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Abstract

Maximum margin principle has been suc-
cessfully applied to many supervised and
semi-supervised problems in machine learn-
ing. Recently, this principle was extended
for clustering, referred to as Maximum Mar-
gin Clustering (MMC) and achieved promis-
ing performance in recent studies. To avoid
the problem of local minima, MMC can
be solved globally via convex semi-definite
programming (SDP) relaxation. Although
many efficient approaches have been pro-
posed to alleviate the computational bur-
den of SDP, convex MMCs are still not scal-
able for medium data sets. In this pa-
per, we propose a novel convex optimiza-
tion method, LG-MMC, which maximizes the
margin of opposite clusters via “Label Gen-
eration”. It can be shown that LG-MMC is
much more scalable than existing convex ap-
proaches. Moreover, we show that our con-
vex relaxation is tighter than state-of-art con-
vex MMCs. Experiments on seventeen UCI
datasets and MNIST dataset show significant
improvement over existing MMC algorithms.

1 INTRODUCTION

Clustering is an important research area in machine
learning, data mining and pattern recognition (Jain &
Dubes, 1988). It aims at discovering the underlying
structure (or concepts) of the data, and grouping sim-
ilar instances. Clustering not only supplies valuable
data analysis in practice, but is also widely used in
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various domains including information retrieval, com-
puter version, bioinformatics and so on.

Over past decades, many clustering algorithms have
been proposed such as k-means, spectral clustering
and mixture model. Recently, inspired by the suc-
cess of large margin criterion in support vector ma-
chine (SVM), Xu et al. (2005) proposed the use of
maximum margin principle for clustering, referred to
as Maximum Margin Clustering (MMC), which simul-
taneously learns the optimal hyperplane and cluster
labels. However, the resultant optimization problem
involves integer variables for cluster labels, and suffers
from local minima. Xu et al. (2005) relaxed this opti-
mization problem as a convex semi-definite program-
ming (SDP) problem, in which a symmetric and real-
valued label relation matrix approximates the outer-
product of label vectors, can be solved globally (Boyd
& Vandenberghe, 2004). Experimental results (Xu
et al., 2005) show that MMC achieves the state-of-the-
art performance in many clustering problems. More-
over, their formulation can be naturally extended to
semi-supervised learning (Xu & Schuurmans, 2005).

Unlike quadratic programming (QP) used in kernel
methods, the worst-case time complexity of the SDP
used in MMC (O(n6.5)) is much higher than QP solvers
(O(n3)) (Boyd & Vandenberghe, 2004; Zhang et al.,
2009), where n is the data set size. Although general-
ized maximum margin clustering (GMMC) (Valizade-
gan & Jin, 2007) reduces the variables from O(n2) to
O(n) and has speeded-up MMC by 100 times, GMMC
still cannot handle medium datasets with more than
one thousand instances. Recently, several researchers
proposed efficient algorithms for MMC at the cost
of losing the convexity. For instances, Zhang et al.
(2007); Zhang et al. (2009) proposed an alternative de-
scend method which preformed clustering by sequen-
tially solving various support vector regression (SVR)
problems; Zhao et al. (2008) proposed an efficient
cutting-plane method for linear MMC by using a se-
ries of constrained convex-concave procedure (CCCP)
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to relax the nonconvex constraint. All these methods
are non-convex optimization strategies which still get
stuck in local minima. Therefore, it is desirable to in-
vestigate a scalable algorithm that still achieves the
globally optimal solution for MMC.

