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Abstract

Many real-world applications involve multilabel clas-
sification, in which the labels can have strong inter-
dependencies and some of them may even be missing.
Existing multilabel algorithms are unable to handle both
issues simultaneously. In this paper, we propose a prob-
abilistic model that can automatically learn and exploit
multilabel correlations. By integrating out the missing
information, it also provides a disciplined approach to
the handling of missing labels. The inference procedure
is simple, and the optimization subproblems are convex.
Experiments on a number of real-world data sets with
both complete and missing labels demonstrate that the
proposed algorithm can consistently outperform state-
of-the-art multilabel classification algorithms.

Introduction
In multilabel classification, a sample may be assigned multi-
ple labels. This is different from multiclass classification, in
which one and only one label can be assigned to each sam-
ple. Many real-world applications involve multilabel classi-
fication. Examples include text categorization, image anno-
tation, and gene function analysis (Zhang and Zhou 2013).

A popular baseline for multilabel classification is binary
relevance (BR) (Tsoumakas, Katakis, and Vlahavas 2010),
which simply treats each label as a separate binary classifi-
cation problem. However, its performance can be poor when
strong label dependencies exist. For example, an article on
“sports” may also be labeled “entertainment”; an image an-
notated with “jungle” may also be tagged with “bushes”. To
improve prediction performance, recent multilabel classifi-
cation algorithms all try to exploit label dependencies.

One approach is to assume that the label dependencies are
known a priori or can be easily estimated. For example, the
classifier chain (CC) algorithm (Read et al. 2009) incorpo-
rates label correlations implicitly by training a chain of BR
classifiers in a given sequential order, with the feature set
of each BR classifier augmented by labels that have been
previously trained. In the max-margin multilabel classifier
(M3L) (Hariharan et al. 2010) and the method by (Petterson
and Caetano 2011), label dependencies are represented by
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pairwise label correlations that are computed from the train-
ing set. However, this may be crude and inaccurate as the
number of training samples associated with a label can be
very few. For example, in the corel5k data set, which con-
tains images collected from the Corel CD (Duygulu et al.
2002), 180 of its 260 labels have fewer than 50 positive sam-
ples. Similarly, in the ESP game data set, which contains
images collected for the ESP collaborative image labeling
task (Von Ahn and Dabbish 2004), 110 of its 268 labels
have fewer than 150 positive samples. Alternatively, Zhang
and Zhang (2010) used a more sophisticated Bayesian net-
work structure learning algorithm (Koivisto and Sood 2004)
to estimate the label dependencies. However, it is much
more expensive and time-consuming. Recently, a number of
multiple-output relationship learning algorithms have been
proposed (Rai, Kumar, and Iii 2012; Zhang and Yeung 2010;
Rothman, Levina, and Zhu 2010). They also aim to capture
output correlations, but are usually designed for regression
problems rather than multilabel classification problems.

Another approach aims to remove label dependencies by
transforming the labels, such that the decorrelated labels
can be learned separately. For example, Hsu et al. (2009)
employed a randomized matrix for label transformation;
Principal label space transformation (PLST) (Tai and Lin
2012) uses singular value decomposition (SVD) on the la-
bel matrix; Conditional principal label space transformation
(CPLST) (Chen and Lin 2012) performs SVD on a matrix
involving both the label matrix and input sample matrix.

Besides the presence of label correlations, another chal-
lenging problem in multilabel classification is that we may
not have access to all the true labels of each training sample.
For example, many image annotation tasks use crowdsourc-
ing platforms to collect labels. For each image, the workers
may only provide a small, incomplete set of answers to the
queried labels.

Existing algorithms are often incapable of handling both
label correlations and missing labels. To alleviate this prob-
lem, a simple solution is to discard all samples with missing
labels, though at the expense of potentially losing a signif-
icant amount of label information. Another approach is to
estimate the missing labels, particularly the positive ones.
For example, the multilabel ranking with group lasso (ML-
RGL) algorithm (Bucak, Jin, and Jain 2011) formulates mul-
tilabel classification as a bipartite ranking problem, and sets
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all missing labels as negative. To detect the possibly missing
positive labels, it uses group lasso (Yuan and Lin 2006) to
selectively penalize the pairwise ranking errors between the
two partitions. Fast image tagging (FastTag) (Chen, Zheng,
and Weinberger 2013) recovers the possibly missing positive
labels by assuming that the labels are uniformly corrupted. A
limitation of these methods is that label correlations cannot
be explicitly incorporated. Recently, Yu, Jain, and Dhillon
(2014) provided an analysis for missing labels based on em-
pirical risk minimization. However, it also does not explic-
itly consider label correlations.

