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Of all indoor localization techniques, vision-based localization emerges as a promising one, mainly due to the

ubiquity of rich visual features. Visual landmarks, which present distinguishing textures, play a fundamental

role in visual indoor localization. However, few researches focus on visual landmark labeling. Preliminary arts

usually designate a surveyor to select and record visual landmarks, which is tedious and time-consuming.

Furthermore, due to structural changes (e.g., renovation), the visual landmark database may be outdated,

leading to degraded localization accuracy.

To overcome these limitations, we propose VILL, a user-friendly, efficient, and accurate approach for visual

landmark labeling. VILL asks a user to sweep the camera to take a video clip of his/her surroundings. In the

construction stage, VILL identifies unlabeled visual landmarks from videos adaptively according to the graph-

based visual correlation representation. Based on the spatial correlations with selected anchor landmarks,

VILL estimates locations of unlabeled ones on the floorplan accurately. In the update stage, VILL formulates

an alteration identification model based on the judgments from different users to identify altered landmarks

accurately. Extensive experimental results in two different trial sites show that VILL reduces the site survey

substantially (by at least 65.9%) and achieves comparable accuracy.
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1 INTRODUCTION

Visual landmark-based indoor localization has attracted much attention lately, mainly because
visual landmarks are visually distinguishing and spatially pervasive, and do not require additional
infrastructure support [34, 44]. Visual landmarks (e.g., store logos, signs, and wall paintings), which
are visually distinguishing objects associated with specific locations, provide strong location clues
as compared with other signals. Taking radio signals (e.g., Wi-Fi, Bluetooth) as an example, they
can be affected by multi-path propagation, device orientation, and signal reflection, leading to
degraded localization accuracy [5, 18, 24, 25]. Furthermore, they need to deploy a large number of
wireless devices, which incurs additional deployment and maintenance cost.

Therefore, many researchers study accurate indoor localization with visual landmarks [11, 20, 26,
31]. The accuracy of visual indoor localization algorithms, however, is largely determined by the
accuracy of the visual landmark database, as user locations are calculated based on the positions
of visual landmarks in the database. Despite the promising applications, visual landmarks with
accurate labels (their images and locations on the floorplan) are often unavailable or prohibitively
costly to acquire [4, 8, 10, 27, 38]. Furthermore, visual landmarks may be altered due to structural
changes caused by constant renovations, leading to degraded localization accuracy. To address this,
surveyors have to survey the site regularly to identify altered ones and update them subsequently,
leading to prohibitive cost of maintenance.

Although it is crucial to construct the visual landmark database accurately and efficiently, the
research focusing on visual landmark labeling is limited. Preliminary arts [1, 16] select visual land-
marks manually and estimate their locations based on the user trajectory and relative distances.
Although they reduce the cost of location labeling, they incur constant calibration of noisy motion
sensors [37]. Combined with the manual selection and labeling of all visual landmarks, they are
sophisticated and error-prone in large trial sites.

Instead of the tedious landmark selection and image taking, we leverage the natural behavior of
video taking: a user can either stand at a position and rotate arms to take a video of the environment
or take the video while the user is walking. As videos taken by users cover different viewpoints of
visual landmarks, we can identify them, estimate their locations, and update altered ones efficiently
and automatically. However, it is difficult to label visual landmarks accurately, mainly due to the
following challenges:

• Landmark mis-identification due to texture diversity and unknown number : Due to the diversi-
fied texture, color, and shape, existing visual landmark classification algorithms may regard
unlabeled ones as the background. In addition, the number of visual landmarks is usually
unknown, rendering it difficult to identify them accurately by clustering in a large number
of unstructured videos.
• Large location error with sensor noises: Structure-from-Motion (SfM) [33, 41] models the spa-

tial correlation between visual landmarks. Using the constructed 3-D model, we can infer the
locations of unlabeled ones based on the spatial correlation with labeled visual landmarks.
Due to statistical noises in videos, the 3-D model may be noisy, leading to large location
errors of unlabeled landmarks.
• Erroneous alteration identification with a single video: Much work has shown that the con-

fidence of object identification is high if the target is in the training dataset and identified
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Fig. 1. System framework of VILL.

correctly. In the case of landmark alteration, the confidence values of altered visual land-
marks are low, as they are not in the training dataset. Meanwhile, due to opportunistic
noises (e.g., loss of focus, strong illumination), frames of unchanged landmarks in a single
video could be blurry, leading to low confidence values as well. Therefore, it is challenging
to identify altered landmarks accurately in a single video.

To address the preceding challenges, we propose an efficient and accurate visual landmark
labeling approach by camera sweeping, termed VILL. We present the framework of the proposed
VILL in Figure 1. VILL consists of two stages: a construction stage and an update stage. In the
construction stage, a surveyor uploads videos (s1, s2, . . . , sH ) to a remote server. Then, it extracts
candidate landmark regions and identifies unlabeled visual landmarks adaptively based on the
graph-based similarity representation. Next, VILL uses anchor landmarks selected by the surveyor
as guidance to estimate the locations of unlabeled ones (indicated by the red triangle). In the up-
date stage, VILL leverages user-collected videos and identifies altered visual landmarks by taking
multiple videos into consideration.

Our major contributions are as follows:

• Adaptive graph-based visual landmark identification: As a graph models the pairwise simi-
larity of vertices and can be generalized to a large number of vertices, we use a vertex to
represent a candidate region and connect two vertices if they are visually similar. If they
belong to the same visual landmark, the weight value of the edge is large. Otherwise, the
weight is significantly small or zero. Therefore, we propose to identify unlabeled visual
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landmarks by finding subgraphs, which does not require prior knowledge about trial sites,
landmark texture, or number, thus achieving adaptiveness.
• Accurate landmark location labeling with anchor guidance: We propose to select visual land-

marks with the longest distance in a group as anchor landmarks. Combined with the spatial
correlations inferred from the 3-D model,1 we estimate the locations of unlabeled visual
landmarks on the floorplan. Furthermore, we introduce the structural constraints into the
location labeling of visual landmarks (landmarks are collocated on the wall) to reduce the im-
pact of statistical noises in the 3-D model, thus achieving higher accuracy. We demonstrate
its effectiveness theoretically.
• Accurate alteration identification with multiple videos: To identify altered visual landmarks

accurately, we propose an alteration identification model, where we take the judgments from
several users into consideration simultaneously. Specifically, we regard a single video as a
source and fuse the judgments from different sources to determine if landmark is altered. Us-
ing videos collected by multiple users rather than a single one, we reduce the adverse impact
of opportunistic noises (e.g., motion blur, strong illumination) and subsequently improve the
identification accuracy of altered visual landmarks.

