transforms the former configuration into the
latter one. To achieve this, a host periodically sends
HelloNeighbor messages to its neighbors to exchange their
neighborhood information. It removes a host from its
neighbor list if the connection to that host violates the DT
property. Similarly, a host adds another host into its
neighbor list only if the addition does not violate the DT
property. Given a set of N hosts in the network, a DT mesh
among them can be constructed with OðN logNÞ messages.
The detailed construction mechanism and complexity
analysis can be found in [16].

Compass routing works as follows. Host a forwards
messages with destination t to b, if b, among all a’s
neighbors, forms the smallest angle to t at a. We show an
example in Fig. 2. Hosts b; c, and d are neighbors of host a,
and a needs to forward a message to destination t. Since
ffbat is the smallest among ffbat; ffcat, and ffdat; b is chosen by
a as the next hop for message forwarding.

In the traditional DT protocol, mesh partition is detected
by a central server. In each connected DT mesh, a host is
selected as the leader, which periodically exchanges control
messages with the server. If the mesh is partitioned, more
than one host will claim to be leaders. The server then
requests them to connect to each other.

In summary, the traditional DT protocol has the
following limitations:

. Inaccuracy in estimating host locations: DT estimates
host locations based on their geographic coordinates.
This may work well for wireless networks, but not
for the Internet where the network delay between
two hosts may not correlate well with their
geographic distance. In other words, the traditional
DT protocol may build a tree with a low geographic
distance but a high end-to-end network delay.

. Single point of failure: Partition detection and
recovery rely on a central server. This forms a single
point of failure and is not scalable.

. Message looping: Compass routing in connected DT
mesh does not result in loops [10], [15]. However,
looping may persist in partitioned meshes. If the
destination of a message is in another mesh, the
message may loop in the current mesh for a long time.

3 MESH FORMATION AND MAINTENANCE

In this section, we discuss how SMesh forms and
maintains an efficient mesh. SMesh addresses the above
problems as follows:

. SMesh uses GNP to estimate host locations in the
Internet space and builds a DT mesh based on the
estimated host coordinates. Since GNP estimation is
based on network distances between hosts, the
resultant mesh can achieve lower end-to-end delay
than the traditional DT mesh.

. SMesh uses a distributed algorithm to detect and
recover mesh partition, thereby eliminating the need
for a central server from the system.

. The distributed algorithm is able to detect whether a
message destination is in a partitioned mesh or not,
and hence solves the message looping problem.

3.1 Distributed Algorithm for Partition Detection
and Recovery

We now present a distributed algorithm to detect and
recover mesh partition. We define some notations as
follows. Given a graph, define ffþabc as the clockwise
angle from edge ab to edge bc and ff�abc as the counter-
clockwise angle from edge ab to edge bc. They are both
between 0 degree and 360 degrees (i.e., the angle is not
negative). We further define the undirected angle ffabc as
the smaller one of ffþabc and ff�abc, which is certainly
between 0 degree and 180 degrees. We show the examples
of ffþ; ff�, and ff in Figs. 3a, 3b, and 3c, respectively.

218 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2010

Fig. 1. (a) Two adjacent triangles in a convex quadrilateral (4abc and

4adc) violate the DT property and (b) restore the DT property by

disconnecting a from c and connecting b and d.

Fig. 2. An example of compass routing. The angle ffbat is smaller than

angles ffcat and ffdat. Therefore, when a receives a message with

destination t, it forwards the message to b.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 09,2010 at 00:15:43 EST from IEEE Xplore. Restrictions apply.

We further consider two connected hosts b and c, and
another host a in the graph (whether a is a neighbor of b or c
is irrelevant here). We say that c is the clockwise neighbor
of b with respect to a if and only if ffþabc is less than
180 degrees and is the minimum among all the neighbors of
b (i.e., ffþabc � ffþabx; 8x 2 neighbors of b). In this case, we
write Nþb;a ¼ c (one can imagine that the edge ba with b
fixed, when sweeping clockwise by less than 180 degrees,
would first touch c among all b’s neighbors). For example,
in Fig. 3a, c is the clockwise neighbor of b with respect to a
(i.e., Nþb;a ¼ c). Similarly, we say that c is the counter-
clockwise neighbor of b with respect to a, denoted as
N�b;a ¼ c, if and only if ff�abc is less than 180 degrees and is
the minimum among all the neighbors of b. In Fig. 3b, d is
the counterclockwise neighbor of b with respect to a (i.e.,
N�b;a ¼ d). Note that host b may not have any clockwise
neighbor (or counterclockwise neighbor) with respect to a.
For example, in Fig. 3, host b does not have any clockwise
neighbor with respect to c, since angles ffþcbd and ffþcba are
larger than 180 degrees.

Theorem 1. Given the above definitions and host coordinates, a
host u detects that a destination t is partitioned from the mesh
if and only if one of the following conditions is satisfied:

1. Nþu;t ¼ ;, or

2. N�u;t ¼ ;, or

3. ffþN�u;tuNþu;t > 180�, or

4. ffþNþu;ttN�u;t > 180�.

Proof. There are two possible cases for t’s location:

. t is outside the mesh (see Figs. 4a, 4b, and 4c).
By definition, a DT mesh is a convex poly-

hedron where only the external angles are larger
than 180 degrees. As t falls outside the mesh, a
message with destination t must be finally
forwarded to a boundary host u in the mesh.
The possible positions of t are given in Figs. 4a,
4b, and 4c, where hosts b and c are two neighbors
of u on the boundary of the mesh. Fig. 4a
corresponds to condition 1. Fig. 4b corresponds
to condition 2. Fig. 4c corresponds to condition 3,
where ffþN�u;tuNþu;t is as indicated.