In this paper, we propose a probabilistic model that
can simultaneously capture label dependencies and han-
dle missing labels. Unlike MLRGL and FastTag, we adopt
the more general setting where both positive and negative
labels can be missing (Yu, Jain, and Dhillon 2014; Xu,
Jin, and Zhou 2013; Kapoor, Viswanathan, and Jain 2012;
Goldberg et al. 2010). In other words, a label can be la-
beled as “positive”, “negative” or “missing”. Our model is
motivated by the aforementioned label transformation ap-
proach which tries to decorrelate labels (Tai and Lin 2012;
Chen and Lin 2012). However, instead of explicitly finding a
label transform, we re-express the probabilistic model back
to the original label space. It will be shown that the inference
can be performed easily, and missing labels can be naturally
handled by integrating them out. Experiments on a number
of real-world data sets show that the proposed approach can
outperform the state-of-the-art.
Notation: In the sequel, the transpose of vector/matrix is
denoted by the superscript T , the trace of a matrix A =
[aij ] is denoted tr(A), its determinant as |A|, inverse as
A−1, pseudo-inverse as A†, Frobenius norm as ‖A‖F , and
‖A‖1 =

∑
ij |aij |. A(i,:) (resp. A(:,i)) is the ith row (resp.

column) of A. Moreover, 0 is the zero vector, 1 is the vec-
tor of all ones, I is the identity matrix,N (µ,Σ) denotes the
normal distribution with mean µ and covariance matrix Σ.

Related Work: Label Transformation
In a multilabel classification problem, we are given train-
ing samples {(x,y)}, where x ∈ Rd is the input, and
y ∈ {0, 1}m is the corresponding output. The label trans-
formation approach (Tai and Lin 2012; Chen and Lin 2012)
transforms each y to ỹ = Py, where P ∈ Rm̃×m, such
that the labels {ỹi}m̃i=1 in the transformed space are uncorre-
lated and can be trained separately. In the following, we use
a linear model (with weight w̃i and bias b̃i) as the learner.
Equivalently, ỹi is assumed to be generated as:

ỹi|x, w̃i, b̃i, σ̃i ∼ N (w̃T
i x + b̃i, σ̃

2
i ), i = 1, . . . , m̃, (1)

where σ̃2
i is the noise variance. Note that the Gaussian noise

is used here as the transformed labels are real-valued in gen-
eral (even though the original ones are binary-valued). Equa-
tion (1) can be written in a more compact form, as

ỹ|x,W̃, b̃, Ω̃ ∼ N (W̃Tx + b̃, Ω̃), (2)

where W̃ = [w̃1, . . . , w̃m̃], b̃ = [b̃1, . . . , b̃m̃]T , and Ω̃ =
diag(σ̃2

1 , . . . , σ̃
2
m̃). As usual, we also add a Gaussian prior

(essentially, `2-regularizer) on w̃i:

w̃i|Σ̃i ∼ N (0, Σ̃i), (3)

where Σ̃i = diag( 1
αi,1

, . . . , 1
αi,d

). As the m̃ labels are in-
dependent, the {αi,d}m̃i=1 values (for the same feature d) are
also different in general. From the learned ỹ, we can back-
project to the original label space and obtain

z = P†ỹ. (4)

Often, this has to be rounded to get back a binary prediction.
The various label transformation methods mainly differ

in how the transformation matrix P is obtained. For ex-
ample, in the CPLST (Chen and Lin 2012), P is orthogo-
nal and is obtained by jointly minimizing the training error
‖PY − W̃TX‖2F in the transformed space and the error
‖Y−P†PY‖2F in encoding the original labels by the trans-
formed labels.

Handling Label Correlations
Instead of explicitly finding the label transformation matrix,
we consider in this section re-expressing the probabilistic
model for the label transformation approach back in the orig-
inal label space. This is advantageous for two reasons. (i) It
can be naturally extended for missing labels (as will be seen
in the next section); (ii) Prior knowledge on label and task
correlations can be easily incorporated.

Model
Using (2), (4), and a change of variables W = W̃P†

T ,
b = P†b̃, and Ω = P†Ω̃P†

T , it is easy to show that the
multilabel prediction before rounding, i.e., z in (4), follows
the normal distribution:

z|x,W,b,Ω ∼ N (WTx + b,Ω). (5)

Here, Ω can be seen to capture label correlation. Note that
while the transformed labels ỹ’s are assumed to be indepen-
dent, the zi’s can be highly correlated because of the shared
matrix P† in (4). Hence, Ω is not diagonal in general. As Ω
directly encodes the label correlation, prior knowledge can
be easily incorporated. For example, one can use

p(Ω) ∝ exp

(
− 1

λ1
‖Ω− 1

2 ‖2F −
1

λ2
‖Ω−1‖1

)
, (6)

where λ1, λ2 > 0, to encourage sparsity and shrinkage on
Ω−1. Recall that Ω−1 is the precision matrix, and Ω−1ij mea-
sures the partial correlation between labels i and j (Lau-
ritzen 1996). Encouraging sparsity on Ω−1 thus represents
the prior belief that most label pairs are conditionally inde-
pendent given the other labels. Moreover, p(Ω) is expressed
in terms of Ω−1 instead of Ω. As will be seen, this allows
the inference procedure to be computationally tractable.