We have implemented VILL and conducted extensive experimental studies in two different trial
sites: a crowded food court and a spacious shopping mall. Evaluation results show that our ap-
proach reduces the survey time (in terms of landmarks to be labeled) by at least 65.9% with compa-
rable accuracy (in terms of landmark locations). Therefore, other visual sensing-based applications,
such as indoor localization [28, 49], augmented reality [6], and visual assistance [17], can leverage
our approach to reduce the survey cost and consequently enhance their applicability. Furthermore,
VILL is natural to use, intuitive to novice users, and accurate in visual landmark labeling. There-
fore, it can adopt crowdsourcing [19, 39, 48, 50] easily to further reduce the site survey of dedicated
surveyors. Additionally, VILL can be deployed on mobile platforms (e.g., drones, wheeled robots)
to construct and update the database efficiently.

The rest of this article is structured as follows. We review recent arts that are most related to
ours in Section 2. Then, we overview the framework and major terminologies of VILL in Section 3.
We elaborate the graph-based visual landmark identification algorithm in Section 4, followed by
the anchor selection strategy in Section 5 and the alteration identification model in Section 6. We
present illustrative experimental results in Section 7, followed by discussions and future directions
in Section 8. We conclude in Section 9.

2 RELATED WORK

In this section, we review research that is most related to ours.
Visual Landmark Detection. Different from radio or magnetic signal-based landmark detec-

tion [7, 22, 32, 42, 47], visual landmark detection is usually challenging due to the high dimension
of images and large variations (in terms of texture, color, and scale) of visual landmarks. Due to the
significant progress in deep learning techniques, neural networks are used in a wide range of object
detection tasks. Faster R-CNN [35], for example, extracts feature maps from input images with a
feature pyramid network (FPN). Afterward, region proposal network (RPN) estimates coordinates
of rectangular regions with objects in them, termed object proposals. Then, an alignment layer
aligns extracted feature maps with coordinates without any quantization for better performance,
generating local regions of features corresponding to potential objects. Besides the typical Faster
R-CNN, recent research proposes to leverage the transformer architecture for accurate object de-

1We use “3-D point cloud” and “3-D model” interchangeably in this article.
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tection. Swin Transformer [29] proposes a hierarchical transformer, where the representation is
computed with shifted windows. Due to the hierarchical architecture, Swin Transformer is flexible
to model various scales. Some research [38, 45] employs multi-class neural networks to detect vi-
sual landmarks. Although accurate, they do not generalize well to unseen ones due to domain
differences [23, 40].

Visual Landmark Localization. Recent studies on visual landmark localization are broadly clas-
sified into two categories: trajectory-based approaches and indoor structure-based ones. The first
category of methods recovers user traces and estimates locations of visual landmarks according
to the current user position [1, 13]. However, they are prone to accumulative errors of motion
sensors, thus requiring constant calibrations. Sextant [11] estimates the landmark location by
triangulation with two known visual landmarks. Although efficient, the location errors of dis-
tant visual landmarks grow large due to accumulative errors of motion sensors, the location er-
rors of known landmarks, and misalignment between the landmark center and the image center.
Knitter [14] estimates the distance between a user and a visual landmark based on the facade ge-
ometry. To achieve sufficient accuracy, they ask the user to point the camera to the center of the
shop facade, which is tedious for novice users.

Structure-based approaches, on the other hand, extract geometrical features (e.g., lines, corner
points) to locate a visual landmark. ClickLoc [43] infers the translation of a visual landmark based
on the accurate detection of corners between the entrance line and walls lines, which are not
always available in the middle of a hallway. ViNav [9] infers the location based on their corre-
sponding 3-D feature points in the point cloud.

Deep Learning Based Visual Inertial Odometry. With the development of deep learning tech-
niques, many research works [12, 15, 21] study ego-motion estimation with visual input from
target devices. GANVO [2] creates supervisory signals by warping view sequences and assigning
reprojection minimization in the loss function to estimate the user trajectory using pure visual
information. To enhance the accuracy, later approaches integrate inertial sensing in the trajec-
tory estimation. Gao et al. [12] propose to eliminate sensor noises by learning both forward and
backward inertial sequences. SelfVIO [3] introduces adversarial learning and self-adaptive sensor
fusion to estimate the user trajectory. Jia et al. [21] devise a Gaussian estimator to predict the
depth and uncertainty simultaneously. Although the preceding approaches achieve accuracy with
trajectory recovery and depth estimation, they are different from ours in several ways. First, our
target is to identify and label visual landmarks efficiently, whereas the preceding approaches fo-
cus on user trajectory estimation. Furthermore, we propose a crowd consensus-based approach to
find altered visual landmarks and update them subsequently. However, these approaches do not
consider landmark alteration.

3 WORKFLOW AND TERMINOLOGIES

Our VILL consists of two stages: a construction stage and an update stage. In the construction
stage, a surveyor divides visual landmarks into several groups according to their locations on the
digital map—that is, visual landmarks that are spatially close on a wall segment are divided into
a group. Then, the surveyor selects two anchor landmarks for each group and annotates their
positions. Afterward, surveyors or volunteers stand at a position and rotate arms to take video
clips. They can also hold the camera and record videos as they walk. The client application sends
videos to a server. Upon receiving videos, VILL builds a 3-D model with SfM for each group of
visual landmarks. Then, it detects candidate landmark regions with a two-class classifier. Using
these regions, it builds a connectivity graph and identifies candidate visual landmarks by finding
connected subgraphs (Section 4). Based on the relative distances from anchor landmarks in the
3-D model, VILL estimates physical locations of unlabeled ones on the floorplan (Section 5).
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Table 1. Major Notations in VILL

Notation Definition

x 2-D location on the floorplan
H Number of source videos
L Number of visual landmarks
ki j Pairwise conflict between source i and j
γ Overall conflict of all sources
Δ Confidence values of all visual landmarks

I ,N ,C,K Hypotheses of the alteration identification model
m Basic probability assignment
r Fusion probability

In the update stage, VILL can either work in stand-alone mode or be integrated into existing
visual crowdsourcing applications. It analyzes uploaded videos by a number of users and detects
visual landmarks in each of them. Based on the video noises and the user consensus, VILL identi-
fies altered visual landmarks, labels them, and updates their locations accordingly (Section 6). We
present major terminologies as follows.

Definition 1 (Anchor landmarks). These are reference landmarks selected and labeled by the
surveyor (with images and positions), which are used as anchors to guide the mapping of visual
landmarks from the point cloud to the floorplan.

Definition 2 (User consensus). It is the indicator that differnet users reach an agreement whether
a landmark is altered.

We present major notations used in this article in Table 1.

