
ELSEVIER Parallel Computing 21 (1995) 137-160

PARALLEL
COMPUTING

Practical aspects and experiences

Parallel image processing applications on a network
of workstations ’

Chi-kin Lee, Mounir Hamdi *

Department of Computer Science, Hong Kong Unmersity of Scrence and Technology, Clear Water Bay,
Kowloon, Hong Kong

Received 4 August 1993; revised 22 May 1994

Abstract

Concurrent computing on networks of distributed computers has gained tremendous
attention and popularity in recent years. In this paper, we use this computing environment
for the development of efficient parallel image convolution applications for grey-level
images and binary images. Significant speedup was achieved using different image sizes,
kernel sizes, and number of workstations. We also present a performance prediction model
that agrees well with our experimental measurements and allows the highest speedup to be
predicted from the knowledge of the ratio of the computation time to the communication
time. The main limiting factor in our programming environment is the bandwidth of the
network. Thus, it seems with emerging high-speed networks such as ATM networks, parallel
computing on networks of distributed computers can be a very attractive alternative to
traditional parallel computing on SIMD and MIMD multiprocessors in executing computa-
tionally intensive applications in general and image processing applications in particular.

Keywords: Image processing; Convolution algorithm; EXPRESS; Network of workstations;
Distributed memory multiprocessor

1. Introduction

Parallel computing environments based on networks of computers have recently
proven to be effective and economical platforms for high-performance computing
in a number of disciplines [1,3,8,27]. Particularly in the areas of computer vision
and computational science, where the demand for computing power is ever-in-

* This research work was supported in part by the Hong Kong Research Council under the grant

RGC/HKUST 100/92E.

* Corresponding author. Email: hamdi@cs.ust.hk

0167-8191/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved

S.SDI 0167-8191(94)00068-9

138 C.-K. Lee, M. Hamdi / Parallel Computing 21 (1995) 137-160

creasing, network-based computing environments provide a very attractive alterna-
tive to traditional vector supercomputers and monolithic multiprocessors. From
the economic point of view, network computing systems provide supercomputing
power at minimal cost; an advantage highlighted by the fact that often, existing
general purpose resources provide the computing platform, thereby requiring little
or no additional investment. From the technical viewpoint, network computing
systems provide equivalent and sometimes greater functionality, for a large number
of application categories.

In this paper, we will discuss the results of using such a network environment
for the implementation of fundamental parallel image processing tasks. Image
processing is one of the most computationally intractable domains in computer
vision and artificial intelligence research. Fortunately, image processing tasks lend
themselves naturally to parallel processing. Basically, parallel image processing
exploits the two fundamental modes of parallelism in image processing tasks:
image parallelism and function parallelism [14,26]. Image parallelism is a kind of
spatial parallelism, where the same operation is repeated on each pixel or
subregion so that the image may be partitioned into a set of subimages which can
be processed by multiple processing elements (PEs) for faster execution. On the
other hand, function parallelism is temporal parallelism, where an image process-
ing task consists of several levels of processing. Here an image processing function
may be divided into subfunctions and utilize the scheme of pipelining. This paper
is concerned with the first mode of parallelism, that is, image parallelism.

Most image processing tasks constitute the preprocessing step for numerous
computer vision applications which is generally followed by object identification
[28,29]. Both of these operations typically involve large amounts of computations
but embody different computation paradigms [11,12,29]. Consequently, highly
parallel, special purpose hardware is often used for vision applications, especially
for image processing. Such special hardware are SIMD parallel computers
[5,6,13,20]. We believe, however, that you can effectively specify image processing
operations in a general environment, such as a network of workstations, and that
you can use many of the recently developed parallel systems both for scientific and
image processing applications. Hence, a network of workstations with its program-
ming environment will provide users with transparent access to special image
processing hardware. This is one more motivation that led us to consider the
implementation of image processing tasks on a network of workstations. Further,
we are aware of just few attempts for implementing image processing tasks on a
network of workstations [7,15,17]. Thus, our experimental results would be a step
further towards serving the purpose of evaluating the viability of a network of
workstations as compared to special purpose SIMD computers or MIMD multi-
processors in executing image processing tasks in particular and computationally
intensive tasks in general.

The image processing tasks that are considered in this paper involve mainly
neighborhood operations which are the most common used operations in image
processing [9,10,241. Typically, the output of a neighborhood operator at a given
pixel is a function of that pixel value and the values of some neighboring pixels

C.-K Lee, M. Hamdi/ Parallel Computing 21 (1995) 137-160 139

around it, often modified according to a kernel matrix. The kernel typically varies
in size from 2 x 2 to 21 x 21 elements. There are numerous neighborhood opera-
tions such as averaging, thinning, shrinking, and template matching [l&24]. These
operations are regular and repetitive which makes them very computationally
intensive and, fortunately, ideal for parallel processing.

Since most of the image processing tasks which require neighborhood opera-
tions need the same computing power which is mainly dependent on the image size
and the kernel size, and because it is impractical to examine all neighborhood
operators, we concentrate in this paper on the implementation of one common
neighborhood operation namely conuolution with special emphasis on template
matching. Template matching, which is an example of a convolution operation, is
chosen for the study and the evaluation of the potential of using a network of
workstations in the implementation of neighborhood image processing tasks (image
parallelism) in our experiments. Template matching may be used as a simple
method for filtering, edge detection, image registration, and object detection
[4,5,22,23].