In this paper, we perform MMC via a so-called “label
generation” strategy, referred to as Label-Generating
MMC (LG-MMC). Instead of solving the label rela-
tion matrix in MMC via SDP (Xu et al., 2005), LG-
MMC maximizes the margin by generating the most
violated label vectors iteratively, and then combines
them via efficient multiple kernel learning. The over-
all procedure can be formulated as a relaxed convex
optimization of MMC problem. Furthermore, it can
be shown that the learned linear combination of the
outer-product of the label vectors is in a convex-hull
of the label space. It is known that convex-hull is the
smallest convex set that contains certain non-convex
set (Boyd & Vandenberghe, 2004), and thus our for-
mulation achieves a tighter relaxation than the con-
vex relaxation of MMC proposed by Xu et al. (2005).
Moreover, LG-MMC involves a series of SVM sub-
problems which can be solved in a scalable and ef-
ficient manner via various state-of-the-art SVM soft-
wares such as SVM-perf (Joachims, 2006), LIBLIN-
EAR (Hsieh et al., 2008) and CVM (Tsang et al.,
2006), and LG-MMC scales much better than exist-
ing convex approaches.

The rest of this paper is organized as follows. Sec-
tion 2 briefly introduces maximum margin clustering.
Section 3 describes the propose LG-MMC algorithm.
Experimental results are shown in Section 4. The last
section gives the conclusive remarks.

2 MAXIMAL MARGIN
CLUSTERING

In the sequel, M Â 0 (resp. M º 0) means that
the matrix M is symmetric and positive definite (pd)
(resp. positive semidefinite (psd)). Moreover, the
transpose of vector / matrix (in both the input and fea-
ture spaces) will be denoted by the superscript ′, and
0,1 ∈ Rn denote the zero vector and the vector of all
ones, respectively. The inequality v = [v1, · · · , vk]> ≥
0 means that vi ≥ 0 for i = 1, · · · , k.

First, we start with a simpler scenario of supervised
learning. Given a set of labeled patterns {xi, yi}n

i=1

where xi ∈ X is the input and ŷi ∈ {±1} is the output,
and consider finding a decision function f(x) = w′φ(x)
that minimizes the structural risk functional:

Ω(‖w‖p) + C
n∑

i=1

`(−yiw′φ(xi)),

where φ is the feature map induced by some kernel
function k, Ω is a strictly monotonic increasing func-
tion, `(·) is a monotonically increasing loss function,
and C is a regularization parameter that trades off the
empirical risk and the model complexity. In this pa-
per, we focus on Ω(‖w‖p) = 1

2 ||w||2 and the squared
hinge loss:

min
w,ρ,ξ

1
2
||w||22 − ρ +

C

2

n∑

i=1

ξ2
i (1)

s.t yiw′φ(xi) ≥ ρ− ξi, i = 1 · · · , n.

This is usually solved in its dual:

maxα −1
2

n∑

i,j=1

αiαj

(
yiyjk(xi,xj) +

1
C

δij

)
(2)

s.t. αi ≥ 0,
n∑

i=1

αi = 1,

where αi is a dual variable for each inequality con-
straint in (1), and δij is the indicator function (i.e.,
δij = 1 if i = j; and 0 otherwise). Let α =
[α1, · · · , αn]′ be the vector of dual variables, and
K = [k(xi,xj)] ∈ Rn×n be the kernel matrix, and
A = {α

∣∣ α ≥ 0,α′1 = 1}. Then the QP in (2) can
be rewritten in matrix form as:

maxα∈A −1
2
α′

(
K¯ yy′ +

1
C

I
)
α, (3)

where ¯ denotes the element-wise product. Finally,
the decision function can be obtained from the optimal
α as f(x) =

∑n
i=1 αiyik(xi,x).

In maximum margin clustering, the pattern labels are
unknown and so also need to be optimized. However,
note that one can obtain a trivially “optimal” solution
with the infinite margin by assigning all patterns to a
single cluster. To prevent such a useless solution, Xu
et al. (2005) introduced a class balance constraint

−β ≤ 1′ŷ ≤ β,

where ŷ = [ŷ1, · · · , ŷn]′ denotes a vector of the un-
known pattern labels, and β ≥ 0 is a user-defined con-
stant controlling the class imbalance. The margin is
then maximized w.r.t. both the unknown ŷ and the
unknown SVM parameter, and (1) is extended to:

min
ŷ∈B

min
w,ρ,ξ

1
2
‖w‖22 − ρ +

C

2

n∑

i=1

ξ2
i

s.t ŷiw′φ(xi) ≥ ρ− ξi, i = 1 · · · , n,

where B = {ŷ | ŷi ∈ {±1},−β ≤ 1′ŷ ≤ β}. Conse-
quently, (3) becomes:

minŷ∈B maxα∈A −1
2
α′

(
K¯ ŷŷ′ +

1
C

I
)
α. (4)
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This, however, is a mixed integer program.