To model the rounding error from z to the binary predic-
tion y, we approximate this by a normal distribution for sim-
plicity, as:

y|z ∼ N
(

z,
1

λ0
I

)
, (7)
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where λ0 > 0.
Finally, the distribution of W can be obtained from that

of W̃ as follows. First, we vectorize WT ,

vec(WT ) = [W(1,:), . . . ,W(d,:)]
T

= [W̃(1,:)P
†T , . . . ,W̃(d,:)P

†T ]T

= Q[W̃(1,:), . . . ,W̃(d,:)]
T ,

where Q =

 P† 0
. . .

0 P†

. Using (3), we have

vec(WT ) ∼ N

0,Q


diag(α1) 0

. . .
0 diag(αd)

QT

 ,

where αj = [α1,j , . . . , αm,j ]
T . In other words, the W(j,:)’s are

independent, and each W(j,:) is distributed as

W(j,:)|Σj ∼ N (0,Σj), j = 1, 2, . . . , d, (8)

where Σj = P†diag(αj)P
†T captures the task correlation for

feature j and is not diagonal in general. Analogous to (6), we can
also impose the following prior on each Σj

p(Σj) ∝ exp

(
− 1

β1
‖Σ−

1
2

j ‖
2
F −

1

β2
‖Σ−1

j ‖1
)
, (9)

where β1, β2 > 0. A graphical model representation for the whole
model is shown in Figure 1.
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Figure 1: Graphical model representation of the proposed
model.

Discussion
If Σ1 = Σ2 = . . . = Σd = Σ, (8) can be rewritten as

W|Σ ∼MN d,m(0, I⊗Σ), (10)

where ⊗ is the Kronecker product, andMN d,m(·, ·) is the d×m
matrix-variate normal distribution1 (Gupta and Nagar 2000). By

1A random variable X ∈ Rm×n follows the matrix-variate nor-
mal distributionMNm,n(M,Ψ⊗Σ) with mean M ∈ Rm×n and
covariance matrix Ψ⊗Σ (where Ψ ∈ Rm×m and Σ ∈ Rn×n) if
its pdf is given by (2π)−

mn
2 |Ψ|−

m
2 |Σ|−

n
2 exp(− 1

2
tr[Ψ−1(X −

M)Σ−1(X−M)T ]).

further dropping the rounding error in (7), the proposed model re-
duces2 to the multiple-output regression with output and task struc-
tures (MROTS) model recently proposed in (Rai, Kumar, and Iii
2012). The flexibility of modeling task correlation in a feature-
specific manner can be beneficial. For example, in annotating im-
ages of different animals, it may not be appropriate to encourage
features such as “long-legs” and “hairless” to share the same task
correlation.

Modeling the rounding in (7) explicitly is also useful in classi-
fication problems. In (Tai and Lin 2012; Chen and Lin 2012), this
rounding leads to the encoding error ‖Y − P†Ŷ‖2. As discussed
in the previous section, this error, together with the training error in
the transformed label space, is used to guide the search for a good
label transform.

As discussed in (Rai, Kumar, and Iii 2012), MROTS al-
ready subsumes some recent methods for multiple-output regres-
sion, including multivariate regression with covariance estimation
(MRCE) (Rothman, Levina, and Zhu 2010) and multitask relation-
ship learning (MTRL) (Zhang and Yeung 2010). Hence, the pro-
posed model is even more general.

Inference
Given N i.i.d. samples, let X = [x(1), . . . ,x(N)] be the input ma-
trix, and Y = [y(1), . . . ,y(N)] the corresponding label matrix.
Here, we use the superscript (i) to denote entities related to the ith
sample. The posterior distribution of {Z,W,Ω, {Σj}dj=1}, where
Z = [z1, . . . , zn], can be obtained as

p(Z,W,Ω, {Σj}dj=1|X,Y,b)

∝p(Y|Z)p(Z,W,Ω, {Σj}dj=1|X,b)

=p(Y|Z)p(Z|W,X,Ω,b)p(W|{Σj}dj=1)p(Ω)p({Σj}dj=1)

=p(Ω)

d∏
j=1

p(W(j,:)|Σj)p(Σj)

·
N∏
i=1

p(y(i)|z(i))p(z(i)|x(i),W,Ω,b). (11)

In the following, alternating maximization (Bertsekas 1999) is
used, i.e., (11) is maximized w.r.t. only one variable a time with the
others fixed. As will be seen, each subproblem is convex and easy
to solve.

Solving Z with Others Fixed The optimization subproblem
is

minZ

N∑
i=1

λ0‖z(i) − y(i)‖2

+(z(i) −WTx(i) − b)TΩ−1(z(i) −WTx(i) − b).

Obviously, each z(i) can be solved independently. By setting the
derivative of the objective w.r.t. z(i) to 0, we obtain

z(i) = (λ0I + Ω−1)−1(Ω−1(WTx(i) + b) + λ0y
(i)).