This paper is organized as follows. Section 2 gives an overview about convolu-
tion algorithms for both grey-level images and binary images. Section 3 presents
our parallel image convolution computational model, and discusses the significance
of different image partitioning methods. Section 4 presents a performance predic-
tion model that estimates the performance of our computational model. Section 5
presents our experimental results for implementing the parallel image convolution
tasks on a network of workstations. Then, we compare these results with the
expected theoretical results. Finally, Section 6 concludes the paper.

2. Convolution algorithms

Convolution is the most general image processing operation. It is a fundamental
low level operation in image processing and computer vision applications. The
applications of convolution range from linear image processing, to edge detection
[4], morphological image processing [9], feature extraction, template matching [23],
and regularization theory [24]. There are mainly two types of convolutions found in
image processing applications, a 1-D convolution and a 2-D convolution. In this
paper, we address 2-D convolution because it is more computationally intensive,
and because a 1-D convolution is simply a special case of 2-D convolution. A 2-D
convolution operation is defined in the following way. For an N X N image matrix,
I[O..N - 1, O..N - 11, and a kernel also known as mask or template with size
M x M, T[- lM/2j..lM/2], - lZi4/2J..lM/2]], the convolution output is an N x N
image matrix C[O..N - 1, O..N-1] where each matrix entry is defined as:

M/21 M/21
C[i,jl= c c I[i+u,j+u]xT[u,v] O<i,j<N. (1)

U = - LM/21 ” = - lM/21

140 C.-K. Lee, M. Hamdi/Parallel Computing 21 (1995) 137-160

Each element of the image matrix corresponds to a value of a single image pixel,
and each element of the kernel matrix corresponds to a kernel weight. An image
pixel is represented by an &bit (1 byte) integer for grey-level images and by a
single bit (0 or 1) for binary images. The size of the image, N X N, depends on the
resolution used, and the size of the kernel, M X M, depends on the application. As
can be seen from Eq. 1 above, the value of C[i, j] depends only on the values of a
small number of its neighbors. The number of neighboring pixels is directly related
to the kernel size and is equal to M2. Thus, to determine a single convolution
value using Eq. 1, we have to perform 0(i%f2) multiplications. For an N X N image
matrix, the time complexity would be O(N2Af2) to perform the image convolution
using a sequential machine. This can be a very time-consuming task when N is
large.

The implementation of convolution operations on binary images is very similar
to that implemented on grey-level images. In this case, the image pixel values and
the kernel weights are 1 bit elements (0 or 1). To perform convolution on a binary
image, we use a variant of the above Eq. 1 as follows [19]:

lM/21 [M/21

C[i,jl= C c (,Z[i+u,j+v]eT[u,v])AM[u,u])
u= -lM/21 u= -[M/21

Osi, j<N. (2)
where 8 stands for XOR, Z is the binary image matrix (Z[i, j] E {O, l}), T is the
kernel matrix which specifies the value of the do-care pixels (0 or l), and M
specifies whether a pixel in this kernel is a do-care or a don’t-care term [9]. Like
the convolution for grey-level images, the value of each pixel of the binary image
depends only on a small number of pixels which is directly related to the size of the
binary kernel used.

3. A network of workstations environment

Our computing environment consists of a number of SUN workstations con-
nected by an Ethernet network using EXPRESS. Thus, from a parallel point of
view, each SUN workstation (node) is considered as a single PE, and the whole
network looks like a distributed memory MIMD computer. EXPRESS, developed
by Parasoft [21], is a programming environment for writing parallel programs for
MIMD multiprocessors. It is simply a software layer which executes above the
individual operating systems of the autonomous SUN machines that are net-
worked. Further, EXPRESS, is a portable parallel programming environment, and
is available on most commercial parallel machines. There are other similar parallel
programming environments such as PVM and P4 [8,25] which have been used by
many researchers in the implementation of parallel programs. One major differ-
ence between a network of workstations and a parallel machine both running
EXPRESS is that the Ethernet network connecting the workstations has a much
lower bandwidth and a bigger latency time than those of an interconnection

C.-K Lee, M. Hamdi/Parallel Computing 21 (1995) 137-160 141

network (e.g. hypercube, mesh) of a parallel machine. This makes the design of a
parallel application for a network of workstations more difficult because the
careful consideration of the communication overhead is much more crucial.

3.1 Parallel program model

EXPRESS allows the development of parallel programs in the following two
different styles:
(1) The conventional Host-Node style in which the control part of the program

appears in the host program and the computation intensive part in the node
programs.

(2) The Cub& style in which only the node programs are written, and they
interface to the outside world through graphics and text server.

The Cubix style is easier to use than the Host-Node style since the programmer
does not have to worry about writing a host program. On the other hand, the
Host-Node style offers more flexibility and better scalability. Our parallel image
processing convolution software has been designed using the Host-Node style. The
host program is used to partition a given image into a number of subimages and
distribute them to the nodes, and to collect the resultant convolved subimages
from the nodes. The node programs are mainly used to carry out the convolution
computation on their respective subimages. The convolution operation can be
easily replaced by other neighborhood operations to perform other image process-
ing functions. Hence, our Host-Node program is general enough to be used in a
wide range of image processing applications.