. t is in the interior of the mesh (see Fig. 4d).
If t is in the interior of the mesh, the position of

t must fall inside a certain triangle 4ubc (as
shown in Fig. 4d). When a host u receives a
message with destination t, if it finds that
ffþNþu;ttN�u;t > 180 degrees and there is no connec-

tion with t, it can conclude that t is not in the

mesh. tu
Therefore, a host u checks whether the destination has

been partitioned from its mesh before forwarding a
message. If so, u directly forwards the message to t to
avoid message looping, and asks t to join the mesh through
itself (using the joining mechanism below) so as to recover
the partition.

3.2 Joining Mechanism

A joining host, after obtaining its coordinates, sends a
MeshJoin message with its coordinates to any host in the
system. MeshJoin is then sent back to the joining host along the
DT mesh based on compass routing. Since the joining host is
not a member of the mesh yet, it can be considered as a
partitioned mesh consisting of a single host. The MeshJoin
message finally triggers the partition recovery mechanism at
a particular host in the mesh, which helps the new host join
the mesh.

We illustrate the host joining mechanism in Fig. 5.

Suppose that u is a joining host. The following steps show

how u joins the mesh (corresponding to Fig. 5):

1. u first retrieves the list of landmarks by querying a
host b with a GetLandmark message.

2. Then u measures the round-trip time to the land-
marks and estimates its coordinates.

3. After that, u sends a MeshJoin message to b.
4. The message is then forwarded from b to c based on

compass routing.
5. Since u falls into 4acd; c knows that u is in another

partitioned mesh. c then addsu into its neighbor listNc

to recover the partition. Note that the minimum
internal angle of 4auc and 4abc is less than that of
4buc and4abu. Therefore, the connection between c
and a violates the DT property, and c will remove a

JIN ET AL.: A DISTRIBUTED PROTOCOL TO SERVE DYNAMIC GROUPS FOR PEER-TO-PEER STREAMING 219

Fig. 3. Examples of (a) clockwise angles ffþ, (b) counterclockwise angles

ff�, and (c) undirected angles ff.

Fig. 4. (a), (b), and (c) Host u is on the boundary of the overlay mesh,

and host t lies outside the mesh. (d) u is an interior host of the mesh.

Host t lies inside triangle 4ubc, but does not belong to the mesh.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 09,2010 at 00:15:43 EST from IEEE Xplore. Restrictions apply.

fromNc and notify a to remove the connection. c then
broadcasts its neighborhood information to its neigh-
bors through HelloNeighbor messages. (In DT, each
host needs to periodically send HelloNeighbor mes-
sages to its neighbors to exchange the neighborhood
information.)

6. Upon receiving HelloNeighbor messages from c; b,
and d discover u. They add u into their neighbor lists
since such connections do not violate the DT
property. In the meantime, u also discovers b and d
and adds them into its neighbor list. Suppose that b
is the next to broadcast HelloNeighbor messages.
Upon receiving the message, a discovers u and adds
u into its neighbor list.

7. The resultant overlay mesh after the joining of u still
satisfies the DT property.

4 CONSTRUCTION OF DATA DELIVERY TREES

In this section, we discuss tree construction mechanisms in
SMesh. In Section 4.1, we propose three algorithms to
construct data delivery trees on top of the mesh. In Section
4.2, we present a path aggregation algorithm for QoS
provisioning. In Section 4.3, we illustrate our algorithms
with examples.

4.1 Embedded, Bypass, and Intermediate Trees

We study three ways to build trees in SMesh. The first type of
tree is called an embedded tree, where all tree edges are part of
the overlay mesh. When forming the tree, nonmember hosts
may be included. This is similar to Skype routing, where a

Skype client may help relay packets that it is not interested in.
The second one builds an overlay tree that covers only group
members without having to use mesh edges. We call it a
bypass tree. All tree nodes in a bypass tree are members of the
group. This is similar to traditional overlay tree construction,
where a node relays packets only for other members in its
groups. However, the construction of a bypass tree has to rely
on the underlying mesh. The third one is termed an
intermediate tree, which lies between embedded and bypass
trees. In the following, we call a nonleaf host in an overlay
tree a forwarder, which needs to forward data messages to its
children in the tree. We elaborate the details as follows:

. Embedded Tree: To join an embedded tree, a joining
host first sends a TreeJoin message to the group
source along the DT mesh using compass routing.
All hosts along the message routing path become
forwarders for the tree no matter whether they are
group members.

In Algorithm 1, we show how the TreeJoin
message is handled by a host in the mesh: A host
first adds the joining host into its children table for
the specified group. Then, it checks whether itself is
already a forwarder of the group. If so, the host has
already started to forward messages for the tree and
known the overlay path along the mesh to the group
source. So, it suppresses the forwarding of the
TreeJoin message and does nothing. Otherwise, it
turns itself into a forwarder and relays the TreeJoin
message to the group source. The TreeJoin message
will eventually discover a path along the mesh to
the group source.

220 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2010

Fig. 5. An example of host joining in SMesh.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 09,2010 at 00:15:43 EST from IEEE Xplore. Restrictions apply.

. Bypass Tree: All forwarders in a bypass tree are the
group members. Similarly, in order to join a bypass
tree, a joining host needs to send a TreeJoin message
to the group source using compass routing. We
show the tree construction algorithm in Algorithm 2.
A nonmember host receiving the TreeJoin message
simply relays the message to the next hop without
turning itself into a forwarder. Such a host will not
forward data packets for the group in the future. On
the other hand, if the host receiving the message is a
member of the group, it accepts the joining host as its
child by adding the joining host into its children
table. Clearly, such a host has already joined the tree
and known the path to the group source. So, it stops
forwarding the TreeJoin message.