To make it more tractable, Xu et al. (2005) pro-
posed the MMC algorithm that relaxes the rank-one
matrix M = ŷŷ′ to a positive semi-definite matrix
satisfying diag(M) = 1. This finally leads to a con-
vex semidefinite program (SDP), which can also be ex-
tended to the multi-class setting (Xu & Schuurmans,
2005). However, this involves O(n2) optimization vari-
ables. Recently, Valizadegan and Jin (2007) proposed
the general maximum margin clustering (GMMC) al-
gorithm which reduces the number of variables to
O(n), and thus results in significantly computational
savings. However, because all these are still based
on SDPs, MMC and GMMC are limited to small-to-
medium data sets.

Most recently, two maximum margin clustering ap-
proaches are introduced that are not based on expen-
sive SDP formulations. Zhang et al. (2007) proposed
an efficient approach based on iterative kernel regres-
sion procedures. Zhao et al. (2008) proposed the cut-
ting plane maximum margin clustering (CPMMC) al-
gorithm which is based on the use of cutting planes
(Kelley, 1960) and constrained concave-convex proce-
dure (Smola et al., 2005). However, both methods sac-
rifice convexity for efficiency. While each iteration only
involves the solving of a convex optimization problem,
the optimization problem as a whole is still non-convex
and so suffers from the problem of local minimum.

3 LG-MMC

In this section, we introduce the proposed Label-
Generating MMC (LG-MMC) algorithm.

3.1 THE APPROACH

First, consider interchanging the order of maxα∈A and
minŷ∈B in (4), leading to:

LG-MMC : max
α∈A

min
ŷ∈B

− 1
2
α′

(
K¯ ŷŷ′ +

1
C

I
)
α. (5)

According to the minmax theorem (Kim & Boyd,
2008), the optimal objective of (4) is an upper bound
of that of (5). This can be further rewritten as:

max
α∈A

{
maxθ−θ (6)

s.t. θ ≥ 1
2
α′

(
K¯ ŷtŷ′t +

1
C

I
)
α, ∀ŷt ∈ B

}
.

For the inner optimization subproblem, let µt ≥ 0 be
the dual variable for each constraint. Its Lagrangian
can be obtained as:

−θ +
∑

t:ŷt∈B
µt

(
θ − 1

2
α′

(
K¯ ŷtŷ′t +

1
C

I
)
α

)
.

Setting its derivative w.r.t. θ to zero, we have
∑

µt =
1. Let µ be the vector of µt’s, and M be the simplex
{µ | ∑

µt = 1, µt ≥ 0}. We can then replace the
inner optimization subproblem with its dual and (6)
becomes:

max
α∈A

min
µ∈M

−1
2
α′

( ∑

t:ŷt∈B
µtK¯ ŷtŷ′t +

1
C

I
)
α

= min
µ∈M

max
α∈A

−1
2
α′

( ∑

t:ŷt∈B
µtK¯ ŷtŷ′t +

1
C

I
)
α.(7)

Here, we have used the fact that the objective function
is concave in α and convex in µ. Moreover, note the
similarity with (3), which involves a single kernel ma-
trix K ¯ yy′. Hence, (7) can be regarded as multiple
kernel learning (MKL) (Lanckriet et al., 2004), where
the target kernel matrix is a convex combination of
|B| base kernel matrices {K¯ ŷtŷ′t}, each of which is
constructed from a feasible label vector ŷt ∈ B.

