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Abstract. In content-based image retrieval (CBIR) and image screening, it is of-
ten desirable to locate the regions of interest (ROI) in the images automatically.
This can be accomplished with multi-instance learning techniques by treating
each image as a bag of instances (regions). Many SVM-based methods are suc-
cessful in predicting the bag labels, however, few of them can locate the ROIs.
Moreover, they are often based on either local search or an EM-style strategy, and
may get stuck in local minima easily. In this paper, we propose two convex opti-
mization methods which maximize the margin of concepts via key instance gen-
eration at the instance-level and bag-level, respectively. Our formulation can be
solved efficiently with a cutting plane algorithm. Experiments show that the pro-
posed methods can effectively locate ROIs, and they also achieve performances
competitive with state-of-the-art algorithms on benchmark data sets.

1 Introduction

With the rapid expansion of digital image collections, content-based image retrieval
(CBIR) has attracted more and more interest. The main difficulty of CBIR lies in the
gap between the high-level image semantics and the low-level image features. Much
endeavor has been devoted to bridging this gap, it remains unsolved yet. Generally, the
user first poses in the query and relevance feedback process several labeled images that
are relevant/irrelevant to an underlying target concept. Then the CBIR system attempts
to retrieve all images from the database that are relevant to the concept. It is noteworthy
that although the user feeds whole images to the system, usually s/he is only interested
in some regions, i.e., regions of interest (ROIs), in the images.

For medical and military applications which require a fast scanning of huge amount
of images to detect suspect areas, it is very desirable if ROIs can be identified and ex-
hibited when suspected images are presented to the examiner. Even in common CBIR
scenarios, considering that the system usually returns a lot of images, the explicit identi-
fication of ROIs may help the user in recognizing images s/he really wants more quickly.
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In multi-instance learning [6], the training examples are bags each containing many
instances. A bag is positively labeled if it contains at least one positive instance, and
negatively labeled otherwise. The task is to learn a model from the training bags for
correctly labeling unseen bags. Multi-instance learning is difficult because that, unlike
conventional supervised learning tasks where all the training instances are labeled, here
the labels of the individual instances are unknown. It is obvious that if a whole image
is regarded as a bag with its regions being regarded as instances, the problem of de-
termining whether an image is relevant to a target concept or not can be viewed as a
multi-instance problem. So, it is not surprising that multi-instance learning has been
found very useful in tasks involving image analysis.

In general, three kinds of multi-instance learning approaches can be used to locate the
ROIs. The first is the Diverse Density (DD) algorithm [15] and its variants, e.g., EM-DD
[26] and multi-instance logistic regression [19]. These methods apply gradient search
with multiple restarts to identify an instance which maximizes the diverse density, that
is, an instance close to every positive bags while far from negative bags. The instance
is then regarded as the prototype of the target concept. It is obvious that DD can be
applied to locate ROIs. A serious problem with this kind of methods is the huge time
cost, since they have to perform gradient search starting from every instance in every
positive bag.

The second approach is the CkNN-ROI algorithm [29], which is a variant of Citation-
kNN [23]. This approach uses Citation-kNN to predict whether a bag is positive or not.
It takes the minimum distance between the nearest pair of instances from two bags as
the distance between bags, and then utilizes citers of the neighbors to improve perfor-
mance. Subsequently, each instance in a positive bag is regarded as a bag and a score
is calculated by considering its distance to other bags, from which the key instance can
be decided. The time complexity of CkNN-ROI is mainly dominated by the calculation
of neighbors, and is much more efficient than DD. However, this algorithm is based on
heuristics and the theoretical justification has not been established yet.