. Intermediate Tree: We observe that an embedded tree
requires the participation of nonmember hosts, and a
host may need to serve multiple hosts of different
groups. As compared to a bypass tree, it consumes
more network resources and suffers from higher
delay, especially for sparse groups. On the other hand,
a host in a bypass tree may have a high node stress and
heavy load for data forwarding (e.g., a star-like
topology rooted at the source for a sparse group).
Therefore, we propose an intermediate tree which
trades off between an embedded tree and a bypass
tree. In an intermediate tree, a nonmember host is
included in the tree if it receives more than a certain
number of joining messages. Such a host resides in
many routing paths, and we expect high delivery
efficiency by including it in the tree. In Algorithm 3,
we show how the TreeJoin message is handled by a
host: A host handles the message as in a bypass tree if
the number of received messages is less than a certain
threshold. Otherwise, the host forwards the message
as in an embedded tree.

Algorithm 1.

TREEJOINHANDLER_EMBEDDEDTREE (TreeJoin)

1 Me.Child[TreeJoin.InterestGroup] Me.Child[TreeJoin.

InterestGroup] [TreeJoin.JoinHost

2 if TreeJoin.InterestGroup 62 Me.InterestGroups

3 then Me.InterestGroups Me.InterestGroups [
TreeJoin.InterestGroup

4 TreeJoin.JoinHost Me

5 CompassRoute(TreeJoin, TreeJoin.GroupSource);

Algorithm 2.

TREEJOINHANDLER_BYPASSTREE (TreeJoin)

1 if TreeJoin.InterestGroup 2 Me.InterestGroups
2 then Me.Child[TreeJoin.InterestGroup]

Me.Child[TreeJoin.InterestGroup] [TreeJoin.JoinHost

3 else CompassRoute(TreeJoin, TreeJoin.GroupSource);

Algorithm 3.

TREEJOINHANDLER_INTERMEDIATETREE (TreeJoin)

1 Received Message Received Message þ 1

2 if Received Message � Message Threshold

3 then TreeJoinHandler_BypassTree (TreeJoin);

4 else TreeJoinHandler_EmbeddedTree (TreeJoin);

We give three illustrative examples of the trees in
Section 4.3. Please refer to it for details. Note that the above
overlay trees are inherently loop free. This is because

compass routing in DT is a greedy algorithm, where the
distance from a host to the message destination strictly
decreases along the path [15]. As a result, in a data
delivery tree, the distance from the source to a host is
always smaller than the distance from the source to any of
its descendants. This property leads to the loop-free
characteristic of SMesh trees.

One possible issue of bypass tree is that a host may have
a high node stress by having many children. This is also an
issue for intermediate tree. As a comparison, an embedded
tree does not have this issue. Because all edges of an
embedded tree are part of the mesh, while in a DT mesh, a
host has on average six neighbors. In order to address this
issue in bypass and intermediate trees, it is possible to set a
degree bound for each host. If the number of children of a
host reaches its degree bound, the host will not accept new
joining hosts as its children. Instead, it forwards new joining
hosts to other hosts in the tree (e.g., its parent). Clearly, this
is a trade-off between fan-out and performance. It may
incur a higher delay.

4.2 Path Aggregation for QoS Provisioning

We note that the traditional DT protocol may result in high
network resource consumption. For example, if host a
belongs to domain A, and hosts b and b0 belong to domain
B, usually the delays of interdomain paths ab and ab0 are
much higher than that of intradomain path bb0. In other
words, angle ffbab0 is small. As a result, using compass
routing, if either b or b0 is a child of a, the other one is also
likely to be a child of a. Therefore, two independent
connections across domains A and B are set up, which leads
to high usage of long paths and hence high network
resource consumption. Furthermore, in the traditional DT
protocol, a host may have many children. However, a host
often has a node stress threshold K for each group
depending on its resource. To address these problems, we
require that the minimum adjacent angle between two
children of a host should exceed a certain threshold T . If the
condition on K or T is violated, SMesh modifies its overlay
tree through aggregation and delegation.

Consider a source s and a host u in the network. Once u
accepts a child, u checks whether its node stress exceeds K
or whether the minimum adjacent angle between its
children is less than T . If so, it runs the path aggregation
algorithm, as shown in Algorithm 4. It selects a pair of
children with the minimum adjacent angle and delegates
the child farther from the source to the other. Note that after
aggregation, the overlay tree is still loop free because hosts
are still topologically sorted according to their distances
from the source. We show an example in Fig. 6, where ffbuc
is the smallest angle among all u’s children. If it is smaller
than the threshold T and because ks� bk < ks� ck; u
delegates c to b.

Algorithm 4.

PATHAGGREGATION(u)

1 ½c; c0� a pair of children with the minimum adjacent

angle

2 while ffcuc0 < T OR number of children > K

3 do if kc� sk < kc0 � sk
4 then delegate c0 to c

5 else elegate c to c0

6 ½c; c0� a pair of children with the minimum

adjacent angle.

JIN ET AL.: A DISTRIBUTED PROTOCOL TO SERVE DYNAMIC GROUPS FOR PEER-TO-PEER STREAMING 221

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 09,2010 at 00:15:43 EST from IEEE Xplore. Restrictions apply.

SMesh avoids tree partition during aggregation by
temporarily setting up backup paths. If u delegates its child
c to another child c0; u would keep forwarding data to c
unless it receives an acknowledgment from c0. (This way, a
backup path uc is set up.) Backup paths are also present
when a host leaves its group. For example, in a bypass tree,
a leaving host u sends a TreeLeave request to its parent p
with the information of its children C ¼ fc1; c2; . . . ; cMg. p
keeps forwarding data to u until p has handled (either
accepted or delegated) all the hosts in C (i.e., backup paths
uc1; uc2; . . . ; ucM are set up).