Details on how to solve this MKL problem will be de-
scribed in Sections 3.3 – 3.5. After obtaining µ, the
cluster labels can be recovered by eign-decomposing
M =

∑
t:ŷt∈B µtŷtŷ′t (as in (Valizadegan & Jin, 2007;

Xu et al., 2005)). In the following, we first show that
the formulation in (7) gives a tighter relaxation of the
maximum margin clustering problem than MMC.

3.2 TIGHTER RELAXATION

Consider the set Y0 of all feasible label matrices

Y0 =
{
M | M = ŷŷ′, ∀ŷ ∈ B}

,

and the two relaxations

Y1 =
{
M | M =

∑

t:ŷt∈B
µtŷtŷ′t, µ ∈M}

,

Y2 =
{
M | M º 0,diag(M) = 1

}
.

Define

F (α,M) = − 1
2C

α′α− 1
2
α′

(
K¯M

)
α,

then, obviously, the original mixed-integer program-
ming formulation of maximum margin clustering in (4)
is the same as

min
M∈Y0

max
α∈A

F (α,M). (8)

Similarly, the proposed formulation in (7) can be writ-
ten as:

min
M∈Y1

max
α∈A

F (α,M), (9)

and MMC (Xu et al., 2005) as:

min
M∈Y2

max
α∈A

F (α,M),
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which are all relaxations of (8).

Note that Y1 is the convex hull of Y0, which is the
smallest convex set containing Y0 (Boyd & Vanden-
berghe, 2004). Therefore, (9) gives the tightest convex
relaxation of (8). Moreover, the following proposition
shows that Y2 is more relaxed than Y1. In other words,
MMC is a looser relaxation than the proposed formu-
lation.

Proposition 1. Y1 ⊂ Y2.

Proof. Let Y be the set of all binary y’s (yi ∈ {±1}),
and

Y+
1 =

{
M | M =

∑

y∈Y
µyyy′, µ ∈M}

.

As B ⊆ Y, so Y1 ⊆ Y+
1 . In the following, we first

show that 11′ /∈ Y1. Assume to the contrary that
11′ ∈ Y1. Then there exists a convex combination
µ = [µy] such that 11′ =

∑
y∈B µyyy′. Note that each

entry of yy′ is in {±1}. However, if a particular entry
of yy′ (say, [yy′]ij) equals −1, µy must be 0 or else
the convex combination

∑
y∈B µy[yy′]ij < 1 6= [11′]ij .

Thus, y’s with positive µy’s must be either 1 or −1.
However, both 1 and −1 do not belong to Y1 because
of the balance constraint. Hence, a contradiction and
11′ /∈ Y1. Also, it is obvious that 11′ ∈ Y+

1 and thus
Y1 ⊂ Y+

1 . Finally, it is easy to see that Y+
1 ⊆ Y2.

Thus, we have Y1 ⊂ Y+
1 ⊆ Y2.

3.3 CUTTING PLANE

Recall that (7) can be regarded as a MKL prob-
lem. Hence, it appears that existing MKL techniques
(Lanckriet et al., 2004; Bach et al., 2004; Rakotoma-
monjy et al., 2007; Rakotomamonjy et al., 2008; Son-
nenburg et al., 2006) can be readily used to solve this
problem. However, because of the exponential number
of possible labelings ŷt ∈ B, the set of base kernels is
also exponential in size and so direct MKL is compu-
tationally intractable.

Fortunately, not all the constraints in (6) are active at
optimality, and including only a subset of these con-
straints can usually lead to a very good approximation
of the original optimization problem. Therefore, we
can apply the cutting-plane method (Kelley, 1960) to
handle this exponential number of constraints.

Denote the subset of constraints by C ⊂ B. The
cutting-plane algorithm is described in Algorithm 1.
First, we initialize the vector of Lagrangian multipli-
ers α to 1

n1, and set the working set C = {ŷ,−ŷ}
so that we have two base kernels to start with. Since
the working set C ⊂ B (and thus the number of base
kernel matrices is no longer exponential in size), one

can perform MKL and obtain α from (7). The most
violated label vector ŷ is added to C, and the process
repeated until the termination criterion is met. The
whole algorithm is summarized in Algorithm 1.