2In (Rai, Kumar, and Iii 2012), the prior on W is defined as
p(W) ∝

∏m
i=1N (wi|0, I)MN d,m(W|0, I ⊗Σ). As shown in

their derivation, this leads to a tr(W(Σ−1 + I)WT ) term in the
negative log-posterior. Hence, the effect ofN (wi|0, I) in p(W) is
to simply add an I to Σ−1. This can be compensated in our model
by adjusting the regularization parameter β1 in (9).
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Solving W and b with Others Fixed The optimization sub-
problem is

minW,b tr(Z−WTX− b1T )TΩ−1(Z−WTX− b1T )

+

d∑
j=1

W(j,:)Σ
−1
j WT

(j,:). (12)

On setting the derivative of W to 0, we obtain its closed-form so-
lution as

vec(W)=

(
Ω−1⊗(XXT )+

d∑
j=1

Σ−1
j ⊗Ej

)−1

vec(C), (13)

where C = X(Z − b1)TΩ−1. For b, on setting its derivative to
0, we obtain

b =
1

N
(Z−WTX)1. (14)

Solving Ω−1 with Others Fixed With the prior in (6), the
optimization subproblem is

minΩ−1 tr(Z−WTX− b1T )TΩ−1(Z−WTX− b1T )

−N log |Ω−1|+ λ1tr(Ω−1) + λ2‖Ω−1‖1.

Ω−1 can be solved using standard sparse inverse covariance es-
timation algorithms, such as the graphical Lasso in (Friedman,
Hastie, and Tibshirani 2008).

Solving Σ−1j ’s with Others Fixed With the prior in (9), the
optimization subproblem for each Σj is

min
Σ−1

j
W(j,:)Σ

−1
j WT

(j,:) − log |Σ−1
j |+ β1tr(Σ−1

j )

+β2‖Σ−1
j ‖1. (15)

Again, Σ−1
j can be obtained by sparse inverse covariance estima-

tion.

Handling Missing Labels
As discussed in the introduction, the label vectors may have miss-
ing entries. Assume that sample x(i) has li observed labels and
ui = m − li missing labels. We reorder y(i) (and, similarly, z(i))
as [(y

(i)
l )T , (y

(i)
u )T ]T (where y

(i)
l ∈ Rli , and y

(i)
u ∈ Rui ). Sim-

ilarly, for each i, we reorder Ω−1 by putting the li rows/columns

corresponding to the observed labels first as
[

Ui Vi

VT
i Qi

]
, where

Ui ∈ Rli×li ,Vi ∈ Rli×ui and Qi ∈ Rui×ui .
Instead of estimating the values for the missing labels as in (Bu-

cak, Jin, and Jain 2011; Chen, Zheng, and Weinberger 2013), we
directly derive the posterior w.r.t. the observed labels. Analogous
to (11), we have

p({z(i)
li
}Ni=1,W,Ω, {Σj}dj=1|X, {y

(i)
l }

N
i=1,b)

∝ p(Ω)

d∏
j=1

p(W(j,:)|Σj)p(Σj)

·
N∏
i=1

p(y
(i)
l |z

(i)
l )p(z

(i)
l |x

(i),W,Ω,b). (16)

Note that p(y(i)
l |z

(i)
l ) =

∏
j∈li p(y

(i)
j |z

(i)
j ) and so can be eas-

ily obtained as in p(y(i)|z(i)). However, this is not the case for

p(z
(i)
l |x

(i),W,Ω,b). Instead, we marginalize the missing ele-
ments from p(z(i)|W,x(i),Ω,b), as

p(z
(i)
l |W,x(i),Ω,b)

=

∫
p([(z

(i)
l )T,(z(i)

u )T ]T |W,b,x(i),Ω)dz(i)
u . (17)

From (Bishop 2006), this is still normally distributed, as

z
(i)
l |W,x(i),Ω ∼ N (WT

(:,li)x
(i) + bli , Ũi), (18)

where Ũi = Ui − ViQ
−1
i VT

i , and W(:,li) is the submatrix of
W with columns corresponding to the li observed labels. Note that
each z

(i)
l is dependent on the whole Ω matrix (via Ũi). Thus, even

in the presence of missing labels, the inference procedure can still
utilize label correlation information.

As in the previous section, we will use alternating maximization
to maximize the posterior in (16). Note that the optimization sub-
problems for Σ−1

j ’s are the same as before, and thus the updates
remain unchanged.

Solving {z(i)li }
N
i=1 with Others Fixed The optimization sub-

problem is

min
z
(i)
l

N∑
i=1

‖z(i)
li
− y

(i)
li
‖2

+(z
(i)
l −WT

(:,li)x
(i) − bli)

T Ũi

·(z(i)
l −WT

(:,li)x
(i) − bli).

Setting the derivative w.r.t. each z
(i)
l to 0, we have

z
(i)
l = WT

(:,li)x
(i) + bli − Ũ−1

i y
(i)
l .