The third approach is MI-SVM [1]. While many SVM-based multi-instance learn-
ing methods have been developed [1,3,4], to the best of our knowledge, MI-SVM is
the only one that can locate the ROIs. The MI-SVM locates ROI (also referred to as
the key instance) with an EM-style procedure. It first starts with a SVM using some
multi-instance kernel [8] and picks the key instances according to the SVM prediction,
and the SVM is then retrained with respect to the key instance assignment; the proce-
dure is repeated until convergence. Empirical study shows that MI-SVM is efficient and
works well on many multi-instance data sets. In fact, MI-SVM can be viewed as a con-
strained concave-convex programming (CCCP) method whose convergence has been
well-studied [5]. Each MI-SVM iteration only involves the solving of a convex opti-
mization problem, however, the optimization problem as a whole is still non-convex
and suffers from local minima.

In this paper, we focus on SVM-based methods and propose the KI-SVM (key-
instance support vector machine) algorithm. We formulate the problem as a convex
optimization problem. At each iteration, KI-SVM generates a violated key instance as-
signment and then combines them via efficient multiple kernel learning. It is noteworthy
that it involves a series of standard SVM subproblems that can be solved with various
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state-of-the-art SVM implementations in a scalable and efficient manner, such as SVM-
perf [10], LIBSVM [7], LIBLINEAR [9] and CVM [21]. Two variants of the KI-SVM,
namely, Ins-KI-SVM and Bag-KI-SVM, are proposed for locating the key instances at
the instance-level and bag-level, respectively.

The rest of the paper is organized as follows. Section 2 briefly introduces MI-SVM.
Section 3 proposes our KI-SVM method. Experimental results are reported in Section 4.
The last section concludes the paper.

2 Multi-instance Support Vector Machines

In the sequel, we denote the transpose of a vector/matrix (in both the input and feature
spaces) by the superscript ′. The zero vector and the vector of all ones are denoted as
0,1 ∈ R

n, respectively. Moreover, the inequality v = [v1, · · · , vk]′ ≥ 0 means that
vi ≥ 0 for i = 1, · · · , k.

In multi-instance classification, we are given a set of training bags {(B1, y1), · · · ,
(Bm, ym)}, where Bi = {xi,1,xi,2, · · · ,xi,mi} is the ith bag containing instances
xi,j’s, mi is the size of bag Bi, and yi ∈ {±1} is its bag label. Suppose the deci-
sion function is denoted as f(x). As is common in the traditional MI setting, we take
f(Bi) = max1≤j≤mi f(xi,j). Furthermore, xi,l = arg maxxi,j f(xi,j) is viewed as
the key instance of a positive bag Bi. For simplification, we assume that the decision
function is a linear model, i.e., f(x) = w′φ(x), where φ is the feature map induced by
some kernel k.

The goal is to find f that minimizes the structural risk functional

Ω(‖w‖p) + C
∑m

i=1
�

(
−yi max

1≤j≤mi

w′φ(xi,j)
)
, (1)

where Ω can be any strictly monotonically increasing function, �(·) is a monotonically
increasing loss function, and C is a regularization parameter that balances the empiri-
cal risk functional and the model complexity. In this paper, we focus on Ω(‖w‖p) =
1
2 ||w||2 and the squared hinge loss. So, (1) becomes:

min
w,ρ,ξ

1
2
||w||22 − ρ+

C

2

m∑

i=1

ξ2i (2)

s.t yi max
1≤j≤mi

w′φ(xi,j) ≥ ρ− ξi, i = 1 · · · ,m, (3)

where ξ = [ξ1, · · · , ξm]′. This, however, is a non-convex problem because of the max
operator for positive bags.

Andrews et al. [1] proposed two heuristic extensions of the support vector machines,
namely, the mi-SVM and MI-SVM, for this multi-instance learning problem. The mi-
SVM treats the MI learning problem in a supervised learning manner, while the MI-
SVM focuses on finding the key instance in each bag. Later, Cheung and Kwok [5]
proposed the use of the constrained concave-convex programming (CCCP) method,
which has well-studied convergence properties, for this optimization problem. How-
ever, while each iteration only involves the solving of a convex optimization problem,
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the optimization problem as a whole is non-convex and so still suffers from the problem
of local minima.