The efficiency of exploiting image parallelism on a network of workstations is
determined mainly by the communication overhead. This overhead is mainly due
to the distribution of subimages to a set of workstations, data exchange during the
convolution computation, and the collection of local results. Hence, this communi-
cation overhead is directly related to the number of subimages. Therefore, it is
important to determine the best image partitioning in terms of the number of
workstations employed. When we partition the image into a number of worksta-
tions to perform convolution, the value of each pixel depends on the values of
some neighboring pixels. However, some of these neighboring pixels might be
belonging to the subimage allocated to a different workstation. This is the case for
all pixels on the boundary of the subimages allocated to different workstations.
This is illustrated in Fig. 1, where two subimages are separated by a vertical
boundary, and the thick square is the kernel region. In this case, when a
workstation needs to calculate the convolution of the pixels on the border of
subimage 1, the kernel will require the values of some pixels in subimage 2 which
are residing in a different workstation. Consequently, an extra communication
overhead would be incurred besides distributing the original N X N image pixels
to the workstations. The amount of the extra communication overhead depends on
the length of the boundaries of the subimages and the kernel size. This implies
that the bigger the number of workstations employed to share the workload, the
bigger the number of subimages generated, and hence a higher extra communica-
tion overhead is introduced, especially for large kernel sizes.

142 C.-K Lee, M. Hamdi/Parallel Computing 21 (1995) 137-160

subimage 1 subimage 2

‘\ ,’

,/.\ ,-\ I
I \ I”

‘\ ,’ ‘\ ,’ ‘\ ,’ ‘\
#“\ I

‘\ , ‘\ ’
,’ ‘\ ,’

t,’ \ l ’ ‘\ ’
. ..#’

‘\ ’
.\,’

‘\
‘\S

I’ ‘\ ’
\#’

Fig. 1. Pixels on the boundary of a subimage need neighboring pixels from another subimage for the
computation of their convolution values.

There are two methods used to handle this extra communication [221:
(1)

(2)

Overlap mapping: each workstation obtains its subimage and the boundary
pixels (belonging to different subimages) needed to find all the convolution
values of its boundary pixels. This is illustrated in Fig. 2 where a workstation
gets all the data bounded by the dotted square instead of the thick solid
square.
Non-overlap mapping: each workstation obtains its subimage without the pixels
needed by its own boundary pixels during the convolution and belonging to a
different subimage. That is each node only obtains the data bounded by the
thick solid square in Fig. 2. However, when it requires some pixel values that
are residing on different subimages, it has to communicate with its neighboring
workstations to obtain them.

By examining both methods, we can see that the second method requires less
data to be transferred from the host to the nodes. On the other hand, the first
method requires no communication between the workstations while performing
convolution, unlike the second method. Further, the amount of extra data that
have to be sent between the host and the nodes is equal to the amount of data to
be communicated between the workstations to perform the convolution using the
second method. For this reason, we adopted the first method in our implementa-
tion. Moreover, using the first method, all workstations work independently from
each other during their computation of the convolution of their subimages, and
they don’t need to recognize their neighbors. This is similar to the Single Program
Multiple Data (SPMD) mode [2,16].

3.2. Image partitioning method

Since the extra communication overhead introduced in the previous section is
directly proportional to the number of pixels on the boundary of the subimages,

C.-K Lee, M. Hamdi/Parallel Computing 21 (1995) 137-160 143

subimage 1 subimage 2

I

subimage 4
I

I !

subimage 5

subimage 7 I subimage 8

subimage 3

bubimage 6

subimage 9

Fig. 2. The subimage size using the overlap mapping method.

different partition methods of the whole image will produce different amounts of
communication overhead. Actually, there are numerous ways of partitioning a
given image into a given number of workstations. However, in order to maintain
and manipulate the image matrix easily, and because certain partitioning schemes
(e.g. diagonal partitioning) are hard to analyze, only vertical and horizontal
partitioning directions are considered. Without loss of generality, we assume the
original image to be a square image with width L (number of pixels). Now, we
examine two image partitioning methods denoted TOW partition and cross partition

respectively.
(1) Row partition

Using the row partition method, the image is divided horizontally into n equal
subimages for II workstations. Each workstation performs convolution on
subimages of size L2/n pixels. The advantage of this partitioning method is
that it can divide a given image into any number of subimages of comparable
sizes. This implies that all workstations involved in the computing of the
convolution have comparable workload [2]. However, the total number of
boundary pixels of the subimages, Lboundary, is big and is given by:

L boundary = (n - l)L.

144 C.-K Lee, M. Hamdi/Parallel Computing 21 (1995) 137-160

Fig. 3. The partitioning of an image into 4 and 9 subimages respectively using the cross partition
method.

(2) Cross partition
Using the cross partition method, the image is divided evenly using both the
horizontal and vertical dimensions as shown in Fig. 3 for any number of
workstations, n = i* where i is any integer > 0. The number of boundary pixels
of all subimages is optimum, that is minimum, for any square image size, and is
given by:

L boundary = 2(& - l)L. (4)

However, the cross partition method places a restriction on the number of
workstations used. Essentially the number of workstations used must be a
square number, that is, 4, 9, 16, 25 . . . etc. Hence, using the cross partition
method, we may not be able to use it for the allocation of all available
computing resources.

In order to remedy the disadvantages of both methods, we propose an alternate
partition method, denoted heuristic partition. The heuristic partition method works
as follows given an image and n workstations.

Step 1. If n = 1, stop.
Step 2. If n is even, we divide the image into two equal subimages, A and B,

through the minimum number of boundary pixels (either vertical or hori-
zontal pixels).

Step 3. Else, we divide the image into two subimages, A and B, through the
minimum number of boundary pixels such that the ratio of the number of
pixels of subimage A to that of subimage B is equal to ln/2j:In/2] + 1.

Step 4. Repeat step 1 for subimages A and B respectively.