4 GRAPH-BASED VISUAL LANDMARK IDENTIFICATION

Due to the large diversity and unknown number of visual landmarks, we propose an adaptive
graph-based algorithm to identify unlabeled visual landmarks from a large number of unstruc-
tured candidate regions. We present the two-class visual landmark detector that detects candidate
landmark regions in Section 4.1. Then, we elaborate our graph-based visual landmark identifica-
tion algorithm in Section 4.2.

4.1 Detection of Candidate Landmark Regions

Besides landmark detection, object detection networks (e.g., Faster R-CNN) classify detected ob-
jects simultaneously by learning fine-grained visual features. Although accurate, they are better
with labeled landmarks. As for unlabeled ones, they may be regarded as the background incorrectly
due to domain differences, rendering it difficult to detect unlabeled visual landmarks.

As indoor landmarks usually share common visual and spatial characteristics (e.g., text, rich
texture, horizontally, or vertically aligned), it is possible to train a two-class network that detects
candidate landmark regions without identifying their categories. This reduces the need to learn
fine-grained features of visual landmarks, thus increasing the generality of networks to unlabeled
ones. Motivated by this, we propose to train a two-class network to detect candidate landmark
regions in images without classifying them. Our region detection network is based on the state-
of-the-art Faster R-CNN, where we modify the last few convolutional layers so that our network
outputs regions with two labels: landmark and background.
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Fig. 2. SIFT feature points. Fig. 3. Comparison of SIFT features in two images.

4.2 Graph-Based Similarity Representation and Landmark Identification

Scale-Invariant Feature Transform (SIFT) [30] is an algorithm that extracts local features from
input images. SIFT features are invariant to image scale and rotation, and are robust to a substantial
range of affine distortions and viewpoint changes. Consequently, we extract SIFT descriptors from
images and compare them afterward to evaluate the similarity between two images. We illustrate
extracted SIFT points in Figure 2 and connect matched features with solid lines in Figure 3. Based
on the number of matched features, we can determine the similarity between two images. We use
the SfM technique to build a 3-D model of the environment using SIFT features and descriptors.
Based on the pairwise visual similarities (in terms of matched features) inferred from the 3-D point
cloud, we propose a graph-based visual landmark identification algorithm.

Formally, given a graph G = (V,E) formed by candidate regions, where V denotes a set of
vertices (each vertex indicates a candidate landmark region) and E denotes a set of edges (each
edge indicates similarity between two regions). In our algorithm, we use the number of matched
visual features to indicate the similarity between two regions (i.e., weight of the edge). As regions of
the same landmark are visually similar, they usually have a large number of matched features (i.e.,
large weight value), whereas regions of different visual landmarks have few matched features (i.e.,
no edges). Consequently, the vertices belonging to the same landmark form a connected subgraph.
Our goal is to find connected subgraphs from G, where each one indicates a visual landmark.

ALGORITHM 1: Graph-Based Visual Landmark Identification

Input: G

Output: A set of root vertices for all subgraphs Ω, A set of visited vertices ϒ
Initialization : Ω = ∅, ϒ = ∅

1: while |ϒ| � |V| do

2: From the unvisited set, select a vertex v ′ connected by the edge with the largest weight
3: Add v ′ to Ω and ϒ
4: Find connected vertices of v ′ via breadth-first traversal
5: Add connected vertices to ϒ
6: Mark all vertices in ϒ as visited, record the subgraph
7: end while

8: return Ω

We present our adaptive landmark identification algorithm in Algorithm 1. Initially, we mark
all vertices as unvisited. We remove edges with weight values smaller than threshold. Afterward,
we randomly select a vertex from the graph that has not been visited before. Then, we find its
connected vertices using the breadth-first algorithm, as they indicate similar regions. Then, we
add them to ϒ and mark them as visited. Meanwhile, we mark the selected v ′ as the root vertex
for this subgraph (a visual landmark). We continue the procedure until all vertices are added to ϒ.
Finally, we get a set of root vertices Ω and select subgraphs with vertex larger than threshold as
unlabeled visual landmarks.
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Fig. 4. Anchor-based visual landmark location estimation.

5 ANCHOR-GUIDED ACCURATE LANDMARK LOCALIZATION

Due to statistical noises in images, the spatial distances between visual landmarks in the 3-D model
may be noisy, leading to large location errors of unlabeled visual landmarks. The selection of
anchor landmarks has a significant impact on the localization error. In light of this, we propose
an anchor selection strategy to reduce the overall localization error of unlabeled visual landmarks.
We propose the anchor selection strategy in Section 5.1, followed by the theoretical justification
of our anchor selection strategy in Section 5.2.

5.1 Anchor Selection and Visual Landmark Positioning

We illustrate visual landmark positioning given a noisy 3-D model in Figure 4. Based on the analysis
of location error, we present our anchor selection strategy accordingly, where we select visual
landmarks with the longest distance as anchor landmarks for each group.

Given three visual landmarks,A, B, andC , whose physical coordinates are xA, xB , and xC , respec-
tively. Of these landmarks,A and B are anchor landmarks and their coordinates on the digital map
are annotated manually, and C is the unlabeled visual landmark to be localized. The correspond-
ing landmarks in the point cloud are denoted by A′, B′, and C ′, respectively. Their coordinates in
the 3-D point cloud are denoted by xA′ , xB′ , and xC ′ , respectively. Our objective is to estimate the
location of visual landmark C accurately.

Due to statistical noises in images and calibration errors of cameras, the estimated locations of
landmarks in the point cloud are noisy. We illustrate this with B. Suppose its estimated location in
the point cloud is atB′, which is within a round region centered atB with error boundδ (0 ≤ δ ≤ Δ).
Similarly, the estimated location of the unlabeled landmark C in the point cloud, denoted by C ′,
is also noisy. For simplicity, we adjust the point cloud so that the position of landmark A in point
cloud A′ overlaps with its physical location. Without loss of generality, we elaborate the localiza-
tion of C , which is not collinear with anchor landmarks A and B. The wall segment is defined
as

f (x) = a0 + a1x + a2x
2 + · · · + anx

n . (1)
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First, we map the C ′ to the dotted line that connects A′ and B′ in the point cloud. Since C ′

could be randomly distributed in a circle centered at C , the expected projection of C ′ onto the
line determined by A′ and B′ is C̄ ′p . Then, we draw a line segment C̄ ′pC̄⊥, which is parallel to BB′

and intersects with AB at C̄⊥. As the 3-D point cloud models the relative spatial relations between

visual landmarks on the digital map, we have |AB |
|AC̄⊥ |

=
|A′B′ |
|A′C̄ ′p |

.