3 KI-SVM

In this section, we propose two versions of KI-SVM, namely the Ins-KI-SVM (instance-
level KI-SVM) and Bag-KI-SVM (bag-level KI-SVM).

3.1 Mathematical Formulation

Let p be the number of positive bags. Without loss of generality, we assume that the
positive bags are ordered before negative bags, i.e., yi = 1 for all 1 ≤ i ≤ p and −1
otherwise. Moreover, let Ji =

∑i
t=1mt.

For a positive bag Bi, we use a binary vector di = [di,1, · · · , di,mi ]′ ∈ {0, 1}mi

to indicate which instance in Bi is its key instance. Here, followed the tradi-
tional multi-instance setup, we assume that each positive bag has only one key in-
stance, so

∑mi

j=1 di,j = 11. In the following, let d = [d1, · · · ,dp], and Δ be
its domain. Moreover, note that max1≤j≤mi w′φ(xi,j) in (3) can be written as
maxdi

∑mi

j=1 di,jw′φ(xi,j) in this case.
For a negative bag Bi, all its instances are negative and the corresponding constraint

(3) can be replaced by−w′φ(xi,j) ≥ ρ−ξi for every instance inBi. Moreover, we relax
the problem by allowing the slack variable ξi to be different for different instances of
bagBi. This leads to a set of slack variables {ξs(i,j)}i=1,··· ,m;j=1,··· ,mi , where s(i, j) =
Ji−1−Jp + j+p is the indexing function that numbers these slack variables from p+1
to N = Jm − Jp + p.

Combining all these together, (2) can be rewritten as:

(Ins-KI-SVM) min
w,ρ,ξ,d

1
2
||w||22 − ρ+

C

2

p∑

i=1

ξ2i +
λC

2

m∑

i=p+1

mi∑

j=1

ξ2s(i,j)

s.t.
mi∑

j=1

w′di,jφ(xi,j) ≥ ρ− ξi, i = 1, · · · , p,

−w′φ(xi,j) ≥ ρ− ξs(i,j), i = p+ 1, · · · ,m,
j = 1, · · · ,mi, (4)

where λ balances the slack variables from the positive and negative bags.
Note that each instance in a negative bag leads to a constraint in (4). Potentially, this

may result in a large number of constraints in optimization. Here, we consider another
variant that simply represents each negative bag in the constraint by the mean of its
instances. It has been shown that this representation is reasonable and effective in many
cases [8,24]. Thus, we have the following optimization problem:

1 In many cases the standard assumption of multi-instance learning, that is, the positive label is
triggered by a key instance, does not hold. Instead, the positive label may be triggered by more
than one key instances [22,24,30]. Suppose the number of key instances is v, we can simply
set

∑mi
j=1 di,j = v, and thus our proposal can also handle this situation with a known v.
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(Bag-KI-SVM) min
w,ρ,ξ,d

1
2
||w||22 − ρ+

C

2

p∑

i=1

ξ2i +
λC

2

m∑

i=p+1

ξ2i

s.t.
mi∑

j=1

w′di,jφ(xi,j) ≥ ρ− ξi, i = 1, · · · , p,

−w′
∑mi

j=1 φ(xi,j)
mi

≥ ρ− ξi, i = p+ 1, · · · ,m. (5)

Hence, instead of a total of
∑m

i=p+1mi constraints for the negative bags in (4), there
are now onlym−p corresponding constraints in (5). As (4) considers each instance (in
a negative bag) as one constraint, while (5) only represents the whole negative bag as
a constraint. Therefore, we will refer to the formulations in (4) and (5) as the instance-
level KI-SVM (Ins-KI-SVM) and bag-level KI-SVM (Bag-KI-SVM), respectively.