Fig. 4 shows the results of the heuristic partition method when n = 5 and n = 7.
For any number of workstations, n, the number of pixels of all subimages are
equal, but the subimages, may have different shapes.

As mentioned before, the number of boundary pixels of the subimages is
directly related to the way the image is partitioned and the size of the kernel
convolution. Suppose the kernel size is M x M, then the number of boundary

C.-K Lee, M. Hamdi/Parallel Computing 21 (1995) 137-160 145

I I 2

3 ~ 4 j 5

4 i 5

t-3) 7

Fig. 4. The partitioning of an image into 5 and 7 subimages respectively using the heuristic partition
method.

pixels is C, = Lboundary x (M - 1) + a small number corresponding to the number
of pixels on the corners of the subimages’ boundaries. Usually, the number of
pixels on the corners is small relative to the number of pixels on the boundaries
especially for coarse grain parallel computation where the number of subimages is
not very large which is the case when using a network of workstations. Hence, the
number of corner pixels can be negligible compared to the total number of
boundary pixels. Thus, distributing the original image from the host to the nodes
involves sending L2 pixels. The percentage of the number of extra (boundary)
pixels with respect to the total number of pixels in the image is approximately
C,/L2, denoted boundary overhead. For example, if a 1024 X 1024 image matrix is
divided into 9 subimages and the kernel size is 11 x 11, then:

By using the row partition method, the boundary overhead = 8L(M - 1)/L2 =
7.8%.

By using the cross partition method, the boundary overhead = 4L(M - 1)/L2 =
3.9%.

By using the heuristic partition, the boundary overhead = 4.24L(M - 1)/L? =
4.1%.

The above estimates show that the boundary overhead is small compared to the
overhead resulting from sending all pixels of the image, especially when the kernel
size is much smaller than the image size which is the case in most image processing
convolutions. Consequently, the partition method is not very crucial in the overall
performance of the parallel image processing convolution. In our experimental
results, we used the heuristic partition method because it represents a compromise
between the row partition method and the cross partition method.

4. Performance prediction model

Before presenting the experimental results, it is desirable and advantageous to
develop an analytical model to describe the behavior and the performance of the
parallel image convolution program. The analytical model is not only used to verify
the experimental results but also to predict the speedup tendency. The speedup

146 C.-K Lee, M. Hamdi/Parallel Computing 21 (1995) 137-160

Host Node 1 Node 2 Node 3 Node 4

Time

._._..... I a--... .._ _..... ._ Ta

-

Tb

cl Tc

0

0

CT

::: ._. _. .._
Td

Fig. 5. The activities of all processes involved in the parallel image convolution program.

tendency can be used to project the maximum number of workstations that can be
used while preserving a positive speedup. Using a large number of workstations
can be sometimes counter productive, that is, the speedup that they achieve is
lower than that of a smaller number of workstations. The main reasons for that are
the low bandwidth of the Ethernet and the high granularity of certain applications.
Hence, this analytical model can save us a lot time running different experiments
to find out the number of workstations that achieve the highest performance for a
given image processing convolution application.

Based on the Host-Node style of our parallel image convolution program, Fig. 5
describes the activities of all processes involved. The dark grey box represents the
host’s setup time. The light grey boxes represent the convolution computation time
on the different workstations, and the white boxes represent the communication
time for sending the image data between the host and the nodes. Suppose there
are 4 active nodes (workstations), the host program sends 4 subimages and the
kernel matrix to all the nodes one after the other. Each node starts the convolution
computation of its subimage as soon as it receives the subimage and the kernel
matrix. Hence, there is some overlapping between sending/receiving the subim-
ages data and the convolution computation on the nodes as shown in Fig. 5.

Using this parallel computational model, the execution time of the parallel
program can be broken up into four terms:
l Tu: the host setup time which is mainly due to performing the image partition.
l 7b: the communication time for sending all subimages’ data and the convolution

kernel data to all workstations involved.
l Tc: the average computation time of the convolution on a single workstation.
l Td: the communication time for receiving the partial results of the image

convolution from one workstation.

C.-K Lee, M. Hamdi/Parallel Computing 21 (199.5) 137-160 147

Host Node 1 Node 2 Node 3 Node 4
. . .._............. _ .~~~. ~~.

n

Ta

Tb

Tc

Td

Fig. 6. The activities of all processes involved in the parallel image convolution program when the
computation time is very small.

Hence, the execution time of the parallel program, using n workstations, is the
summation of the 4 terms and is given by:

q,, = Ta + Tb + Tc + Td. (5)

We can see that as the number of workstations increases in the execution of the
image convolution, Tc and Td will be smaller but Tb may increase. In case the
computation time is too small, some nodes may start sending back their results
before the host has finished distributing all subimages. This is illustrated in Fig. 6.
Hence, the execution time of the parallel image convolution in this case which
rarely happens is bounded below by the communication time which is given by:

T;,,=Ta+B+nXTd. (6)

4.1. Computation and communication times

In order to formulate the equations that give us the expected speedup curves of
our parallel program, we have to formulate the equations for the computation time
and communication time which make up the execution time of the whole program.
The computation time is proportional to the number of multiplications of two
pixels in grey-level images and the number of logical ‘XOR’ and ‘AND’ operations
in binary images. Let us denote each iteration in Eqs. 1 and 2 as one computation
step. Thus, the convolution of an N X N image matrix using an M XM kernel
requires N2M2 computation steps. Let y be the time to perform one computation
step. Then, the computation time, Tcomp, is given by:

T camp = N”M*y. (7)

If the workload is divided evenly over n nodes, then each node’s processing time is
given by:

N2M2
T camp = -y.

n (8)

148 C.-K. Lee, M. Hamdi / Parallel Computing 21 (1995) 137-160

The total communication time of the parallel program is the summation of two
components: latency time and transmission time. The latency time, (Y, is a fixed
startup overhead time needed to prepare sending a message from one workstation
to the other. The transmission time is proportional to the size of image data. Let p
be the incremental transmission time per byte. Note that it is usually the case that
(Y B p. Then the communication time, T,,,,, to send P bytes of data (messages) is
defined as:

T cOmm =a +PP* (9

Since a single message sent between two workstations cannot be infinitely long, it
is restricted to be K bytes long to simplify the buffer management of the
workstations, and because of the Ethernet protocol. Therefore, the actual commu-
nication time to send P bytes of data is given by:

T c0mm = [P/z+ +PP. (10)
i.e. P bytes of data will be packed into 1 P/K 1 messages to be transmitted one after
the other. For the binary image case, we only use 1 bit to represent a pixel value (0
or 1). To send P pixels from the host to the node, the volume of data communica-
tion is just 1 P/81 as compared to the volume of data communication for grey-level
images. Therefore, the communication time is smaller when using binary images.

4.2 Parallel performance

If the values of (Y, /3 and y are known, then the execution time of the parallel
image convolution program can be easily estimated as will be shown below. To
formulate the equations of the parallel image convolution execution time for an
N x N image matrix, an M x h4 kernel matrix, and it workstations, we need to
determine the value of each of the following terms:

Ta: It is mainly the time spent in partitioning the image using the heuristic
partition method. Compared with the communication time and the convolu-
tion time, it is negligible.

‘IX: It includes the communication time to send the kernel matrix and all the
subimage matrices to all workstations involved in the processing of the image
convolution. The size of an M X A4 kernel is M2 bytes which can be packed
into [M’/K 1 messages. Hence, the latency time of sending these messages is
IM*/Kla, and the transmission time is M*/?. Similarly, the size of a subimage
is (N* + C,>/n bytes approximately where C, bytes is the size of the extra
pixels to be sent because of our partition scheme described earlier. Hence, the
communication time for the kernel data and the subimage data are given
respectively by:

M2

i 1
K a+WP, (11)

C.-K Lee, M. Hamdi /Parallel Computing 21 (1995) 137-160 149

and

Tc:

Td:

N2+CB
Cl+ P.

n

Consequently, the communication time, Tb, is approximated by:

(12)

(13)

Since each workstation has to compute the convolution of only its subimage
with size N */n pixel values, the convolution time on a single workstation is
given by:

N2M2
-7. (14)

n

The host has to receive II partial results resulting from the convolution carried
on the subimages by n workstations concurrently. Each workstation sends
back N*/n pixel values. Therefore, the communication time to receive these
partial results from one workstation is given by:

N2 N* + z a+-_P. I 1 n
(16)

I N2+CB

nK 1 N2+CB N2M2
Cr+ P ‘t--Y

12 1 n

The execution time of the parallel image convolution program, T(,,, simply the
summation of all the terms calculated above (refer to Eq. 5) and is given by:

When n increases, the computation time on each node, N*M*-y/n, decreases.
However, if the computation time Tc, is too small, Eq. 5 cannot be used to find the
execution time of the parallel image convolution program as indicated graphically
by Fig. 6. We rather use the lower bound execution time, Tl,,,, given by Eq. 6:

By equating Eqs. 16 to 17 (i.e. 7&, = T;,)), we find the intersecting point which

1.50 C.-K Lee, M. Hamdi /Parallel Computing 21 (1995) 137-160

Execution time of convolution (1024x1024 image and 1 t xl 1 kernel)

T(n) -
T’(n) ----

30 -
3
0
” 25 -

E
t=

20 -

10 -

5-

0 I I

0 5 10 15 20 25 30 35 40 45 50
Number of nodes (n)

Fig. 7. Intersecting point of T(n) (Eq. 16) and T’(n) (Eq. 17).

represents the number of workstations that achieve the minimum execution time of
the parallel image processing convolution in the following way:

(n-l)(;ip)=M*y

M2Y
n=

a/K+P
+ 1. (18)

Fig. 7 shows the intersecting point of Eqs. 16 and 17 when N = 1024, M = 11, and
for some fixed values of LX, p and y. The determination of the values of (Y, p and y
is presented in the Appendix of this paper.

The exact speedup, S, of our parallel image convolution program is given by:

,+. (19)
(n)

where T, is the execution time of a sequential image convolution program on a
single workstation, and T(,, is the execution time of the parallel convolution
program on n workstations as given by Eq. 16.

Now, let us calculate the upper bound of the above speedup, SLimit. That would
give us an upper limit on the scalability of a network of workstations in image
convolution operations. In this case, we assume that N 2 z+ M * which is realistic

C.-K Lee, M. Hamdi/Parallel Computing 21 (1995) 137-160 151

for most practical image processing convolutions. Thus, the distribution and
collection of an N x N image matrix dominates the whole execution time where
the computation time is small as illustrated in Fig. 6. In this case, Ten, = 2N*(a/K
+ p). Therefore, under the above assumptions, the speedup limit can be approxi-
mated by:

s
N*M*y

‘rmrt= 2N2(cu/K+p)

M2Y

= 2(a/K+p). (20)

Basically, the speedup limit depends on the ratio of the computation time to the
communication time. The communication time is dependent on the amount of data
to be transmitted between the host and the nodes and on the Ethernet network
bandwidth. One way to obtain a high speedup besides minimizing the amount of
data transmitted between the host and the nodes is to use other high speed
networks such as FDDI or ATM networks [3,27].