Algorithm 1 Cutting plane algorithm for LG-MMC.
1: Initialize α = 1

n1. Find the most violated ŷ and
set C = {ŷ,−ŷ}

2: Run MKL for the subset of kernel matrices selected
in C and obtain α from (7).

3: Find the most violated ŷ and set C = ŷ
⋃ C.

4: Repeat steps 2-3 until convergence.

There are two important issues in the cutting plane
algorithm. First, how to efficiently solve the MKL op-
timization problem? Second, how to efficiently find
the most violated ŷ. These will be addressed in Sec-
tions 3.4 and 3.5, respectively.

3.4 MULTIPLE LABEL-KERNEL
LEARNING

Several efficient MKL approaches have been developed
in recent years. For instance, Lanckriet et al. (2004)
first proposed the use of quadratically constrained
quadratic programming (QCQP) in MKL. Later, Bach
et al. (2004) showed that an approximate solution can
be efficiently obtained by using sequential minimiza-
tion optimization (SMO) (Platt, 1999). Recently, Son-
nenburg et al. (2006) proposed a semi-infinite linear
programming (SILP) formulation which allows MKL
to be iteratively solved with standard SVM solver and
linear programming. Rakotomamonjy et al. (2007)
and Rakotomamonjy et al. (2008) proposed the re-
lated SimpleMKL algorithm. Most recently, Xu et al.
(2009) proposed the use of the extended level method
to further improve the convergence of MKL.

Unlike standard MKL problems which try to find the
optimal kernel function/matrix for a given set of la-
bels, here, we have to find the optimal label ker-
nel matrix. In this paper, we use an adaptation of
the SimpleMKL algorithm (Rakotomamonjy et al.,
2007; Rakotomamonjy et al., 2008) to solve this mul-
tiple label-kernel learning (MLKL) problem. More
specifically, suppose that the current working set is
C = {ŷ1, · · · , ŷT }. Note that the feature map corre-
sponding to the base kernel matrix K¯ŷtŷ′t is ŷtiφ(xi).
The MKL problem in (7) thus corresponds to the fol-
lowing primal optimization problem:

min
µ∈M,w,ρ,ξ

1
2

T∑
t=1

1
µt
||wt||2 − ρ +

C

2

n∑

i=1

ξ2
i (10)

s.t.
T∑

t=1

ŷtiw′
tφ(xi) ≥ ρ− ξi,∀i = 1, · · · , n.
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It is easy to verify that the dual can be written as

max
α∈A,θ

−θ

s.t. θ ≥ 1
2
α′

(
K¯ ŷtŷ′t +

1
C

I
)
α, t = 1, . . . , T,

which is the same as (6). Following SimpleMKL, we
solve (7) (or, equivalently, (10)) iteratively. First, we
fix the mixing coefficients µ of the base kernel matrices
and solve the SVM’s dual:

max
α∈A

− 1
2α′

( ∑T
t=1 µtK¯ ŷtŷ′t + 1

C I
)
α.

Then, we fix α and use the reduced gradient method
for updating µ. These two steps are iterated until
convergence.

3.5 FING THE MOST VIOLATED ŷ

To find the most violated ŷ in (6), we have to solve
the following equivalent optimization problem

max
ŷ∈B

∑n

i,j=1
αiαj ŷiŷjφ(xi)′φ(xj). (11)

However, this is a concave QP and so cannot be solved
efficiently. Note that while the use of the most violated
constraint may lead to faster convergence, the cutting
plane algorithm only requires the addition of a violated
constraint at each iteration. Hence, we propose in the
following a simple and efficient method for finding a
good approximation of the most violated ŷ.