C⊥ is the projection of C on the line that connects AB. Meanwhile, CC⊥ is perpendicular to AB
and intersects with AB at C⊥. As C lies on the same wall segment as A and B, we draw a line that
is perpendicular to AB and intersects with it at C̄⊥. This line intersects with AC at C̄ , which is the
estimated location of C on the floorplan. The location error of visual landmark C is ϵ = |C̄C |, and
the error projected on AB is ϵp . As we can infer from Figure 4, ϵp is closely related to the distances
betweenA andB. In our experiment, we select visual landmarks with the longest distance as anchor
landmarks to achieve sufficient accuracy for unlabeled ones.

5.2 Theoretical Justification of Anchor Selection Strategy

Suppose the physical coordinates of anchor landmarks annotated by surveyors are accurate, but
the estimated locations of visual landmarks in the point cloud are noisy. Note that it is possible to
transform the coordinate system of visual landmarks by translation. Without loss of generality, we
transform the coordinate system and justify our strategy where the coordinate of A′ is accurate,
whereas that of B′ is noisy.

For simplicity, we setA as the origin of our coordinate system. We have B on the positive side of
the x-axis. As illustrated in Figure 4, α = ∠CAC⊥ < ∠CBC⊥. AsC (xC , yC ) lies in the first quadrant,
we have xC > 0,yC > 0. Due to statistical noises in images, the estimated location B′ in the point
cloud and B do not overlap. Let AB be the x-axis; we have A (0,0), B (xB , 0), B′ (xB′ , yB′), and C(xC ,
yC ). Given CC̄ ′p ⊥ A′C̄ ′p and C̄⊥C̄ ′p ‖ BB′, we have

C̄ ′p = �
�

x2
B′xC + yB′xB′yC

x2
B′ + y

2
B′

,
xB′yB′xC + y

2
B′yC

x2
B′ + y

2
B′

�
�
, (2)

AC̄⊥
AB
=

A′C̄ ′p

A′B′
, (3)

ϵp = |C̄⊥C⊥| = | |AC⊥| − |AC̄⊥||. (4)

Let uC =
yC

xC
(uC ≥ 0); we have

ϵp =

������

|xB′ + uCyB′ |
x2

B′ + y
2
B′
− 1

xB

������

�����
xB

xC

�����
. (5)

We evaluate the impact of |xB′ + uCyB′ | on the location error of visual landmark C as follows:

• xB′ + uCyB′ ≤ 0: Since B′ (xB′,yB′) lies in the fourth quadrant, we can infer that uC ≥
− xB′

yB′
>

xB′
Δ . As the error of 3-D model is marginal (xB′ 	 Δ), uC could be significantly

large. This indicates that C is far away from AB, which contradicts our assumption that
anchor landmarks and unlabeled ones in a group are spatially close. Therefore, we discard
this scenario in our justification.
• xB′ + uCyB′ > 0: In this case, we can infer that

yB′
xB′
≥ − 1

uC
. Consequently, we have

ϵp =

������

xB′ + uCyB′

x2
B′ + y

2
B′
− 1

xB

������

�����
xB

xC

�����
. (6)
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We further evaluate the remaining terms as follows. If
xB′+uC yB′

x 2
B′+y2

B′
− 1

xB
> 0, we have

ϵp = �
�

xB′ + uCyB′

x2
B′ + y

2
B′
− 1

xB

�
�

�����
xB

xC

�����

≤
(
xB + Δ + uC Δ

(xB − Δ)2
− 1

xB

) �����
xB

xC

�����

=
(uC + 3)xB Δ − Δ2

(xB − Δ)2xB

�����
xB

xC

�����

<
(uC + 3)xB Δ − Δ2/xB

(xB − Δ)2

�����
xB

xC

�����
=

(uC + 3)Δ

(xB − 2Δ + Δ2/xB )xC
.

(7)

As xB grows larger, (uC+3)Δ
(xB−2Δ+Δ2/xB )xC

becomes smaller and closer to zero. Consequently, ϵp gets

closer to zero as xB grows larger, which indicates longer distances fromA. In this case, we conclude
that as the distance between two anchor landmarks grows larger, the upper bound of location error
in the same region becomes smaller.

Similarly, in the case where
xB′+uC yB′

x 2
B′+y2

B′
− 1

xB
< 0, we have

ϵp = �
�

1

xB
− xB′ + uCyB′

x2
B′ + y

2
B′

�
�

�����
xB

xC

�����

<

(
1

xB
− xB − Δ − uC Δ

(xB + Δ)2

) �����
xB

xC

�����

=
xB Δ(uC + 3) + Δ2

xB (xB + Δ)2

�����
xB

xC

�����

<
Δ(uC + 3) + 1

(xB + Δ)2

�����
xB

xC

�����
=

Δ(uC + 3) + 1

(xB + 2Δ + Δ2/xB )xC
.

(8)

Similarly, we can infer that as xB becomes larger,
Δ(uC+3)+1

(xB+2Δ+Δ2/xB )xC
grows smaller. Consequently,

we select the pair of visual landmarks with the longest distances in a group as anchor landmarks
to reduce the upper bound of location errors in unlabeled visual landmarks.

Although we justify the anchor selection strategy where unlabeled visual landmarks are not
collinear with others, our strategy is easily applicable to trial sites where visual landmarks are on
flat surface (i.e., linear). This is because we calculate ϵ by dividing ϵp by cosα , which is a constant
value. Therefore, our strategy is general to both scenarios with linear or non-linear wall partitions.

6 USER CONSENSUS-GUIDED ALTERATION IDENTIFICATION

Due to statistical noises in images, the confidence value of an unchanged visual landmark may
decrease significantly. In this case, it is difficult to determine if the visual landmark is altered
based on the confidence value from a video. To address this, we propose an identification algorithm
that jointly considers multiple video sources. We first motivate our design with confidence values
in typical scenarios in Section 6.1. Then, we present preliminaries of the Dempster-Shafer (DS)

theory in Section 6.2, followed by the proposed alteration identification model in Section 6.3. Based
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Fig. 5. Confidence values of visual landmarks in different scenarios.

on the modeling of alteration identification, we provide the identification criteria of altered visual
landmarks and computational analysis in Section 6.4.

6.1 Evaluation of Confidence Values

Many state-of-the-art object detection networks detect visual landmarks and present confidence
values. If they are large, neural networks are confident that the landmark detection is correct and
it is not altered. Otherwise, the confidence values are small. Theoretically, we can infer visual
landmark alteration based on the confidence value. However, the confidence value may be low
due to environmental noises (e.g., strong illumination, temporary occlusion) and sensor errors
(e.g., loss of focus). We illustrate this with images collected in a food court in Figure 5. In this case,
it is difficult to determine if a visual landmark is altered based on confidence values inferred from
a single video source.