5. Experimental results

In order to fully investigate the performance and the suitability of our parallel
image processing convolution on a network of workstations, we conducted exten-
sive experiments by varying the essential parameters, the kernel size (M X M), the
image size (N X N), and the number of workstations (n). We essentially wanted to
answer the following questions: how the execution time of the parallel image
convolution varies with respect to the essential parameters, n, M, and N. It would also
have been interesting if we had the opportunity to experiment with different
networks (e.g. ATM, FDDI) and see their impact on the execution time of the
parallel image convolution as compared to the Ethernet. This is another avenue
for further research in this topic. The execution times are recorded for the parallel
programs (the host program and the node program) and the sequential program as
a function of M, N and n. Then, we compare the execution times of the sequential
program and the parallel program in order to determine the speedup ratio as given
by Eq. 19. We have chosen pattern matching as an example of a convolution
operation. However, these results may well be for other neighborhood operations
as most of them are similar.

All the experiments have been carried out using SUN Spare IPC workstations
connected by an Ethernet network. All the software has been written under the
EXPRESS parallel programming environment. An image pixel is set to be one byte
long for grey-level images and 1 bit long for binary images. Under this environ-
ment, the latency time, (Y, and the incremental transmission time per byte, p, are
found to be 2.115 ms and 2.074 ps/byte respectively. The computation factor, y, is
determined to be 2.20 pus for grey-level images (see Appendix for details).

152 C.-K Lee, M. Hamdi/ Parallel Computing 21 (1995) 137-160

Kernel size 11 xl I

Expected Speedup -

Speedup (S)

0

Fig. 8. The expected speedup as a function of the image size and number of nodes.

If we substitute these experimental values of (Y, /3, and y into Eq. 19 of our
performance prediction model, we can get values of the expected speedup for
various combinations of image sizes and number of workstations where the kernel
size is equal to 11 X 11 as shown in Fig. 8. As can be seen from this figure, the
speedup gets higher as the number of workstations gets higher. When the image
size is small, the speedup drops quickly as the communication overhead wipes out
the gain from parallelism.

If we fix the image size to be 1024 X 1024, and then we vary the kernel size, we
can see the effect of the kernel size on the overall speedup. This expected speedup
is illustrated in Fig. 9. The speedup gets higher as the kernel size gets bigger
because more computation is needed to perform the convolution. Since the
computation time is O(N2M2) and the communication time is 0(N2 + M2), using
large kernel sizes will increase the ratio of the computation time to communication
time and causes a higher speedup.

To validate the expected speedups, we performed various experiments and
calculated the exact speedup achieved using our network of workstations. The
results presented here are for performing convolution on grey-level images. Using
pattern matching as an example of a convolution operation, some execution time
results are placed in the Appendix for reference. Fig. 10 shows the speedup curves
as a function of the image size and the number of workstations where the kernel
size is 11 X 11. Compared with Fig. 8, they both have the same speedup tenden-
cies. As can be seen from the figure, the speedup is small when the image size is
small (e.g. 32 X 32). This is because the communication time is too high relative to
the computation time. This suggests that for small images, it is better to perform

C.-K Lee, M. fiumdi /Parallel Computing 21 (1995) 137-160 153

Image size 1024x1024

Expected Speedup -

emel size MxM

Fig. 9. The expected speedup as a function of the kernel size and the number of nodes.

convolution on sequential machines. This is realistic, since small images do not
require a lot of computing power.

Fig. 11 shows the speedup curves as a function of the kernel size and the

Kernel size 11x11

1 node 4-
Bnodes -+--
5nodes -0
, “@-& _.*...

9ncUes -c--

Fig. 10. The experimental speedup as a function of the image size and number of nodes for an 11 X 11
kernel.

154 C.-K Lee, M. Hamdi/Parallel Computing 21 (1995) 137-140

Image size 1024x1024

Speedup

1 ncde +--
3nodes -+-.
5nodes -0.-
‘Ill&S -+
9 nodes -A-.-

Number of nodes

Kernel size MxM

Fig. 11. The experimental speedup as a function of the kernel size and number of nodes for an
1024 x 1024 image.

number of nodes for an 1024 x 1024 image. The larger the kernel size is, the
higher the speedup is. When the kernel size is large, more computations have to be
performed at each pixel in the convolution step. However, the communication time
is more or less the same in all cases for a given image size since the effect of the
kernel size on the communication time is not very significant. Therefore, the ratio
of the computation time to communication time is mainly dependent on the kernel
size in this case, and thus increases as the kernel size increases. This implies that
the percentage of execution time due to communication time decreases and so the
speedup increases. This also suggests that no matter which neighboring function
we are performing (e.g. shrinking, smoothing, etc.), we can obtain a high speedup
as long as the ratio of the computation time to the communication time is high.