As (4) and (5) are similar in form, we consider in the following a more general
optimization problem for easier exposition:

min
w,ρ,ξ,d

1
2
||w||22 − ρ+

C

2

p∑

i=1

ξ2i +
λC

2

r∑

i=p+1

ξ2i

s.t.
mi∑

j=1

w′di,jφ(xi,j) ≥ ρ− ξi, i = 1, · · · , p,

−w′ψ(x̂i) ≥ ρ− ξi, i = p+ 1, · · · , r. (6)

It is easy to see that both the Ins-KI-SVM and Bag-KI-SVM are special cases of (6).
Specifically, when r = N , and ψ(x̂s(i,j)) = φ(xi,j) for the second constraint, (6)

reduces to the Ins-KI-SVM. Alternatively, when r = m, and ψ(x̂i) =
∑ mi

j=1 φ(xi,j)

mi
for

the second constraint, then (6) becomes the Bag-KI-SVM.
By using the method of Lagrange multipliers, the Lagrangian can be obtained as:

L(w, ρ, ξ,d,α)

=
1
2
||w||22 − ρ+

C

2

p∑

i=1

ξ2i +
λC

2

r∑

i=p+1

ξ2i −
p∑

i=1

αi(
mi∑

j=1

w′di,jφ(xi,j) − ρ+ ξi)

−
r∑

i=p+1

αi(−w′ψ(x̂i) − ρ+ ξi).

By setting the partial derivatives with respect to the w, ρ, ξ to zeros, we have

∂L

∂w
= w −

p∑

i=1

αi

mi∑

j=1

di,jφ(xi,j) +
r∑

i=p+1

αiψ(x̂i) = 0,

∂L

∂ρ
= −1 +

r∑

i=1

αi = 0,
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∂L

∂ξi
= Cξi − αi = 0, ∀i = 1, · · · , p,

∂L

∂ξi
= λCξi − αi = 0, ∀i = p+ 1, · · · , r.

Then, the dual of (6) can be obtained as

min
d∈Δ

max
α∈A

− 1
2 (α� ŷ)′

(
Kd + E

)
(α� ŷ), (7)

where α = [α1, · · · , αr]′ ∈ R
r is the vector of Lagrange multipliers, A =

{α | ∑r
i=1 αi = 1, αi ≥ 0}, ŷ = [1p,−1r−p] ∈ R

r, � denotes the element-wise
product of two matrices, E ∈ R

r×r is a diagonal matrix with diagonal entries

Ei,i =
{

1
C i = 1, · · · , p,
1

λC otherwise,

and Kd ∈ R
r×r is the kernel matrix where Kd

ij = (ψd
i )′(ψd

j ) with

ψd
i =

{∑mi

j=1 di,jφ(xi,j)′ i = 1, · · · , p,
ψ(x̂i) i = p+ 1, · · · , r. (8)

Note that (7) is a mixed-integer programming problem, and so is computationally in-
tractable in general.

3.2 Convex Relaxation

The main difficulty of (7) lies in the variables d which is hard to optimize in general. But
once the d is given, the inner problem of (7) will become a standard SVM which could
be solved in an efficient manner. This simple observation motivates us to avoid opti-
mizing d, alternatively, to learn the optimal combination of some d’s. Further observed
that each d corresponds to a kernel Kd, learning the optimal convex combination will
become multiple kernel learning (MKL) [13] which is convex and efficient in general.

In detail, we consider a minimax relaxation [14] by exchanging the order of mind

and maxα. According to the minimax inequality [12], (7) can be lower-bounded by

max
α∈A

min
d∈Δ

−1
2
(α� ŷ)′

(
Kd + E

)
(α� ŷ)

= max
α∈A

{
max

θ
−θ

s.t. θ ≥ 1
2
(α� ŷ)′

(
Kdt + E

)
(α� ŷ), ∀dt ∈ Δ

}
. (9)

By introducing the dual variable μt ≥ 0 for each constraint, then its Lagrangian is

−θ +
∑

t:dt∈Δ

μt

(
θ − 1

2
(α� ŷ)′

(
Kdt + E

)
(α� ŷ)

)
.
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Algorithm 1. Cutting plane algorithm for KI-SVM
1: Initialize d to d0, and set C = {d0}.
2: Run MKL for the subset of kernel matrices selected in C and obtain α from (10). Let o1 be

the objective value obtained.
3: Find a constraint (indexed by d̂) violated by the current solution and set C = d̂

⋃ C.
4: Set o2 = o1. Run MKL for the subset of kernel matrices selected in C and obtain α from

(10). Let o1 be the objective value obtained.
5: Repeat steps 3-4 until | o2−o1

o2
| < ε.