To address this, we propose to determine the alteration based on information inferred from
multiple videos generated by different users rather than a single one to reduce the adverse impact
of opportunistic errors. As an example, we present the confidence matrix of five visual landmarks
collected in six different videos (termed sources) in Figure 5. For simplicity, we use “S1,” “S2,” . . . ,
“S6” to indicate six video sources in these tables. We use numerical values 1 to 5 to indicate five
different visual landmarks.

More specifically, we present the distribution of confidence values in two typical cases:

• Small confidence values of a visual landmark in various sources: This indicates that the ob-
served confidence values of a single visual landmark are low across different videos (high-
lighted in the red bounding box in Figure 5(b)). As the number of cells with low confidence
values increases, we can infer that an alteration may happen, resulting in low confidence
values across different sources.
• Small confidence values across different visual landmarks: This indicates that the observed

confidence values of all visual landmarks in a single video source are low (highlighted in the
red bounding box in Figure 5(c)). The number of cells with low confidence values is large. We
can infer that the video is prone to temporary environmental or sensor noises. Consequently,
the confidence values of all visual landmarks are low.
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6.2 Preliminaries of DS Theory

DS theory is a generalization of the Bayesian theory of subjective probability [36, 46]. It combines
evidence from multiple sources and finally gives a degree of confidence for hypotheses. The math-
ematical model is defined as follows. Let Θ be a finite set of mutually exclusive and exhaustive
hypotheses about some problem domain. A Basic Probability Assignment (BPA) is defined as
a functionm from 2Θ to [0, 1], which satisfies

m(∅) = 0,
∑
A⊆Θ

m(A) = 1. (9)

Given a finite number of functions (m1,m2, . . . ,mT ), for each hypothesis A (A ⊆ Θ), Dempster’s
rule of combination is defined as follows:

r (A) =
1

1 − γ
∑

A1∩A1∩···∩AT =A

m1 (A1)m2 (A2) · · ·mT (AT ), (10)

where γ is a measure of overall conflict among sources. Specifically, it is a scalar value defined as
follows:

γ =
∑

A1∩A1∩···∩AT �∅
m1 (A1)m2 (A2) · · ·mT (AT ). (11)

However, if the conflict among sources is significant, γ may be close to 1. In this case, existing
DS theory may suffer from the divide-by-zero error, leading to erroneous judgement, termed the
paradox problem. Based on our detailed analysis of video sources and noise factors, we refine the
DS model specifically based on our application scenarios.

6.3 Alteration Identification Modeling

We model our alteration problem as follows to determine if a visual landmark is altered. Given
a visual landmark, we define four hypotheses regarding its possibility of being altered by taking
environmental and sensor noises into consideration. These hypotheses are defined as follows:

Definition 3 (Hypothesis I ). The landmark detection network can classify the visual landmark as
the original one with probabilitym(I ).

Definition 4 (Hypothesis N ). The landmark detection network can identify that the visual land-
mark is altered with probabilitym(N ).

Definition 5 (Hypothesis C). The impact of noises is so significant that the landmark detection
network cannot determine if this is the original one with probabilitym(C ).

Definition 6 (Hypothesis K). The judgments from multiple sources are too contradictory to de-
termine the event with probabilitym(K ).

Based on the preceding definitions, we formally define the hypothesis set as Θ = {I ,N ,C,K }.
To address the paradox problem, we propose to introduce additional measurements for robust
alteration identification. Formally, we remove the denominator in Equation (10) and introduce the
conflict indicator q to reduce the impact of noises with a few videos. More specifically, for each
source (video), we have four BPAs, denoted bym(I ),m(N ),m(C ), andm(K ), respectively, and they
add up to 1.

As the DS algorithm fuses multiple BPAs, we have the fusion probability for each hypothesis,
where the corresponding event probabilities are denoted by r (I ), r (N ), r (C ), and r (K ), respectively.
Consequently, we have

r (I ) + r (N ) + r (C ) + r (K ) = 1, (12)
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Fig. 6. Overall flow of alteration identification.

wherem(K ), r (K ) ∈ [0, 1] are indicators of the contradiction between multiple sources. As a single
source does not contradict itself, we set the initial value of m(K ) to 0. r (K ), however, is not zero,
as it measures the degree of contradiction among multiple sources. As the level of contradiction
increases, the value of r (K ) increases. With fewer sources (say, two), the r (K ) could be large due to
contradictory hypotheses. As the number of user-generated videos increases, r (K ) could become
small as they achieve consensus. We overview the alteration identification in Figure 6. The pro-
posed alteration identification consists of three major components: basic probability calculation,
conflict probability calculation, and probability fusion. We detail each component as follows.

Suppose we have H sources (videos) and L visual landmarks in a region. Using the landmark
detection network, we get a landmark sequence in each video. The confidence values for all vi-
sual landmarks are denoted by Λ = [λ1, λ2, . . . , λL]. Then, we calculate the BPAs of hypotheses
corresponding to l (1 ≤ l ≤ L) based on source i (1 ≤ i ≤ H ), as follows:

mi (C ) = 1 −
L∑

l=1

λl/L, (13)

mi (I ) = λl ∗ (1 −mi (C )), (14)

mi (N ) = (1 − λl ) ∗ (1 −mi (C )). (15)

Then, we define the conflict between source i and j as follows:

ki j =mi (I ) ∗ (1 −mj (I )) +mi (N ) ∗ (1 −mj (N ))

+mi (C ) ∗ (1 −mj (C )).
(16)

Subsequently, the average pairwise conflict κ of all sources is defined as

κ =
1

H (H − 1)/2

H∑
i=1

H∑
j=i+1

ki j . (17)

Additionally, we define a pairwise conflict indicator ψ = e−κ , whereψ decreases as κ increases.
If the pairwise conflict indicator is small,ψ is large, indicating high degree of belief.

We define w as the overall dot product of all sources:

w (A) =
H∏

i=1

mi (A),A ∈ {I ,N ,C}, (18)

and w (K ) is zero.
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We use q(I ), q(N ) and q(C ) to denote the average degree of conflict among sources:

q(A) =
1

H

H∑
i=1

mi (A),A ∈ {I ,N ,C}, (19)

and q(K ) is zero.
The overall conflict indicator is defined as follows:

τ = 1 −w (I ) −w (N ) −w (C ). (20)

Please note that κ and τ are different conflict indicators. κ measures the pairwise conflict be-
tween each pair of sources. Consequently, it is large if assignments are contradictory among
sources. In contrast to κ, τ pays more attention to the overall conflict of all sources. Say, if some
sources conflict with others, τ becomes large even when the conflict indicator of other sources is
small.