Fig. 12 illustrates a different interpretation of the data in Fig. 11 by joining the
corresponding points along the x-axis. It shows that the larger the kernel size is,
the steeper the speedup curve is. However, the curve corresponding to the 3 x 3
kernel does not go up when more nodes are used, meaning that it is counter
productive to use more than 7 workstations in this case. Using Eq. 18 of our
performance prediction model, we find n to be 6 in this case which is close to the
peak of our experimental curve. This is an affirmation of the accuracy of our
performance prediction model presented in Section 4. In Section 3.2, it is noted
that more communication time will be introduced when an image is partitioned
into a big number of subimages. Thus, when more nodes are involved, more
partitioning takes place and the communication time will also increase, and so the
speedup will decrease. This is more significant in the 3 X 3 kernel curve since its

C.-K Lee, M. Hamdi /Parallel Computing 21 (1995) 137-140

Image size 1024~1024

3x3 kernel +-
7x7 kernel -+-.

11x11 kernel -0.-

SPeedUP

10

1.55

Fig. 12. The experimental speedup as a function of the kernel size and number of nodes for an
1024~1024 image.

computation time is small and so the ratio of the computation time to communica-
tion time decreases faster even for the addition of the same amount of additional
communication time.

1OfJO

900

600

g

E
i=

4Ou

200

0

Elapsed time of convolution (1024x1024 image and 11x11 kernel)

Experimental results 0
E-T(n) ----

Y\
l_

L.__
“‘-6-.__

--“----------*-__________________
~__________________*________

1 3
N”mLw o:nodas (n)

7 9

Fig. 13. Comparison between the experimental execution time and the predicted execution time.

156 C.-K Lee, M. Hand /Parallel Computing 21 (1995) 137-160

Kemebize 11x11

Speedup (S)

10

0

Fig. 14. The experimental speedup as a function of the binary image size and number of nodes for
11 X 11 kernel.

Fig. 13 compares the experimental execution time with the expected execution
time of our performance prediction model, T(,,,, when the image matrix is 1024 X

1024 and the kernel size is 11 X 11. It shows that our prediction model agrees with
the experimental results quite well. This in turn saves a lot of time trying to find
the best performance without any help.

Binary image differs from grey-level images in both the communication time
and the computation time. However, even though the communication and the
computation time for the parallel binary image convolution are both lower than
those for grey-level images, their ratio is very similar to that for grey-level images.
This is illustrated by the the speedup tendency of the parallel image convolution
for binary images shown in Fig. 14. Further, the same performance prediction
model can be adopted for binary images, and it agrees closely with the experimen-
tal results. Moreover, we believe that the same speedup tendency would be
obtained for color images.

6. Conclusion

In this paper, we have implemented efficient parallel image convolution algo-
rithms for grey-level images and binary images on a network of IPC SUN Spare
workstations connected by an Ethernet network. Our experimental results indicate
that significant speedup can be achieved in this computing environment for these
applications. We also presented a performance prediction model that agrees well
with our experimental results, and can be used to reduce the number of experi-

C.-K Lee, M. Hamdi/Parallel Computing 21 (1995) 137-160 157

ments that should be carried to find the highest performance for a given image
processing application on a network of workstations. The main limiting factor of
this computing environment is the bandwidth of the network. Hence, with the
emergence of high speed networks, this computing environment can be an attrac-
tive alternative to traditional MIMD and SIMD multiprocessors for computation-
ally intensive applications especially in the area of image processing.

Appendix

A. Determination of (Y, p and y

In this section, we show how the values of (Y, p, and y used in our performance
prediction model are found. The computation factor, y, is found by measuring the
time taken by a sequential program which performs N2i%f2 multiplications only.
Since the execution time, T,, is equal to N2M2y, y can be obtained easily in the
following way:

T,
y=N2&f2v (21)

The computational factor, y, is equal to 2.2 ps in our computing environment
using SUN Spare IPC workstations for grey-level images.

Smple Echo Test Results
16 1 I

Aepeated lCCOtm?s +

16 -

14 -

12 -

3 8 10 -

z?

"E F 6-

6-

4-

2-

01 I
0 200 400 600 600 Mei& .9izL2&@ 14ccl 1600 1600 2000 2200

Fig. 15. The communication time of the echo test as a function of the image size.

158 C.-K Lee, M. Hamdi/Parallel Computing 21 (1995) 137-160

Table 1
The execution time (sets) of pattern matching on a single workstations for different image sizes and
kernel sizes

1 Workstation

N M=3 M=7 M=ll

32 0.173 0.234 0.357
64 0.214 0.621 1.277

128 0.665 2.095 4.540
256 2.110 8.211 17.925
512 7.808 31.136 71.003

1024 31.781 123.830 294.789
1536 72.463 278.496 644.588

In order to find the values of (Y and p, we run some simple echo tests which
send/receive a number of messages between two workstations. Fig. 15 shows the
corresponding communication times of sending/ receiving messages using the echo
test which consists of two processes where each process resides on a single
workstation. Both processes do nothing but simply send and receive messages. For
example, process 1 may send 500 messages, each of which is P bytes long to
process 2 and then process 2 echoes the same amount of messages back to process
1. The echo test takes longer time to transmit longer messages, so the communica-
tion time is assumed to be a linear function given by, Tcomm = (Y + Pp. The
communication times of the echo test for various message sizes are shown in Fig.
15. The curve goes up steadily when the message size < 1792 bytes. Beyond this
point, the curve jumps up quickly because of the fragmentation needed for long
messages. Using the linear regression method to fit a straight line to this curve
when the message size is in the range 128-1664 bytes, we find the values of QI and
p which are the message latency time and the incremental transmission time per
byte. They are found to be 2.115 ms and 2.074 ps respectively in our computing
environment.