4.3 Illustrative Examples

We show in Figs. 7, 8, and 9 how embedded, bypass, and
intermediate trees are constructed. White circles in figures

denote hosts belonging to the same group. The joining
sequence is fd; b; f; cg, and s is the source.

We first show the construction of an embedded tree in
Fig. 7. When d joins, its TreeJoin message is first forwarded
to c (Fig. 7a). Although c is a nonmember, the message turns
it into a forwarder and it relays the message to s. Next, b
joins the group and its TreeJoin message is also forwarded to
c (Fig. 7b). Since c is a forwarder already, it only modifies its
children table and does not relay the message again.
Afterwards, when f joins, its TreeJoin message is first
forwarded to e, and then to s (Fig. 7c). Finally, when c joins
the group, it does not need to send a TreeJoin message since
it is already a forwarder (Fig. 7d).

In Fig. 8, we show a bypass tree with forwarding
delegation (K ¼ 2 without T threshold, i.e., T ¼
360 degrees). When d joins, its TreeJoin message is first
forwarded to c and then to s (Fig. 8a). Since c is a
nonmember, s directly serves d. Later on, when b joins, its
TreeJoin message is also forwarded to s through c. Similarly,
s directly serves b (Fig. 8b). Note that at this moment, s has
already hadK children (K ¼ 2). Therefore, when f joins and
becomes s’s child, s has to delegate one of its children (d; b;
and f) to others. It first selects a pair of children with the
minimum adjacent angle, which are b and d. Then, it
delegates the child farther from the source (i.e., b) to the
other one, i.e., d (Fig. 8c). Finally, when c joins, s similarly
delegates d to c (Fig. 8d).

We finally show an intermediate tree with K ¼ 2 and
MessageThreshold ¼ 1 in Fig. 9. d is the first to join and its
TreeJoin message is forwarded to c (Fig. 9a). Since this
message is the first joining request c has received, c handles
the message as in a bypass tree. That is, c relays the message
to s without becoming a forwarder, and s directly serves d.
Later on, when b joins, its TreeJoin message goes through c to
s (Fig. 9b). Now c has received two joining messages and
this number exceeds its message threshold 1. Therefore, c
handles the message as in an embedded tree and turns itself
into a forwarder. Afterwards, when f joins, s directly serves

222 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2010

Fig. 6. Host u delegates its child c to child b, since ffbuc < T and

ks� bk < ks� ck.

Fig. 7. An example of building an embedded tree. Tree branches are indicated by bold lines.

Fig. 8. An example of building a bypass tree. Tree branches are indicated by bold lines.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 09,2010 at 00:15:43 EST from IEEE Xplore. Restrictions apply.

f by skipping e. Now s has three children, i.e, c; d, and f . s
then delegates d to c as ffdsc is the minimum among all
angles formed by s’s children (Fig. 9c). Finally, when c joins
the group, it does not need to send any TreeJoin message
since it is already a forwarder (Fig. 9d).

5 ILLUSTRATIVE NUMERICAL RESULTS

5.1 Simulation Setup

We generate 10 Transit-Stub topologies with GT-ITM [18].
Each topology is a two-layer hierarchy of transit networks
and stub networks. Following [10], each topology in our
simulations has four transit domains (each with 16 randomly
distributed routers on a 1;024� 1;024 grid) and 64 stub
domains (each with 15 randomly distributed routers on a
32� 32 grid). A host is connected to a stub router via a LAN
(of 4� 4 grid). The delays of LAN links are 1 ms, and the
delays of core links are given by the topology generator. For
each group, we randomly select a host as the source to
disseminate packets. For GNP, we select 20 landmarks based
on the N-cluster-median criterion as in [11]. We use the
following metrics to evaluate our scheme:

. Relative delay penalty (RDP), defined as the ratio of
the overlay delay from the source to a given host to
the delay along the shortest unicast path between
them [19].

. Link stress, defined as the number of copies of a
packet transmitted over a certain physical link [19].
Similarly, we define node stress of a host as the
number of the host’s children in an overlay tree.

. Normalized network resource usage, defined as the
summation of the delays of all overlay paths in an
overlay tree divided by the summation of the delays
of all underlay links in an IP-multicast tree [19].

Unless otherwise stated, the parameters we use are N ¼
1;024 (a total of 1,024 hosts in the session, or in the
system), G ¼ 128 (128 of them belong to the same group),
K ¼ 8 (the maximum node stress of a host is 8),
MessageThreshold � R ¼ 8 (for an intermediate tree),
and T ¼ 5 degrees (the angle between two adjacent
children should be larger than 5 degrees).

5.2 Performance of SMesh

We first compare SMesh’s performance with a traditional
overlay tree protocol, Narada [19]. Since Narada does not
consider multiple groups, we set G ¼ N for a fair
comparison. In this case, SMesh is similar to DT. We
further compare meshes with GNP coordinates and with

geographic coordinates. Fig. 10a shows the average RDP
versus the session size. In general, RDP increases with the
session size. DT with GNP performs the best, especially
when the session size is large. This is because GNP
coordinates accurately estimate host locations in the
Internet. For a medium or large session (more than 64 hosts),
DT with GNP achieves significantly lower RDP than
Narada. Regarding link stress, DT with GNP performs
better than Narada (Fig. 10b). It also performs better than
DT with geographic coordinates for sparse network. For a
dense network, using geographic coordinates may perform
better. This is because the higher member density, the
higher probability that DT with GNP has “small angles.” As
a result, overlay paths are likely to pass through the same
underlay links, leading to high stresses. Fig. 10c shows the
network resource usage. Since DT with GNP consists of
low-delay paths, its resource usage is the lowest.