Finally, we give the fusion probability:

r (A) = w (A) + τ ∗ψ ∗ q(A),A ∈ {I ,N ,C}, (21)

r (K ) = w (K ) + τ ∗ψ ∗ q(K ) + τ ∗ (1 −ψ ), (22)

where r (I ) and r (N ) denote the fusion probability of being the original visual landmark and being
altered, respectively. r (C ) and r (K ) are indicators of video noise and user consensus, respectively.

6.4 Criteria of Alteration Identification

Our alteration identification criteria are defined as follows. If the overall video noise indicator r (C )
and contradiction probability r (K ) are small, we can identify whether they are altered based on
the comparison of r (I ) and r (N ). This is because the sources are less prone to noise (low r (C )) and
consensus is achieved among them (low r (K )). If r (I ) > r (N ), we determine that the landmark
is altered. Otherwise, it is not altered. To reduce the impact of environmental noises (e.g., strong
illumination) and user operations (e.g., motion blur) on a single source, we wait for more video
sources (as illustrated in the experimental results) to determine if a visual landmark is altered.
If, however, r (C ) is large (indicating that sources are noisy), we cannot know whether the visual
landmark is altered. Additionally, if r (K ) is large, indicating hypotheses from different sources are
highly contradictory. In both cases, surveyors need to determine if the visual landmark is altered.

Finally, we evaluate the computational complexity of the proposed algorithm. In our alter-
ation identification algorithm, the calculation of ki j is more expensive than other probabilities.
As ki j measures the pairwise conflict between two sources, the overall computational complexity
is O (H 2), where H denotes the number of sources.

7 ILLUSTRATIVE EXPERIMENTAL RESULTS

We have implemented VILL and conducted extensive experiments in two different trial sites: a
crowded food court and a spacious shopping mall (Figure 7). We present our experimental set-
tings in Section 7.1, followed by the illustrative results of visual landmark identification and alter-
ation identification in Section 7.2. We present the location error of visual landmarks and users in
Section 7.3 and system overhead in Section 7.4.

7.1 Experimental Settings and Comparison Schemes

As an example, we select store logos as visual landmarks. This is because they are relatively per-
vasive, distinguishing, and stable in these trial sites. Additionally, we have conducted evaluations
in regions with posters in the food court. Other types of visual landmarks, such as sculptures and
paintings, could also be introduced into our landmark set, as they are visually distinguishing from
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Fig. 7. Floorplans of our trial sites.

the background and can also be easily detected by state-of-the-art object detection and classifica-
tion neural networks. To sum up, we have 92 and 82 visual landmarks in the food court (around
6,000 m2) and the shopping mall (15,000 m2), respectively.

We show the distances between adjacent visual landmarks in Figure 8. It shows that overall
distances in the food court are shorter than those in the shopping mall. This is because the food
court is more compact, where visual landmarks are closer to each other. In this case, one can take
shorter videos in this trial site in the construction stage. As the shopping mall is more spacious,
the distances between adjacent visual landmarks are longer.

We elaborate the group paradigm of visual landmarks as follows. We first divide visual land-
marks into several groups based on their physical locations and the floorplan of the trial site. We
divide neighboring visual landmarks into a group if they are spatially close—that is, located on the
same wall segment. Consequently, we generate an accurate 3-D model to cover them for location
inference. However, there are exits surrounded by white walls. Due to a lack of rich visual features,
the 3-D model can be noisy, leading to erroneous location estimation. In this case, we divide visual
landmarks into different groups if they are separated by exits. In the shopping mall with a large
spacious atrium, we divide the landmarks on two sides into different groups so that we can build
a more accurate 3-D model of the environment. Then, we select visual landmarks at either end of
the wall as anchor landmarks.

In the construction stage (January 2019), there are 26 and 28 anchor landmarks in the food court
and the shopping mall, respectively. Afterward, we invite two volunteers to take part in the survey.
Each of them takes two smartphones to collect videos for visual landmark labeling. We collect 192
and 353 video clips in the construction stage. VILL uses these videos to label 66 visual landmarks
in the food court and 54 visual landmarks in the shopping mall.

In the update stage (January 2020), another two volunteers take part in the video collection to
detect altered visual landmarks. There are three and five landmark alterations in the food court
and the shopping mall, respectively. We take 109 and 65 video clips in the food court and the shop-
ping mall, respectively, with four different smartphones: Huawei Mate 9, Xiaomi 9 Pro, Xiaomi 6,
and Samsung C5 Pro. In July 2021, we take another 24 videos in the shopping mall, where nine
landmarks are altered. The frame rate of the video is around 30 frames per second.

We present the number of landmarks in user-collected videos in Figure 9. It shows that the dis-
tribution of the landmark number varies with videos and trial sites. In the food court, the number
of visual landmarks in many videos is relatively small (e.g., three and four), as video clips collected
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Fig. 8. Distances between adjacent landmarks. Fig. 9. Number of landmarks in videos.

in this trial site are relatively short. In contrast, the video clips are long in the shopping mall.
Consequently, the number of visual landmarks in a video is relatively large.

We select Faster R-CNN to detect visual landmarks, as it is relatively accurate and efficient.
The backbone of Faster R-CNN is VGG16. In our experiment, we use images of anchor landmarks
as the training dataset for visual landmark detection. As store logos share visual characteristics,
we introduce readily-available images of landmarks from other trial sites to enhance the training
dataset. For example, in the food court, we use images of landmarks in the shopping mall and
anchor landmarks as our training dataset for visual landmark detection. In the shopping mall, we
use images of landmarks in the food court as well as images of anchor landmarks in the trial site
as training images for visual landmark detection. We use the model provided by PyTorch2 and
modify the output of classification layer to the number to (K + 1), where K is the number of visual
landmarks and 1 stands for the background class. We also modify the nodes in the bounding box
regression layer to 4 × (K + 1). To fine-tune a Faster R-CNN network that can identify a candidate
landmark region, we fine-tune the network with collected video frames. Specifically, we have 1,417
and 1,055 training images in the food court and the shopping mall, respectively.

We use VisualSFM3 to construct the 3-D point cloud using video frames for each group of vi-
sual landmarks. VILL extracts SIFT features, conducts pairwise feature comparison, and builds a
graph for candidate landmark regions where the weight between two vertices is the number of
matched SIFT features. To reduce the impact of temporal noises, we set the threshold value as the
mean number of matched features and remove those edges with weight values smaller than the
threshold.

We evaluate the performance of visual landmark labeling with the following metrics:

• Precision of visual landmark identification: Given P connected subgraphs, each subgraph con-
sists of sp (1 ≤ p ≤ P ) images, where ŝp of them belong to this visual landmark and others

do not. Then, the precision in the construction stage is defined as 1
P

∑P
p=1

ŝp

sp
.