Solving W and b with Others Fixed The optimization sub-
problem is

minW,b

N∑
i=1

(z
(i)
l −WT

(:li)x
(i)−bli)

TŨi(z
(i)
l −WT

(:,li)x
(i)−bli)

+

d∑
j=1

W(j,:)Σ
−1
j WT

(j,:). (19)

Unlike (12), a closed-form solution cannot be obtained for this con-
vex problem. Thus, we optimize W by gradient descent. As for b,
we have the closed-form solution

b =

(
N∑
i=1

Ξi(Ũi)

)−1 N∑
i=1

Ξi

(
Ũi(z

(i)
l −WT

(:,li)x
(i))
)
,

where Ξi is an operator that “expands” a matrix A ∈ Rli×li to[
A 0
0 0

]
∈ Rm×m.

Solving Ω−1 with Others Fixed The optimization subprob-
lem is

min
Ω−1

N∑
i=1

(
y
(i)
l −WT

(:,li)x
(i)−bli)

T Ũi(y
(i)
l −WT

(:,li)x
(i)−bli)

− ln |Ũi|
)

+ λ1tr(Ω−1) + λ2‖Ω−1‖1.
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This can be solved by iterative soft thresholding (Beck and
Teboulle 2009). Specifically, we decompose the objective into two
parts, as:

f(Ω)=
(
y
(i)
l −WT

(:,li)x
(i)−bli)

T Ũi(y
(i)
l −WT

(:,li)x
(i)−bli)

− ln |Ũi|
)

+ λ1tr(Ω−1),

g(Ω)=λ2‖Ω−1‖1.

Since Ω is positive semidefinite (psd), instead of performing pro-
jected gradient descent (which requires the potentially expensive
projection onto the psd cone in every iteration), we update Ω−1

based on its factorization. In each iteration,

1. We factorize Ω−1 as GGT , and perform a one-step gradient
descent of f(Ω) on G;

2. recompute Ω−1 from the updated G;

3. sparsify Ω−1 by shrinking each of its elements as (|(Ω−1)ij | −
τ)+sign((Ω−1)ij), where τ = λ2η, η is the stepsize for gradi-
ent descent, and (a)+ = max{a, 0}.

Experiments
Setup
In this section, experiments are performed on five image annota-
tion data sets3 (Table 1) used in (Guillaumin et al. 2009). For each
image, 1000 SIFT features are extracted.

Table 1: Data sets used.
data set #labels#samplesavg #positive labelsmax #negative labels

per sample per sample
pascal07 20 9,963 1.5 6
mirflickr 38 25,000 4.7 17
corel5k 260 4,999 3.4 5
espgame 268 23,641 4.7 15
iaprtc12 291 19,627 5.7 23

The proposed method, called “multilabel classification with la-
bel correlations and missing labels” (LCML), is compared with the
following methods:

1. Multiple-output regression with output and task structures
(MROTS) (Rai, Kumar, and Iii 2012): It leverages both the task
structure on W and output structure on Y. However, MROTS
assumes the Σi’s for all features are the same. Moreover, it is for
regression problems and does not consider rounding its output to
a binary prediction.

2. Conditional principal label space transformation (CPLST)
(Chen and Lin 2012);

3. Max-margin multilabel classifier (M3L)4 (Hariharan et al.
2010);

4. Multilabel ranking with group lasso (MLRGL)5 (Bucak, Jin, and
Jain 2011);

5. Fast image tagging (FastTag)6 (Chen, Zheng, and Weinberger
2013);

3http://lear.inrialpes.fr/people/guillaumin/data.php
4Code is from http://www.cs.berkeley.edu/∼bharath2/codes/

M3L/download.html
5Code is from http://www.cse.msu.edu/∼bucakser/software.

html
6Code is from http://www.cse.wustl.edu/∼mchen/

6. Classifier chain (CC) (Read et al. 2009);

7. Binary relevance (BR) (Tsoumakas and Katakis 2007): It serves
as a baseline that trains each label independently.

As the transformed labels in CPLST are real-valued, we use ridge
regression as its base learner. For consistency, it is also used for CC
and BR. Parameter tuning for all the methods is based on a valida-
tion set obtained by randomly sampling 30% of the training data.
Moreover, some of the above methods (such as MROTS, CPLST,
CC and BR) rely on a threshold to decide how many labels are to
be predicted for each sample. However, this threshold setting de-
pends heavily on the application. As in (Guillaumin et al. 2009),
we avoid this problem by predicting as positive the five labels with
the largest prediction scores. Performance is then evaluated by

macro-F1 =
1

m

m∑
j=1

2
∑N

i=1 ŷ
(i)
j y

(i)
j∑N

i=1 ŷ
(i)
j +

∑N
i=1 y

(i)
j

,

micro-F1 =
1

N

N∑
i=1

2
∑m

j=1 ŷ
(i)
j y

(i)
j∑m

j=1 ŷ
(i)
j +

∑m
j=1 y

(i)
j

,

which are commonly used in multilabel classification (Read et al.
2009; Petterson and Caetano 2011; Tai and Lin 2012). The higher
the F1 value, the better the performance.