5.3 Performance of Embedded, Bypass, and
Intermediate Trees

We compare SMesh trees (embedded, bypass, and inter-
mediate trees) with Narada and Scribe in Fig. 11. Please
refer to Section 6 or [30] for more details of Scribe. In the
simulations, Scribe has the same group size as SMesh, and
Narada builds an independent tree for each group.

Fig. 11a shows the average RDP versus the group size G.
The RDP of a bypass tree is significantly lower than that of
an embedded tree, while an intermediate tree lies between
them. The RDP of an embedded tree is independent of
group size as its tree edges are all mesh edges. For small
groups, a bypass tree skips nearly all mesh edges; there-
fore, its RDP is close to one. When the group is large, a
TreeJoin message will meet a group member instead of a
forwarder with high probability. A bypass tree is hence
similar to an embedded tree. Therefore, as the group size
increases, the RDP of a bypass tree approaches that of an
embedded tree.

In the figure, Narada has higher RDP than intermediate
and bypass trees, but lower RDP than an embedded tree. As
mentioned, the embedded tree is not efficient for small
groups. However, when the group size increases, its RDP
does not increase much. On the other hand, Scribe suffers the
highest RDP for almost all group sizes. One possible reason is
that each Scribe node is assigned a random key for overlay
routing. While the key of a node is uncorrelated to its network
location, overlay routing based on keys is not efficient.

Fig. 11b compares link stresses of the trees. An
embedded tree has the lowest stress, because its forward-
ing load is distributed to all the hosts in the network.

JIN ET AL.: A DISTRIBUTED PROTOCOL TO SERVE DYNAMIC GROUPS FOR PEER-TO-PEER STREAMING 223

Fig. 9. An example of building an intermediate tree. Tree branches are indicated by bold lines.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 09,2010 at 00:15:43 EST from IEEE Xplore. Restrictions apply.

Bypass and intermediate trees have higher link stresses

due to their higher node stresses. An intermediate tree has

slightly higher stress than a bypass tree, mainly due to

high stresses at some hosts. On the other hand, both Scribe

and Narada suffer higher link stresses than SMesh trees.

Scribe does not have degree bound for hosts. So, some

hosts may have high node stresses, which further leads to

high stresses for some links.
Fig. 11c shows the normalized resource usage of the

trees. A bypass tree achieves lower resource usage than an

intermediate tree, because it does not incur unnecessary

detours to some intermediate nonmember hosts. As

compared to an embedded tree, a bypass tree achieves

lower resource usage for small groups, mainly due to fewer

overlay hops from source to hosts. However, as the group

size G increases, a bypass tree has higher resource usage

than an embedded tree. In this case, a bypass tree is less

efficient than an embedded tree.
From the figure, Scribe has the highest normalized

resource usage and Narada has the second highest. This is

not surprising as Scribe has the highest RDP and stress, and

Narada has the second highest stress. These results show

that they are not efficient to connect small groups from a

large pool of hosts. If we can build a stable mesh among all

hosts and construct trees on top of it, the network resource

for data delivery can be significantly reduced.

In summary, the results show that the bypass tree works
well overall. It achieves low RDP and low resource usage,
with intermediate stress performance. For an intermediate
tree, its RDP and resource usage lie between bypass and
embedded trees, especially for small to medium groups.

We show in Figs. 12a and 12b the accumulative
distribution of link stress and node stress, respectively. An
embedded tree has the lowest link stress. The proportion of
links experiencing high stress is low (less than 10 percent
links have stress higher than 3). Regarding node stress,
there are around 50 percent hosts with zero node stress for
both bypass and intermediate trees. These hosts are all leaf
nodes in trees. For an embedded tree, because all hosts
participate in the routing process, the percentage of hosts
with zero node stress is much lower. In all cases, most
hosts have low node stresses (less than 4). This shows that
our schemes achieve good load balancing.

5.4 Sensitivity Analysis

We now examine the effect of system parameters on tree
performance. We first investigate the impact of message
threshold to intermediate tree. We plot in Fig. 13 the RDP,
link stress, and network resource usage versus the message
threshold. Note that the cases of threshold equal to 0 and G

(G ¼ 128 in this case) correspond to an embedded tree and
a bypass tree, respectively. The threshold values in-
between correspond to intermediate trees. By adjusting

224 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2010

Fig. 11. Performance comparison of embedded, bypass, and intermediate trees (N ¼ 1;024; K ¼ 8; R ¼ 8, and T ¼ 5 degrees). (a) Average RDP,

(b) average link stress, and (c) average normalized resource usage.

Fig. 10. Performance comparison of DT mesh using GNP, DT mesh using geographic coordinates, and Narada. (a) Average RDP, (b) average link

stress, and (c) average normalized resource usage.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 09,2010 at 00:15:43 EST from IEEE Xplore. Restrictions apply.

the threshold, the intermediate tree achieves performance

somewhere between bypass and embedded trees. There is

clearly a trade-off between RDP, stress, and resource

usage. For example, when R ¼ 1, the intermediate tree

achieves higher (lower) RDP than a bypass tree (embedded

tree). Meanwhile, it achieves lower (higher) link stress than

a bypass tree (embedded tree).
We examine bypass and embedded trees in the follow-

ing. Recall that the angle threshold, T , trades off end-to-end

delay with network resource usage. We show the RDP, link

stress, and network resource usage versus T in Fig. 14. The

average RDP of an embedded tree is higher than that of a

bypass tree, and is quite independent of T . On the other

hand, the RDP of a bypass tree increases with T due to more

delegations. The link stresses of the two trees both quickly

decrease with T at the beginning. This is because we have

used path aggregation. Later on, the link stress converges to

a stable value. The network resource usage shows similar

trends to the link stress. The results show that a bypass tree

is in general better than an embedded tree, and T does not

need to be high to achieve a good performance.