• Alteration identification accuracy: Suppose we haveZ trials for landmark alteration, and VILL
gives z correct estimations. The accuracy of alteration identification is defined as z

Z
.

• Location error of visual landmarks: Let M be the number of visual landmarks, and xm and x̂m

be the ground truth and estimated location of trial m, respectively; we define the location

2https://pytorch.org/.
3http://ccwu.me/vsfm/.
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error as 1
M

∑M
m=1 | |xm − x̂m | |2, where | | · | |2 indicates the Euclidean distance between two

locations.

To evaluate the impact of source number on the alteration identification accuracy, we conduct
simulations by selecting different numbers of sources (one, three, five, seven, and nine) randomly.
We compare our VILL with the Threshold, which selects a source randomly and determines if a
landmark is altered by comparing the confidence value with a threshold value.

We compare our approach with the state-of-the-art Sextant [11] to evaluate the location error
of unlabeled visual landmarks. For fair comparison, we use the same number of anchor landmarks
for both approaches. Additionally, we design a baseline approach without wall constraints (VILL
w/o) to evaluate the location error. To evaluate the impact of video resolution on the localization
accuracy, we downsample video frames and repeat the trials with different resolutions. We also
conduct another simulation in the food court, where we select different pairs of visual landmarks
as anchor landmarks and evaluate the impact of their distances on the location error of unlabeled
ones.

To evaluate the impact of video number on the success rate and location error of unlabeled
visual landmarks, we select different numbers of videos randomly and repeat the experiment for
unlabeled visual landmarks. We split and merge groups of landmarks to evaluate the impact of
group number on the location error of unlabeled landmarks. We also conduct indoor localization
of users with labeled visual landmarks as in Sextant [11]. To evaluate the localization accuracy
with alteration, we conduct a simulation in areas with altered landmarks and compare localization
results of users with and without landmark update.

We evaluate the power consumption as follows. We kill all other foreground applications and
execute the client to record a video (around 30 frames per second) for 5 minutes with three trial
devices: Huawei Mate 9, Xiaomi MI 6, and Samsung C5 Pro. We record the power drop and estimate
the average power consumption of recording the video. Furthermore, we upload the collected video
to a server through Wi-Fi to evaluate the power consumption with video transmission.

Unless otherwise stated, the threshold of landmark detection network is 0.7 and the resolution of
collected videos is 1920 × 1080. In the food court and the shopping mall, we set r (C ) and r (K ) to 0.5
and 0.45 based on our empirical studies. Furthermore, we conduct user localization experiments
using visual landmarks labeled by VILL. We use the triangulation algorithm to locate users as
studied in Sextant.

7.2 Landmark Detection and Alteration Identification

We illustrate detected objects with a pretrained model in Figure 10. We can see that the pretrained
model detects known objects, such as a person, a dining table, and an umbrella. However, it does
not detect regions such as store logos. This is because store logos are not in the training dataset of
the pretrained model and are different from objects in terms of color and texture. Consequently, the
domain shift between the CoCo training dataset and our visual landmarks is significant, rendering
it difficult to detect and identify visual landmarks with the pretrained model. We have randomly
selected around 130 images from our dataset in the shopping mall with visual landmarks. Experi-
mental results show that the pretrained model does not detect visual landmarks in them. Therefore,
we need to fine-tune the network to detect visual landmarks more effectively.

We evaluate the impact of region detection threshold on the identification accuracy in Figure 11.
It shows that as the threshold value increases, the identification accuracy of visual landmarks
increases. This is because the network discards noisy regions with low confidence values and
keeps those with high values. Consequently, we enhance the identification accuracy. However, the
number of identified visual landmarks decreases with large threshold value. To achieve a tradeoff
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Fig. 10. Illustration of landmark detection with the pretrained Faster R-CNN.

Fig. 11. Landmark identification accuracy vs. thresh-

old (food court).

Fig. 12. Alteration identification accuracy vs. num-

ber of sources (food court).

between accuracy and the number of detected visual landmarks, we set the threshold value to 0.7
in our experiment.

We present the accuracy of alteration identification with different numbers of sources in
Figure 12. It shows that the overall accuracy increases with more sources. This is because we
can reduce the impact of opportunistic noises and increase the accuracy with consensus among
video sources. As the number of sources is larger than five, the accuracy becomes relatively stable.
This is because these sources can provide sufficient information for alteration identification. In the
deployment stage, service providers need at least five videos to identify an alteration accurately.

7.3 Visual Landmark Positioning

We present the localization error of visual landmarks in the food court and shopping mall in
Figures 13(a) and 13(b), respectively. Experimental results show that our VILL achieves higher
accuracy compared with competing schemes. This is because VILL employs an anchor landmark
selection strategy to reduce the upper bound of location errors. Furthermore, it incorporates the
map constraints to reduce the adverse impact of statistical noises on the location accuracy. The
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Fig. 13. Localization error of visual landmarks.

Fig. 14. Localization error vs. resolution (food court). Fig. 15. Localization error vs. anchor distances (food

court).

displacement of Sextant, however, is larger compared with VILL due to noisy motion sensors and
accumulative errors.

We show the impact of image resolution on the localization error of visual landmarks in
Figure 14. It shows that the mean localization error decreases with higher resolution. The rea-
sons are as follows. As the resolution increases, we can extract more distinguishing visual clues
from images, thus generating more accurate 3-D models of the environment. Furthermore, land-
mark detection networks can detect distant visual landmarks accurately, thus increasing accuracy
of location estimation for visual landmarks. Consequently, we set the resolution to 1920 × 1080 in
our experiment to achieve sufficient localization accuracy.

We present the localization error of unlabeled visual landmarks with different distances between
anchor landmarks in Figure 15. It shows that as the distance increases, the largest and mean local-
ization error of landmarks in the food court decreases. This is because as we increase the distance
between anchor landmarks, VILL reduces the adverse impact of statistical noises, thus reducing
the localization error of visual landmarks. This demonstrates that the proposed anchor selection
strategy can reduce the upper bound of location errors of unlabeled landmarks effectively.

ACM Transactions on Sensor Networks, Vol. 19, No. 4, Article 74. Publication date: April 2023.



74:20 Q. Niu et al.

Fig. 16. Success rate and displacement vs. number

of videos (food court).

Fig. 17. Mean landmark location error vs. portion of

groups.

We show the success rate of landmark labeling and corresponding location error versus the
number of videos in Figure 16. It shows that the success rate of landmark labeling increases with
the number of videos. This is because we can build more accurate 3-D models of the trial site with
more video frames, thus providing accurate spatial correlations and consequently smaller location
errors of visual landmarks. In our experiment, we use all videos to label visual landmarks. However,
the computational cost in 3-D modeling increases with more videos. To achieve a tradeoff between
accuracy and computational cost, one can collect six videos for each group of landmarks.