Table 2
The execution time (sets) of pattern matching on 5 workstations for different image sizes and kernel
sizes

5 Workstations

N M=3 M=7 M=ll

32 0.307 0.323 0.342
64 0.358 0.492 0.706

128 0.516 0.843 1.078
256 1.306 2.287 3.879
512 3.028 7.776 15.507

1024 10.871 29.212 63.616
1536 23.712 71.792 138.175

C.-K Lee, M. Hamdi/Parallel Computing 21 (1995) 137-160 159

Table 3
The execution time (sets) of pattern matching on 9 workstations for different image sizes and kernel
sizes

9 Workstations

N M=3 M=7 M=ll

32 0.348 0.372 0.382
64 0.362 0.384 0.404

128 0.833 0.725 1.077
256 1.271 1.759 2.906
512 3.585 5.372 10.288

1024 12.159 18.781 38.040
1536 28.994 42.168 87.220

B. Experimental data

The tables in this section show the execution time in seconds of the parallel image
convolution (using pattern matching as an example) for various sizes of grey-level
images, kernel sizes, and different number of workstations.

References

PI

PI

[31
[41
[51

El

[71

PI

[91

[lOI
1111

El21

1131

1141

1151

G.S. Almast, T. McLuckie, J. Bell, A. Gordon and D. Hale, Parallel distributed seismic migration,
Future Generatron Comput. Syst. 8(1-3) (1992) 9-26.
I.G. Angus, G.C. Fox, J.S. Kim and D.W. Walker, Solving Problems On Concurrent Processors
(Prentice-Hall, 19891.
H.E. Bal, Programming Distributed Systems (Silicon Press, Summit, NJ, 1990).
D.H. Ballard and C.M. Brown, Computer Won (Prentice-Hall, 1985).
C. Chakrabarti and J. JAJA, VLSI architectures for template matching and block matching. in:
V.K. Prasanna Kumar, ed., Parallel Architectures and Algorithms for Image Understanding (Harcourt
Brace Jovanovich, 1991).
R. Cypher and J.L. Sanz, SIMD architectures and algorithms for image processing and computer
vision, IEEE Trans. on Acoustics, Speech, and Signal Processing 37 (12) (1989) 2158-74.
T.T. Elvins and D. Nadeau, NetV: an experimential network-based volume visualization system, in:
Proc. Visualization ‘91(1991) 50-57.
G.A. Geist and V.M. Sunderam, Network-based concurrent computing on the pvm system
Concurrency: Practice And Experience 4 (1992) 293-311.
C.R. Giardina and E.R. Dougherty, Morphological Methods in Image and Stgnal Processrng
(Prentice-Hall, 1988).
R.C. Gonzalez and R.E. Woods, Digital Image Processing (Addison-Wesley, 1992).
M. Hamdi and R.W. Hall, Compound networks for parallel image processing, in: Computer
Architecture For Machine Perception ‘91 (1991) 355-367.
M. Hamdi and R.W. Hall, Image processing on augmented mesh-connected parallel computers, J.
Comput. Software Eng. (19941.
J.F. Jenq and S. Sahni, Reconfigurable mesh algorithms for image shrinking, expanding, clustermg
and template matching, in: Fifth Int. Parallel Processing Symp. (1991) 648-656.
S.Y. Lee and J.K. Aggarwal, Exploitation of image parallelism via the hypercube, Int. Conf
Parallel Processing (1988) 344-350.
J.J. Li, Parallel volume rendering of medical images, Technical report, Laboratoire LIP-IMAG,
Ecole Normale Superieure de Lyon, 1991.

160 C.-K. Lee, M. Hamdi/Parallel Computing 21 (1995) 137-160

[161 G.J. Lipovski and M. Malek, Parallel Computing: Theory and Comparisons (John Wiley, 1987).
[17] K.L. Ma and J.S. Painter, Parallel volume visualization on workstations, Computer and Graphics

170) (1993) 31-37.
[181 M. Maresca and H. Li, Morphological operations on mesh connected architecture: A generalized

convolution algorithm, in: Proc. Int. Conf on Computer Vision and Pattern Recognition (1986)
299-304.

[19] B.R. Meijer, Rules and algorithms for the design of templates for template matching in: Proc. 11th
lAPR Int. Conf on Pattern Recognition, vol. 1 (1992) 760-3.

[20] P.J. Narayanan, L.T. Chen and L.S. Davis, Effective use of SIMD parallelism in low- and
intermediate-level vision, IEEE Computer 2.5(2) (1992) 68-73.

[21] Parasoft Corporation, An overview of the Express system, 1992.
[22] S. Ranka and S. Sahni, Hypercube Algorithms with Applications to Image Processing and Pattern

Recognition (Springer-Verlag, 1990).
1231 S. Ranka and S. Sahni, Image template matching on MIMD hypercube multicomputers, J. Parallel

Distributed Comput. 10 (1990) 79-84.
[24] A. Rosenfeld and A.C. Kak, Digital Picture Processing (Academic Press, 1982).
[25] V.M. Sunderam, A framework for parallel distributed computing, Concurrency: Practice And

Experience 2 (1990) 315-339.
[26] L. Uhr, Parallel Computer Vision (Academic Press, 19871.
[27] A. Umar, Distributed Computing: A Practical Synthesis (Prentice-Hall, 1993).
[28] C.C. Weems, Architectural requirements of image understanding with respect to parallel process-

ing, in: Proc. IEEE 79 (1991) 537-47.
[29] C.C. Weems, C. Brown, J.A. Webb and T. Poggio, Parallel processing in the darpa strategic

computing vision program, IEEE Expert 6 (1991) 23-38.