6 RELATED WORK

In this section, we discuss related work on P2P streaming and
overlay construction. In one-to-many multimedia streaming
and communications applications, an effecient approach is to
use IP multicasting [20]. Today, many of the existing
networking infrastructure are multicast capable. Emerging
commercial video transport and distribution networks
heavily make use of IP multicasting. However, there are
many operational issues that limit the use of IP multicasting
into individual autonomous networks. Furthermore, only
trusted hosts are allowed to be multicast sources. Thus, while
it is highly efficient, IP multicasting is still not an option for
P2P streaming at the user level.

As a comparison, in a P2P overlay network, hosts are
responsible for packets replication and forwarding. A P2P
network only uses unicast and does not need multicast-
capable routers. It is, hence, more deployable and flexible.
Currently, there are two types of overlays for P2P streaming:
tree structure and gossip mesh. The first one builds one or
multiple overlay tree(s) to distribute data among hosts.
Examples include application-layer multicast protocols (e.g.,
Narada and NICE) and some P2P video-on-demand systems
(e.g., P2Cast and P2VoD) [19], [21], [22], [23], [24], [25]. The

JIN ET AL.: A DISTRIBUTED PROTOCOL TO SERVE DYNAMIC GROUPS FOR PEER-TO-PEER STREAMING 225

Fig. 12. Stress distribution in embedded, bypass, and intermediate trees (N ¼ 1;024; G ¼ 128; K ¼ 8, and T ¼ 5 degrees). (a) Accumulative

distribution of link stress and (b) accumulative distribution of node stress.

Fig. 13. Performance of an intermediate tree with different message thresholds R (N ¼ 1;024; G ¼ 128; K ¼ 8, and T ¼ 5 degrees). (a) Average

RDP, (b) average link stress, and (c) average normalized resource usage.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 09,2010 at 00:15:43 EST from IEEE Xplore. Restrictions apply.

second one builds a mesh among hosts using gossip
algorithms, with hosts exchanging data with their neighbors
in the mesh [1], [3], [26]. The gossip-based approaches achieve
high resilience to network and group dynamics. However,
they have high control overhead due to data scheduling and
mesh maintenance. They also have high playback delay
because in the gossip mesh, a host may not always find close
peers as their neighbors. On the contrary, trees introduce
lower end-to-end delay and are easier to maintain.

Our work in this paper falls into the first category.
Although we build a mesh spanning hosts, we do not directly
use mesh edges for data exchange. Instead, we build overlay
trees on top of the mesh for data exchange. In order to
improve tree resilience, we may incorporate additional loss
recovery schemes into our system [27], [28].

We now compare our work with other P2P tree construc-
tion protocols. Most previously proposed tree-based proto-
cols build a single overlay tree rather than dealing with
multiple dynamic trees as we investigate here [10], [19], [21],
[29]. To support multiple groups or channels, these protocols
have to build multiple independent trees. As a result, host
joining or leaving of a group leads to reconstruction of the
tree. Such cost may be high when hosts frequently change
their groups. SMesh addresses this problem by using a
relatively stable mesh consisting of all hosts, even though the
membership of each group can be quite dynamic. SMesh is
similar to Scribe [30], [31] and Bayeux [32], [33] in the sense
that a shared overlay mesh is built before multiple indepen-
dent delivery trees are built. SMesh differs from and
improves them in two aspects: 1) Scribe and Bayeux trees
are embedded in the mesh. We study the case where tree
branches may bypass mesh edges. With packets taking fewer
hops to reach their group members, a bypass tree is more
efficient in terms of end-to-end delay and resource usage.
2) Each host in Scribe and Bayeux is assigned a random key (a
kind of logical address), which is uncorrelated to its network
location. The resultant mesh is often inefficient. Topology-
aware mesh construction may improve routing efficiency, but
it requires high probing overhead for topology inference [34],
[35]. In contrast, SMesh builds an efficient DT mesh based on
GNP coordinates. This mesh is distributed, adaptive to host
dynamics and of low probing overhead. A preliminary
version of SMesh has been studied in [36]. In this paper, we
propose a distributed algorithm for partition detection and
recovery in the mesh. We also study an aggregation and

delegation algorithm to improve tree performance. Finally,
we present more comprehensive simulation results.

7 CONCLUSION

In P2P streaming networks, users may frequently hop from
one group to another. In this paper, we propose a novel
framework called SMesh to serve dynamic groups for
Internet streaming. SMesh supports multiple groups and
can efficiently distribute data to these dynamic groups. It
first builds a shared overlay mesh for all hosts in the
system. The stable mesh is then used to guide the
construction of data delivery trees for each group. We
study three ways to construct a tree, i.e., embedded, bypass,
and intermediate trees. We also propose and study an
aggregation and delegation algorithm to balance the load
among hosts, which trades off end-to-end delay with lower
network resource usage.

Through simulations on Internet-like topologies, we
show that SMesh achieves low RDP and low link stress as
compared to traditional tree-based protocols. In our
simulations, a bypass tree performs better than an em-
bedded tree in terms of RDP but not so for link stress. By
adjusting message threshold, an intermediate tree can
achieve performance between bypass and embedded trees.

ACKNOWLEDGMENTS

This work was supported, in part, by the General Research
Fund from the Research Grant Council of the Hong Kong
Special Administrative Region, China (611107), and the
Cisco University Research Program Fund, a corporate
advised fund of Silicon Valley Community Foundation
(SVCF08/09.EG01).

REFERENCES

[1] X. Zhang, J. Liu, B. Li, and T.-S.P. Yum, “CoolStreaming/DONet:
A Data-Driven Overlay Network for Peer-to-Peer Live Media
Streaming,” Proc. IEEE INFOCOM ’05, pp. 2102-2111, Mar. 2005.