First, note that maximizing (11) is the same as maxi-
mizing its square root:

max
ŷ∈B

∥∥∥
∑n

i=1
αiŷiφ(xi)

∥∥∥ . (12)

The key idea is to replace the `2 norm above with the
infinity-norm. For simplicity of notation, let1 φ(x) =
[x(1), x(2), · · · , x(d)]′, where d is the dimensionality of
φ(x). Then, (12) is replaced by

max
ŷ∈B

∥∥∥
∑n

i=1
αiyiφ(xi)

∥∥∥
∞

= max
ŷ∈B

(
max

j=1,··· ,d

∣∣∣∣∣
n∑

i=1

αiyix
(j)
i

∣∣∣∣∣

)

= max
j=1,··· ,d

(
max
ŷ∈B

∣∣∣∣∣
n∑

i=1

αiyix
(j)
i

∣∣∣∣∣

)
. (13)

The absolute sign can be removed by writing each in-
ner subproblem as

max

(
max
ŷ∈B

n∑

i=1

αiyix
(j)
i ,max

ŷ∈B
−

n∑

i=1

αiŷix
(j)
i

)
. (14)

1If φ(x) has infinite dimensions, we perform singular

value decomposition for kernel matrix to get [x(1), x(2),

· · · , x(d)].

Each of these LP subproblems is of the form

max
ŷ

c′ŷ : ŷi ∈ {±1},−β ≤ 1′ŷ ≤ β. (15)

Moreover, it can be solved without any numeric opti-
mization solver, as is shown by the following proposi-
tion.

Proposition 2. At optimality, ŷi ≥ ŷj if ci > cj.

Proof. Assume, to the contrary, that the optimal ŷ
does not have the same sorted order as c. Then, there
are two label vectors ŷi and ŷj , with ci > cj but ŷi <
ŷj . Then ciŷi +cj ŷj < ciŷj +cj ŷi as (ci−cj)(ŷi− ŷj) <
0. Thus, ŷ is not optimal, a contradiction.

Thus, with Proposition 2, we can solve (15) by first
sorting ci’s. The label assignment of ŷi’s aligns the
sorted values of ci’s. To satisfy the balance constraint
−β ≤ 1′ŷ ≤ β, the first n−β

2 of ŷi’s are assigned with
−1, the last n−β

2 of them are assigned with 1. The
rest are assigned from −1 to 1 such that the objective
c′ŷ is maximized. Therefore, the label assignment in
the integer problem (14) can be determined exactly
and efficiently by sorting. After solving (14) for each
j = 1, · · · , d, these are then put back into (13) and the
label vector ŷ corresponding to the maximum is added
to the working set C.

3.6 COMPUTATIONAL COMPLEXITY

The time complexities of MMC and GMMC are
O(n6.5) and O(n4.5), respectively (Zhang et al., 2007).
These can be expensive even on medium-sized data
sets. In contrast, LG-MMC involves solving a sequence
of MKL problems and the finding of violated label as-
signments. Empirically, a maximum of five iterations
is good enough for MKL to converge. So the time
complexity of MKL is proportional to the complex-
ity of the SVM solver, which usually scales between
O(n) and O(n2.3) (Platt, 1999). Moreover, computing
the gradient in each SimpleMKL iteration takes O(n2)
time. Besides, finding the violated label assignment as
described in Section 3.5 takes O(dn log n) time as sort-
ing n patterns in d dimensions. As will be shown in
Section 4, empirically, the number of cutting-plane it-
erations required is usually small (no more than 20).
Finally, as M =

∑
t:ŷt∈B µtŷtŷ′t = Ydiag(µ)Y′ =

(Ydiag(µ)0.5)(Ydiag(µ)0.5)′ where Y = [ŷ1 · · · ŷT ],
the cluster labels can be recovered from the obtained
Ydiag(µ)0.5 by singular value eigen-decomposition,
which takes O(nT 2) time. Thus, LG-MMC is com-
putationally efficient.
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Table 1: Data sets used in the experiments.