Performance Comparison
Results based on 5-fold cross-validation are shown in Table 2. As
can be seen, LCML performs significantly better than the others on
all data sets. Note that M3L and CC are even outperformed by BR.
For M3L, this may be due to that the provided label correlations
are too crude. This has also been noted in (Hariharan et al. 2010)
that different label priors can greatly affect the performance. For
CC, it is also known that the chain’s order is important. Read et
al. (2009) recommended the use of an ensemble of CC, but this
can be very expensive. Thus, the label correlations, if inaccurately
specified, may hurt performance.

Experiments on Data Sets with Missing Labels
We generate the missing labels as follows. Recall that there are m
labels. For each training sample, we choose half of them as ob-
served and the rest as missing. However, as each sample typically
has very few positive labels, a random label splitting is likely to re-
sult in only negative labels being observed. Thus, for each sample,
we make sure that there are k = 1, 2, 3 positive observed labels
(if the sample have fewer than k positive labels, all its positive
labels are selected). We compare LCML with MLRGL and Fast-
Tag, which are also capable of handling missing labels.7 BR is also
included as a baseline. In each binary label classification task, it
simply removes samples with labels.

Table 3 shows the results based on 5-fold cross-validation. As
can be seen, LCML still significantly outperforms the others (ex-
cept for k = 2 on mirflickr). Moreover, the performance does not
always improve with k, as the number of missing labels is much
larger than the maximum value of k. Nevertheless, even for k = 1,
the F1 values obtained by LCML are very close to those obtained
on the complete labels in Table 2. On corel5k, LCML even per-
forms better when labels are missing. One possible reason is that
with complete labels, we need to learn the m × n label matrix
Z. When labels are missing, they are integrated out in (17) and
only the submatrix of Z corresponding to the observed labels needs
to be learned. Thus, the number of free parameters is reduced,

7Recall that MLRGL and FastTag assume the missing labels are
negative.
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Table 2: Results on data sets with complete labels. The best and comparable results (according to the pairwise t-test with 95%
confidence) are highlighted.

macro-F1
data set LCML MROTS CPLST M3L MLRGL FastTag CC BR
pascal07 0.3591± 0.0055 0.3587± 0.0061 0.3268± 0.0055 0.1539± 0.0641 0.3486± 0.0075 0.2942± 0.0133 0.2037± 0.0051 0.3267± 0.0055
mirflickr 0.4992± 0.0052 0.4928± 0.0043 0.4930± 0.0046 0.2418± 0.0025 0.4958± 0.0078 0.4681± 0.0057 0.2479± 0.0032 0.4930± 0.0046
corel5k 0.2077± 0.0562 0.2046± 0.0571 0.2005± 0.0493 0.0084± 0.0012 0.1321± 0.0443 0.2038± 0.0378 0.0223± 0.0071 0.2005± 0.0493
espgame 0.2380± 0.0130 0.2312± 0.0164 0.2328± 0.0167 0.0153± 0.0100 0.1254± 0.0076 0.2287± 0.0150 0.0455± 0.0070 0.2328± 0.0167
iaprtc12 0.2463± 0.0409 0.2455± 0.0469 0.2376± 0.0429 0.0276± 0.0074 0.1273± 0.0407 0.2285± 0.0423 0.0275± 0.0041 0.2377± 0.0429

micro-F1
data set LCML MROTS CPLST M3L MLRGL FastTag CC BR
pascal07 0.3493± 0.0050 0.3489± 0.0054 0.3181± 0.0051 0.1481± 0.0603 0.3386± 0.0067 0.2813± 0.0141 0.2039± 0.0052 0.3181± 0.0051
mirflickr 0.4665± 0.0043 0.4605± 0.0053 0.4608± 0.0055 0.2131± 0.0029 0.4668± 0.0096 0.4365± 0.0068 0.2476± 0.0030 0.4608± 0.0055
corel5k 0.2071± 0.0554 0.2038± 0.0559 0.1980± 0.0484 0.0081± 0.0012 0.1303± 0.0434 0.2012± 0.0367 0.0220± 0.0070 0.1980± 0.0484
espgame 0.2273± 0.0141 0.2203± 0.0181 0.2219± 0.0183 0.0146± 0.0090 0.1185± 0.0008 0.2179± 0.0169 0.0448± 0.0070 0.2219± 0.0183
iaprtc12 0.2405± 0.0453 0.2397± 0.0474 0.2304± 0.0433 0.0259± 0.0068 0.1244± 0.0413 0.2209± 0.0432 0.0280± 0.0036 0.2305± 0.0433

though (17) depends on the quality of the estimated distribution
p([(z

(i)
l )T,(z

(i)
u )T ]T |W,x(i),Ω) and may introduce error. The fi-

nal performance thus depends on which factor is more important.