[2] X. Liao, H. Jin, Y. Liu, L.M. Ni, and D. Deng, “Anysee: Peer-to-
Peer Live Streaming,” Proc. IEEE INFOCOM ’06, Apr. 2006.

[3] Y. Tang, J.-G. Luo, Q. Zhang, M. Zhang, and S.-Q. Yang,
“Deploying P2P Networks for Large-Scale Live Video-Streaming
Service,” IEEE Comm. Magazine, vol. 45, no. 6, pp. 100-106, June
2007.

[4] PPLive, http://www.pplive.com, 2009.

226 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2010

Fig. 14. Tree performance with different angle thresholds T (N ¼ 1;024; G ¼ 128, and K ¼ 8). (a) Average RDP, (b) average link stress, and

(c) average normalized resource usage.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 09,2010 at 00:15:43 EST from IEEE Xplore. Restrictions apply.

[5] X. Hei, Y. Liu, and K.W. Ross, “Inferring Network-Wide Quality
in P2P Live Streaming Systems,” IEEE J. Selected Areas in Comm.,
vol. 25, no. 9, pp. 1640-1654, Dec. 2007.

[6] X. Hei, C. Liang, J. Liang, Y. Liu, and K.W. Ross, “A Measurement
Study of a Large-Scale P2P IPTV System,” IEEE Trans. Multimedia,
vol. 9, no. 8, pp. 1672-1687, Dec. 2007.

[7] M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatriain,
“Watching Television over an IP Network,” Proc. ACM Internet
Measurement Conf. (IMC ’08), pp. 71-83, Oct. 2008.

[8] Skype, http://www.skype.com/, 2009.
[9] D. Rossi, M. Mellia, and M. Meo, “A Detailed Measurement of

Skype Network Traffic,” Proc. Int’l Workshop Peer-To-Peer Systems
(IPTPS ’08), Feb. 2008.

[10] J. Liebeherr, M. Nahas, and W. Si, “Application-Layer Multi-
casting with Delaunay Triangulation Overlays,” IEEE J. Selected
Areas in Comm., vol. 20, no. 8, pp. 1472-1488, Oct. 2002.

[11] T.S.E. Ng and H. Zhang, “Predicting Internet Network Distance
with Coordinates-Based Approaches,” Proc. IEEE INFOCOM ’02,
pp. 170-179, June 2002.

[12] L. Tang and M. Crovella, “Virtual Landmarks for the Internet,”
Proc. ACM Internet Measurement Conf. (IMC ’03), pp. 143-152, Oct.
2003.

[13] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A
Decentralized Network Coordinate System,” Proc. ACM
SIGCOMM ’04, pp. 15-26, Aug. 2004.

[14] H. Lim, J.C. Hou, and C.-H. Choi, “Constructing Internet
Coordinate System Based on Delay Measurement,” IEEE/ACM
Trans. Networking, vol. 13, no. 3, pp. 513-525, June 2005.

[15] E. Kranakis, H. Singh, and J. Urrutia, “Compass Routing on
Geometric Networks,” Proc. Canadian Conf. Computational Geome-
try (CCCG ’99), pp. 51-54, Aug. 1999.

[16] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,
Computational Geometry: Algorithms and Applications. Springer-
Verlag, 2000.

[17] R. Sibson, “Locally Equiangular Triangulations,” Computer J.,
vol. 3, no. 21, pp. 243-245, 1978.

[18] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to Model an
Internetwork,” Proc. IEEE INFOCOM ’96, pp. 594-602, Mar. 1996.

[19] Y.H. Chu, S. Rao, S. Seshan, and H. Zhang, “A Case for End
System Multicast,” IEEE J. Selected Areas in Comm., vol. 20, no. 8,
pp. 1456-1471, Oct. 2002.

[20] S.E. Deering, “Multicast Routing in Internetworks and Extended
LANs,” ACM SIGCOMM Computer Comm. Rev., vol. 18, no. 4,
pp. 55-64, Aug. 1988.

[21] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable
Application Layer Multicast,” Proc. ACM SIGCOMM ’02, pp. 205-
217, Aug. 2002.

[22] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2Cast: Peer-to-Peer
Patching Scheme for VoD Service,” Proc. Int’l World Wide Web
Conf. (WWW ’03), pp. 301-309, May 2003.

[23] T. Do, K.A. Hua, and M. Tantaoui, “P2VoD: Providing Fault
Tolerant Video-on-Demand Streaming in Peer-to-Peer Environ-
ment,” Proc. IEEE Int’l Conf. Comm. (ICC ’04), pp. 1467-1472, June
2004.

[24] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-Bandwidth Multicast in Co-
operative Environments,” Proc. ACM Symp. Operating Systems
Principles (SOSP ’03), pp. 298-313, Oct. 2003.

[25] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh,” Proc.
ACM Symp. Operating Systems Principles (SOSP ’03), pp. 282-297,
Oct. 2003.

[26] H. Chi, Q. Zhang, J. Jia, and X. Shen, “Efficient Search and
Scheduling in P2P-Based Media-on-Demand Streaming Service,”
IEEE J. Selected Areas in Comm., vol. 25, no. 1, pp. 119-130, Jan.
2007.

[27] W.-P. Yiu, K.-F. Wong, S.-H. Chan, W.-C. Wong, Q. Zhang, W.-W.
Zhu, and Y.-Q. Zhang, “Lateral Error Recovery for Media
Streaming in Application-Level Multicast,” IEEE Trans. Multi-
media, vol. 8, no. 2, pp. 219-232, Apr. 2006.

[28] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan, “Resilient
Multicast Using Overlays,” IEEE/ACM Trans. Networking, vol. 14,
no. 2, pp. 237-248, Apr. 2006.