ID Data # instances # Features

1 Echocardiogram 132 8
2 Heart-stalog 270 13
3 Haberman 306 14
4 LiveDiscorders 345 6
5 Spectf 349 44
6 Ionosphere 351 34
7 House-votes 435 16
8 Clean1 476 166
9 Breast 683 9
10 Australian 690 42
11 Diabetes 768 8
12 German 1000 59
13 LetterAvsB 1555 16
14 Satellite1vs2 2236 36
15 Krvskp 3196 36
16 Sick 3772 31
17 Spambase 4601 57
18 MNIST3vs8 13966 784
19 MNIST1vs7 15170 784

4 EXPERIMENTS

In this Section, we evaluate LG-MMC using a collec-
tion of real-world data sets. Comprehensive evaluation
of the clustering performance are performed on 17 UCI
data sets, which cover a wide range of properties, and
the MNIST data set 2 which contains 70,000 instances
at all. Information of these data sets are summarized
in Table 1. For the Letter and Satellite data sets, there
are multiple classes and we use the first two classes
only (Zhang et al., 2007). For the MNIST data set,
we focus on the most difficult pairs (3 vs 8 and 1 vs
7). Experiments are performed with MATLAB 7.6 on
a 2.00GHZ Inter Xeon(R)2 DUO PC running Windows
XP with 4GB main memory.

4.1 COMPARED METHODS

We compare LG-MMC with following methods: 1) k-
means (KM) method; 2) normalized cut (NC) method
(Shi & Malik, 2000); 3) GMMC (Valizadegan & Jin,
2007); 4) IterSVR 3 (Zhang et al., 2007); 5) CPMMC
4 (Zhao et al., 2008).

The C parameter is selected in a range of
{0.1, 0.5, 1, 5, 10, 100} for GMMC, IterSVR, CPMMC
and our LG-MMC method. For GMMC, IterSVR
CPMMC and LG-MMC, both linear and Gaussian
kernels are used. In particular, the width σ of
the Gaussian kernel exp(−||z||2/2σ2) is picked via
{0.25

√
γ, 0.5

√
γ,
√

γ, 2
√

γ, 4
√

γ} where γ is the aver-

2http://yann.lecun.com/exdb/mnist/
3http://www.cse.ust.hk/∼twinsen
4http://binzhao02.googlepages.com/

Figure 1: Number of Iterations Require by LG-MMC.

age distance from all pairs of instances. The parame-
ter of normalized cut is picked up from the same range
of σ. Since k-means and IterSVR are susceptible to
the problem of local minima, these two methods are
run 10 times and evaluate the average performance.
For the MNIST data set, the linear kernel is used for
all SVM-type methods (IterSVR, CPMMC and LG-
MMC). We use the same setup as (Zhang et al., 2007)
for the balance constraint, i.e., β is set as 0.03n for
balanced data and 0.3n for imbalanced data. All the
methods are reported with the best parameter setting.

4.2 CLUSTERING ACCURACY

Here, we follow the strategy in (Xu et al., 2005) to
evaluate the clustering accuracy. We first remove the
labels for all instances, and then predict the clusters
via performing clustering algorithms, finally measure
the misclassification error according to true label. Re-
sults are shown in Table 2. The best performance is
listed in bold. The “N/A” in Table 2 indicates that no
result can be obtained in reasonable time (5 hours) or
numerical problem occurs. As shown in Table 2, LG-
MMC achieves improved clustering performance over
existing MMC approaches on most data sets; while
other MMC approaches are comparable, and are often
better than KM.