Conclusion
In this paper, we proposed a probabilistic model for multilabel clas-
sification. While inspired by the label transformation approach, the
model is expressed in the original label space instead of the trans-
formed label space. This allows flexibility in the handling of both
label dependencies and missing labels, while still maintaining a
simple inference procedure. Experimental results on data sets with
both complete and missing labels demonstrate that the proposed
algorithm can consistently outperform the state-of-the-art.

Acknowledgment
This research was supported in part by the Research Grants Council
of the Hong Kong Special Administrative Region (Grant 614012).

References
Beck, A., and Teboulle, M. 2009. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM Journal
on Imaging Sciences 2(1):183–202.
Bertsekas, D. P. 1999. Nonlinear Programming. Athena Scientific.
Bishop, C. M. 2006. Pattern Recognition and Machine Learning.
Springer-Verlag.
Bucak, S.; Jin, R.; and Jain, A. 2011. Multi-label learning with
incomplete class assignments. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2801 –2808.
Chen, Y.-N., and Lin, H.-T. 2012. Feature-aware label space di-
mension reduction for multi-label classification. In Advances in
Neural Information Processing Systems 25, 1538–1546.
Chen, M.; Zheng, A.; and Weinberger, K. Q. 2013. Fast image
tagging. In Proceedings of the 30th International Conference on
Machine Learning, 1274–1282.
Duygulu, P.; Barnard, K.; Freitas, N.; and Forsyth, D. 2002. Object
recognition as machine translation: Learning a lexicon for a fixed
image vocabulary. In Proceedings of the 7th European Conference
on Computer Vision, 97–112.
Friedman, J.; Hastie, T.; and Tibshirani, R. 2008. Sparse in-
verse covariance estimation with the graphical lasso. Biostatistics
9(3):432–441.
Goldberg, A. B.; Zhu, X.; Recht, B.; Xu, J.-M.; and Nowak, R.
2010. Transduction with matrix completion: Three birds with one

Table 3: Results on data sets with 50% missing labels and k
positive observed labels.

macro-F1 (k = 1)
data set LCML MLRGL FastTag BR
pascal07 0.3480± 0.0069 0.3451± 0.0080 0.2491± 0.0115 0.3050± 0.0054
mirflickr 0.4670± 0.0019 0.4579± 0.0093 0.4601± 0.0112 0.4549± 0.0024
corel5k 0.2403± 0.0544 0.1100± 0.0156 0.1998± 0.0107 0.1417± 0.0281
espgame 0.2327± 0.0196 0.1462± 0.0118 0.1790± 0.0082 0.1936± 0.0146
iaprtc12 0.2362± 0.0458 0.0599± 0.0393 0.1920± 0.0051 0.2097± 0.0345

micro-F1 (k = 1)
data set LCML MLRGL FastTag BR
pascal07 0.3396± 0.0064 0.3363± 0.0074 0.2455± 0.0108 0.2981± 0.0050
mirflickr 0.4453± 0.0032 0.4393± 0.0083 0.4170± 0.0118 0.4320± 0.0039
corel5k 0.2375± 0.0536 0.1087± 0.0163 0.1950± 0.0108 0.1403± 0.0275
espgame 0.2235± 0.0212 0.1401± 0.0118 0.1701± 0.0080 0.1858± 0.0157
iaprtc12 0.2312± 0.0451 0.0587± 0.0383 0.1901± 0.0050 0.2053± 0.0345

macro-F1 (k = 2)
data set LCML MLRGL FastTag BR
pascal07 0.3509± 0.0057 0.3451± 0.0080 0.2484± 0.0146 0.2806± 0.0065
mirflickr 0.4537± 0.0077 0.4579± 0.0093 0.4352± 0.0500 0.4442± 0.0043
corel5k 0.2407± 0.0503 0.1100± 0.0156 0.1808± 0.0109 0.0180± 0.0101
espgame 0.2302± 0.0203 0.1462± 0.0115 0.2222± 0.0045 0.1842± 0.0131
iaprtc12 0.2355± 0.0451 0.0599± 0.0393 0.1800± 0.0071 0.1976± 0.0325

micro-F1 (k = 2)
data set LCML MLRGL FastTag BR
pascal07 0.3426± 0.0053 0.3363± 0.0074 0.2449± 0.0137 0.2739± 0.0058
mirflickr 0.4367± 0.0076 0.4393± 0.0083 0.4156± 0.0471 0.4208± 0.0051
corel5k 0.2380± 0.0495 0.1087± 0.0163 0.1746± 0.0110 0.0176± 0.0098
espgame 0.2212± 0.0220 0.1400± 0.0118 0.2130± 0.0044 0.1769± 0.0145
iaprtc12 0.2309± 0.0444 0.0587± 0.0383 0.1712± 0.0071 0.1934± 0.0326