[29] X. Jin, K.-L. Cheng, and S.-H.G. Chan, “SIM: Scalable Island
Multicast for Peer-to-Peer Media Streaming,” Proc. IEEE Int’l Conf.
Multimedia & Expo (ICME ’06), pp. 913-916, July 2006.

[30] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron,
“SCRIBE: A Large-Scale and Decentralized Application-Level
Multicast Infrastructure,” IEEE J. Selected Areas in Comm., vol. 20,
no. 8, pp. 1489-1499, Oct. 2002.

[31] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer
Systems,” Lecture Notes in Computer Science, vol. 2218, pp. 329-
350, Springer, Nov. 2001.

[32] S.Q. Zhuang, B.Y. Zhao, A.D. Joseph, R.H. Katz, and J.D.
Kubiatowicz, “Bayeux: An Architecture for Scalable and Fault-
Tolerant Wide Area Data Dissemination,” Proc. ACM Int’l Work-
shop Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV ’01), June 2001.

[33] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D.
Kubiatowicz, “Tapestry: A Resilient Global-Scale Overlay for
Service Deployment,” IEEE J. Selected Areas in Comm., vol. 22,
no. 1, pp. 41-53, Jan. 2004.

[34] M. Castro, M.B. Jones, A.-M. Kermarrec, A. Rowstron, M.
Theimer, H. Wang, and A. Wolman, “An Evaluation of Scalable
Application-Level Multicast Built Using Peer-to-Peer Overlays,”
Proc. IEEE INFOCOM ’03, pp. 1510-1520, Apr. 2003.

[35] X. Jin, W.-P.K. Yiu, S.-H.G. Chan, and Y. Wang, “Network
Topology Inference Based on End-to-End Measurements,” IEEE
J. Selected Areas in Comm., vol. 24, no. 12, pp. 2182-2195, Dec. 2006.

[36] X. Jin, W.-C. Wong, and S.-H.G. Chan, “Serving Dynamic Groups
in Application-Level Multicast,” Proc. Int’l Workshop High Perfor-
mance Switching and Routing (HPSR ’05), May 2005.

Xing Jin received the BEng degree in computer
science and technology from Tsinghua Univer-
sity, Beijing, China, in 2002, and the PhD degree
in computer science and engineering from The
Hong Kong University of Science and Technol-
ogy (HKUST), Kowloon, in 2007. He is currently
a member of Technical Staff in the Systems
Technology Group at Oracle, Redwood Shores,
California. His research interests include dis-
tributed information storage and retrieval, peer-

to-peer technologies, multimedia networking, and Internet topology
inference. He is a member of Sigma Xi and IEEE COMSOC Multimedia
Communications Technical Committee. He has been on the editorial
board of Journal of Multimedia since 2006, and Canadian Journal of
Pure and Applied Sciences since 2007. He was awarded the Microsoft
Research Fellowship in 2005.

JIN ET AL.: A DISTRIBUTED PROTOCOL TO SERVE DYNAMIC GROUPS FOR PEER-TO-PEER STREAMING 227

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 09,2010 at 00:15:43 EST from IEEE Xplore. Restrictions apply.

S.-H. Gary Chan received the BSE degree
(highest honor) in electrical engineering from
Princeton University, New Jersey, in 1993, with
certificates in applied and computational mathe-
matics, engineering physics, and engineering
and management systems, and the MSE and
PhD degrees in electrical engineering from
Stanford University, California, in 1994 and
1999, respectively, with a minor in business
administration. He is currently an associate

professor with the Department of Computer Science and Engineering,
HKUST, Kowloon, and an adjunct researcher with Microsoft Research
Asia, Beijing. He was a visiting assistant professor in Networking with
the Department of Computer Science, University of California, Davis,
from 1998 to 1999. His research interests include multimedia
networking, peer-to-peer technologies and streaming, and wireless
communication networks. He is a member of Tau Beta Pi, Sigma Xi,
and Phi Beta Kappa. He was a William and Leila fellow at Stanford
University during 1993-1994. At Princeton University, he was the
recipient of the Charles Ira Young Memorial Tablet and Medal, and the
POEM Newport Award of Excellence in 1993. He served as a vice-chair
of IEEE COMSOC Multimedia Communications Technical Committee
from 2003 to 2006. He is a guest editor for the IEEE Communication
Magazine (Special Issues on Peer-to-Peer Multimedia Streaming),
2007 and Springer Multimedia Tools and Applications (special issue on
advances in consumer communications and networking), 2007. He is
the cochair of the Multimedia Symposium for IEEE ICC (2007). He was
the cochair for the workshop on Advances in Peer-to-Peer Multimedia
Streaming for the ACM Multimedia Conference (2005), and the
Multimedia Symposia for IEEE GLOBECOM (2006) and IEEE ICC
(2005). He is a senior member of IEEE Computer Society.

Wan-Ching Wong received the BSc and MPhil
degrees in computer science from HKUST,
Kowloon, in 2001 and 2003, respectively. He
was a research assistant at HKUST until August
2003. His research interests include Internet
technologies, peer-to-peer networks, and as-
pect-oriented programming.

Ali C. Begen is a software engineer in the
Video and Content Platforms Research and
Advanced Development Group at Cisco, San
Jose, California, where he participates in video
transport and distribution projects. His interests
include networked entertainment, multimedia
transport protocols, and content distribution.
He has the PhD degree in electrical and
computer engineering from the Georgia Institute
of Technology. He received the Best Student-

Paper Award at IEEE ICIP 2003. He received the Most-Cited Paper
Award from Elsevier Signal Processing: Image Communication, in
2008. He is a member of the IEEE Computer Society and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

228 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2010

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on March 09,2010 at 00:15:43 EST from IEEE Xplore. Restrictions apply.