4.3 SPEED

In this section, we also evaluate the efficiency of differ-
ent clustering algorithms. Detailed CPU time for all
methods are shown in Table 3. As can be seen, LG-
MMC scales much better than the GMMC method.
On average, LG-MMC is about 10 times faster than
GMMC. In general, global optimization methods are
still slower than local optimization methods. Figure 1
shows the number of iterations of LG-MMC with the
best performance. We can observe that the number
of iterations is always no more than 20. Therefore,
LG-MMC usually converges in very few iterations.
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Table 2: Clustering Error (%) on Various Data Sets

Data KM NC GMMC IterSVR CPMMC LG-MMC

Echocardiogram 24.24 23.48 18.94 21.97 18.18 18.18
Heart-stalog 25.44 20.74 22.59 22.70 44.44 24.81
Haberman 40.03 30.39 38.24 31.44 26.47 25.82
LiveDiscorders 45.31 43.19 41.16 43.01 42.03 34.49
Spectf 42.35 36.68 21.20 34.23 27.22 25.70
Ionosphere 28.77 29.63 9.77 23.70 35.90 24.70
House-votes 13.33 14.02 33.56 13.33 38.62 12.87
Clean1 45.08 47.48 39.71 40.29 43.49 31.72
Breast 3.95 2.49 N/A 3.22 34.99 3.51
Australian 45.57 45.22 39.71 32.12 44.49 14.06
Diabetes 33.42 34.24 31.12 31.51 34.90 32.68
German 43.28 33.60 30.00 34.86 30.00 29.80
LetterAvsB 18.24 5.79 N/A 6.63 30.00 0.00
Satellite1vs2 4.07 1.80 N/A 3.18 30.00 0.76
Krvskp 47.25 43.96 N/A 46.05 47.78 39.64
Sick 29.44 15.51 N/A 19.34 6.12 6.12
Spambase 25.44 41.51 N/A 23.18 39.40 18.30
MNIST3vs8 20.04 20.18 N/A 26.65 23.40 18.12
MNIST1vs7 4.23 3.52 N/A 4.54 4.24 2.30

Table 3: Wall Clock Time (in Seconds)

Data KM NC GMMC IterSVR CPMMC LG-MMC

Echocardiogram 0.01 0.09 9.26 0.05 0.06 0.52
Heart-stalog 0.01 0.41 27.0 0.12 0.06 1.36
Haberman 0.01 0.28 32.13 0.10 0.06 4.99
LiveDiscorders 0.01 0.42 42.01 0.25 0.06 4.58
Spectf 0.01 0.44 44.73 0.28 0.06 4.98
Ionosphere 0.01 0.53 13.63 0.18 0.06 1.35
House-votes 0.00 0.71 69.13 0.18 0.06 9.06
Clean1 0.02 1.25 40.81 1.14 0.03 6.44
Breast 0.01 1.66 N/A 0.47 0.03 14.09
Australian 0.01 2.17 353.8 1.24 0.06 25.23
Diabetes 0.01 2.30 326.98 0.23 0.03 83.44
German 0.02 6.26 623.20 2.13 0.04 34.44
LetterAvsB 0.01 25.70 N/A 2.80 0.03 4.81
Satellite1vs2 0.03 70.98 N/A 27.20 0.06 97.69
Krvskp 0.03 150.36 N/A 27.12 0.09 149.42
Sick 0.03 162.89 N/A 19.83 0.09 199.46
Spambase 0.17 497.84 N/A 26.02 0.16 1460.75
Mnist3vs8 17.33 13652.32 N/A 15596.21 106.78 731.22
Mnist1vs7 8.38 2596.21 N/A 2612.81 51.13 566.44

5 CONCLUSION

In this paper, we propose a scalable and global opti-
mization method for maximum margin clustering by
maximizing the margin via generating label assign-
ments iteratively. We show that our approach achieves
the tighter convex relaxation than the convex relax-
ation of MMC(Xu et al., 2005). To implement this
idea, we employ multiple kernel learning method to
efficiently solve the multiple label kernel combination
problem. Besides, we propose a simple but effective
way to generate new label assignment which will ap-
proximatively maximize the margin of opposite clus-

ters. Experimental results in various data sets show
that our approach achieves promising clustering per-
formance and scales much better than existing global
methods. In future, we will extend the proposed ap-
proach for semi-supervised learning.
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