macro-F1 (k = 3)
data set LCML MLRGL FastTag BR
pascal07 0.3501± 0.0063 0.3451± 0.0080 0.2437± 0.0061 0.1436± 0.0083
mirflickr 0.4613± 0.0030 0.4579± 0.0093 0.4552± 0.0192 0.4128± 0.0021
corel5k 0.2397± 0.0534 0.1100± 0.0156 0.1808± 0.0080 0.0268± 0.0169
espgame 0.2228± 0.0240 0.1462± 0.0115 0.2150± 0.0084 0.1613± 0.0113
iaprtc12 0.2300± 0.0370 0.0599± 0.0393 0.1852± 0.0060 0.1659± 0.0241

micro-F1 (k = 3)
data set LCML MLRGL FastTag BR
pascal07 0.3418± 0.0058 0.3363± 0.0074 0.2404± 0.0055 0.1397± 0.0076
mirflickr 0.4440± 0.0039 0.4393± 0.0083 0.4156± 0.0166 0.3895± 0.0030
corel5k 0.2371± 0.0526 0.1087± 0.0163 0.1746± 0.0080 0.0263± 0.0166
espgame 0.2143± 0.0256 0.1400± 0.0118 0.2047± 0.0079 0.1551± 0.0126
iaprtc12 0.2258± 0.0382 0.0587± 0.0383 0.1770± 0.0059 0.1623± 0.0242

1685



stone. In Advances in Neural Information Processing Systems,
757–765.
Guillaumin, M.; Mensink, T.; Verbeek, J.; and Schmid, C. 2009.
Tagprop: Discriminative metric learning in nearest neighbor mod-
els for image auto-annotation. In Proceedings of the International
Conference on Computer Vision, 309–316.
Gupta, A., and Nagar, D. 2000. Matrix Variate Distributions.
Chapman & Hall/CRC.
Hariharan, B.; Zelnik-Manor, L.; Vishwanathan, S.; and Varma, M.
2010. Large scale max-margin multi-label classification with pri-
ors. In Proceedings of the 27th International Conference on Ma-
chine Learning, 423–430.
Hsu, D.; Kakade, S.; Langford, J.; and Zhang, T. 2009. Multi-
label prediction via compressed sensing. In Advances in Neural
Information Processing Systems 22, 772–780.
Kapoor, A.; Viswanathan, R.; and Jain, P. 2012. Multilabel classi-
fication using bayesian compressed sensing. In Advances in Neural
Information Processing Systems, 2654–2662.
Koivisto, M., and Sood, K. 2004. Exact Bayesian structure discov-
ery in Bayesian networks. Journal of Machine Learning Research
5:549–573.
Lauritzen, S. L. 1996. Graphical Models. Oxford University Press.
Petterson, J., and Caetano, T. 2011. Submodular multi-label learn-
ing. Advances in Neural Information Processing Systems 24.
Rai, P.; Kumar, A.; and Iii, H. D. 2012. Simultaneously leveraging
output and task structures for multiple-output regression. In Ad-
vances in Neural Information Processing Systems 25, 3194–3202.
Read, J.; Pfahringer, B.; Holmes, G.; and Frank, E. 2009. Clas-
sifier chains for multi-label classification. In Proceedings of the
European Conference on Machine Learning, 254–269.
Rothman, A. J.; Levina, E.; and Zhu, J. 2010. Sparse multivariate
regression with covariance estimation. Journal of Computational
and Graphical Statistics 19(4):947–962.
Tai, F., and Lin, H. 2012. Multilabel classification with principal
label space transformation. Neural Computation 24(9):2508–2542.
Tsoumakas, G., and Katakis, I. 2007. Multi-label classification: An
overview. International Journal of Data Warehousing and Mining
3:1–13.
Tsoumakas, G.; Katakis, I.; and Vlahavas, I. 2010. Mining multi-
label data. In Maimon, O., and Rokach, L., eds., Data Mining and
Knowledge Discovery Handbook. Springer. 667–685.
Von Ahn, L., and Dabbish, L. 2004. Labeling images with a com-
puter game. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 319–326.
Xu, M.; Jin, R.; and Zhou, Z.-H. 2013. Speedup matrix comple-
tion with side information: Application to multi-label learning. In
Advances in Neural Information Processing Systems, 2301–2309.
Yu, H.-F.; Jain, P.; and Dhillon, I. S. 2014. Large-scale multi-label
learning with missing labels. In Proceedings of the 31th Interna-
tional Conference on Machine Learning, 593–601.
Yuan, M., and Lin, Y. 2006. Model selection and estimation in
regression with grouped variables. Journal of the Royal Statistical
Society, Series B 68(1):49–67.
Zhang, Y., and Yeung, D.-Y. 2010. A convex formulation for learn-
ing task relationships in multi-task learning. In Proceedings of the
26th Conference on Uncertainty in Artificial Intelligence, 733–742.
Zhang, M.-L., and Zhang, K. 2010. Multi-label learning by ex-
ploiting label dependency. In Proceedings of the 16th International
Conference on Knowledge Discovery and Data Mining, 999–1008.

Zhang, M.-L., and Zhou, Z.-H. 2013. A review on multi-label
learning algorithms. IEEE Transactions on Knowledge and Data
Engineering 99(PrePrints):1.

1686