We present the impact of group number on the location estimation of visual landmarks as well
as the success rate in Figure 17. As we reduce the group number by merging remote groups or
those separated by textureless areas, the success rate of landmark localization is low. This is be-
cause VisualSfM cannot build a point cloud that covers distant groups due to sparse visual features.
Consequently, we cannot estimate their locations on the floor plan. As we increase the group num-
ber by splitting existing groups into smaller ones, the overall location error of visual landmarks
is similar (with marginal decrease). This is because VILL introduces anchor landmark selection,
reducing the error bound of unlabeled visual landmarks. Consequently, the accuracy of landmarks
does not change significantly.

We illustrate the localization error of users with labeled visual landmarks in Figures 18(a) and
18(b). Experimental results show that the localization error with landmarks labeled by VILL is com-
parable with that by surveyors. This is because we first use graph-based identification approaches
to identify distinguishing visual landmarks from a large number of videos. Based on the anchor
selection strategy, our VILL can estimate locations of unlabeled visual landmarks accurately. Con-
sequently, the localization error is comparable with landmarks labeled by surveyors.

We show the localization error of users with and without visual landmark update in Figure 19.
Experimental results with altered landmarks show that VILL can achieve comparable localization
accuracy with those updated by surveyors manually. The reasons are as follows. VILL can iden-
tify altered visual landmarks accurately with several videos uploaded by users. Combined with
the accurate alteration identification and localization, we can update landmark labels accurately.
Therefore, VILL can achieve sufficient accuracy as visual landmarks labeled manually.

7.4 System Overhead

We evaluate the time consumption of the proposed VILL in each processing step as follows.
The time consumption of uploading a video to the server depends on the file size and network
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Fig. 18. Localization error of users with visual landmarks.

Fig. 19. User localization error with and without up-

date of visual landmarks (food court).

Fig. 20. Power consumption of different trial devices.

bandwidth. For a typical video with 9 seconds (268 frames, 18 MB), the time consumption in video
uploading in a 100-Mbps network is around 1.5 seconds. In the landmark identification stage, it
takes around 19.8 seconds to process this video in our server. Therefore, it takes around 0.07 sec-
onds (=19.8 ÷ 268) to detect candidate landmark regions in an input frame. As for landmark identi-
fication, it takes around 7 seconds using our graph-based identification algorithm. Then, we eval-
uate the time consumption in the landmark localization stage. The construction of the 3-D model
takes around 958 seconds. For a group with nine visual landmarks (two anchor visual landmarks
and seven unlabeled ones), it takes 12.2 seconds to locate seven unlabeled visual landmarks. To
summarize, the time consumption of landmark labeling with nine visual landmarks is around 997
seconds (=19.8 + 7 + 958 + 12.2). Finally, the time consumption in alteration identification is around
0.011 second. Please note that the landmark labeling is conducted offline, which does not incur any
additional overhead for ordinary users.

We evaluate the survey reduction in terms of visual landmarks to be labeled. In the food court,
as we have 26 anchor landmarks and 66 unlabeled visual landmarks, the time consumption saved
by our VILL is 71.7% (=66 ÷ (26 + 66)). In the shopping mall, we have 28 anchor landmarks and
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54 unlabeled landmarks. Consequently, the time consumption saved by VILL is 65.9% (=54 ÷ (28 +
54)). Consequently, we reduce the time consumption by at least 65.9% in the construction stage.
Furthermore, as our VILL leverages user-collected videos and identifies altered visual landmarks
in the server, surveyors do not have to survey the trial site regularly to identify altered visual
landmarks. Therefore, we reduce the time consumption in the update stage significantly.

We illustrate the power consumption with different trial devices in Figure 20. The power con-
sumption with the screen on for around 6 seconds is less than 0.5 mAh. Meanwhile, it takes around
1 to 2 mAh to collect a video clip for 6 seconds. The power consumption of uploading the collected
video to a server through Wi-Fi is around 2 mAh. Therefore, the overall power consumption of tak-
ing the video and uploading it to a remote server is less than 5 mAh, which is marginal compared
with the battery capacity of the state-of-the-art smartphones (around 4,000 mAh).

8 DISCUSSION

In this article, we mainly focus on the labeling of visual landmarks in an indoor environment.
We have conducted extensive experiments in two different trial sites. Experimental results demon-
strate that the proposed VILL achieves effectiveness and reduces on-site survey effort by surveyors.
Although we have addressed the essential problem of landmark labeling and have achieved accu-
racy and effectiveness, a few more problems remain to be addressed (which are not the focus of
this artile).

Transmission Overhead of Videos. VILL is based on the client-server system architecture, where
the client program records videos and sends them to a remote server for visual landmark identi-
fication. This may incur delay for the client program due to long videos or network congestion.
Motivated by the recent advances of mobile devices and algorithms, it is possible to study key
frame selection in mobile devices. Afterward, the client program uploads key frames instead of
videos to the server, reducing the transmission delay.

Location Privacy of Volunteers. The incorporation of mobile crowdsensing in recording and up-
loading video clips enables the fast construction and update of a visual landmark database. How-
ever, using user-collected videos, backend services can infer the user location or trajectory, incur-
ring severe privacy concerns of volunteers. Although much research effort has been devoted to
the protection of location privacy, recent works show that they may be compromised by jointly
considering visual representation, correlation, and annotation [51]. In the future, we plan to study
more robust techniques to protect the location privacy of volunteers.

Visual Landmark Selection in an Outdoor Environment. In this article, we select store logos as
visual landmarks, mainly because they are visually distinguishing from the background and rela-
tively stable (in terms of weeks). In addition to store logos, we also select advertisements on the
wall and sculptures as visual landmarks in the food court because they are also visually distinguish-
ing from the background. Therefore, we can also select posters and advertisements as landmarks
outdoors. In the future, we plan to conduct more experiments to evaluate the performance with
different types of visual landmarks in outdoor scenarios.

9 CONCLUSION

We proposed VILL, an efficient visual landmark labeling approach by camera sweeping. To identify
visual landmarks from unstructured videos, we proposed a graph-based visual similarity represen-
tation structure, where we identified various visual landmarks accurately and adaptively with-
out knowing their numbers by finding subgraphs. To reduce the location error of unlabeled land-
marks, we proposed an anchor selection strategy, where we selected anchor landmarks to guide
the location estimation of unlabeled ones. Finally, we proposed an alteration identification model,
where we identified altered visual landmarks accurately by considering the user consensus. We
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implemented VILL and conducted extensive experiments in a crowded food court and a spacious
shopping mall. Experimental results showed that our VILL can reduce the survey effort by at least
65.9% with comparable localization accuracy of visual landmarks.
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