It can be further noted that
∑
μt = 1 by setting the derivative w.r.t. θ to zero. Let μ be

the vector of μt’s, and M be the simplex {μ | ∑
μt = 1, μt ≥ 0}. Then (9) becomes

max
α∈A

min
μ∈M

−1
2
(α� ŷ)′

( ∑

t:dt∈Δ

μtKdt + E
)
(α� ŷ) (10)

= min
μ∈M

max
α∈A

−1
2
(α� ŷ)′

( ∑

t:dt∈Δ

μtKdt + E
)
(α� ŷ). (11)

Here, we can interchange the order of the max and min operators as the objective in
(10) is concave in α and convex in μ [13]. It is noteworthy that (11) can be regarded as
multiple kernel learning (MKL) [13], where the kernel matrix to be learned is a convex
combination of the base kernel matrices {Kdt : dt ∈ Δ}. However, the number of
feasible vectors dt ∈ Δ is exponential, the set of base kernels is also exponential in
size and so direct MKL is still computationally intractable.

In this paper, we apply the cutting plane method [11] to handle this exponential
number of constraints. The cutting plane algorithm is described in Algorithm 1. First,
as in [1], we initialize d0 as the average value, i.e., {di,j = 1/mi, i = 1, · · · , p; j =
1, · · · ,mi} and initialize the working set C to {d0}. Since the size of C (and thus the
number of base kernel matrices) is no longer exponential, one can perform MKL with
the subset of kernel matrices in C, obtainα from (10) and record the objective value o1
in step 2. In step 3, an inequality constraint in (9) (which is indexed by a particular d̂)
that is violated by the current solution is then added to C. In step 4, we first set o2 = o1,
then we perform MKL again and record the new objective value o1. We repeat step 3
and step 4 until the gap between o1 and o2 is small enough. ε is simply set as 0.001 in
our experiments.

Two important issues need to be addressed in the cutting plane algorithm, i.e., how
to efficiently solve the MKL problem in Steps 2 and 4 and how to efficiently find
the a violated constraint in Step 3? These will be addressed in Sections 3.3 and 3.4,
respectively.

3.3 MKL on Subset of Kernel Matrices in C
In recent years, a number of MKL methods have been developed in the literature
[2,13,17,18,20,25]. In this paper, an adaptation of the SimpleMKL algorithm [18] is
used to solve the MKL problem in Algorithm 1.
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Specifically, suppose that the current C = {d1, · · · ,dT }. Recall that the feature map
induced by the base kernel matrix Kdt is given in (8). As in the derivation of the Sim-
pleMKL algorithm, we consider the following optimization problem that corresponds
to the MKL problem in (11).

min
μ∈M,w,ξ

1
2

T∑

t=1

||wt||2
μt

− ρ+
C

2

p∑

i=1

ξ2i +
λC

2

r∑

i=p+1

ξ2i

s.t.
T∑

t=1

⎛

⎝
mi∑

j=1

w′
td

t
i,jφ(xi,j)

⎞

⎠ ≥ ρ− ξi, i = 1, · · · , p,

−
T∑

t=1

w′
tψ(x̂i) ≥ ρ− ξi, i = p+ 1, · · · , r. (12)

It is easy to verify that its dual is

max
α∈A,θ

−1
2
α′Eα− θ

s.t. θ ≥ 1
2
(α� ŷ)′Kdt(α� ŷ) t = 1, . . . , T,

which is the same as (9). Following SimpleMKL, we solve (11) (or, equivalently, (12))
iteratively. First, by fixing the mixing coefficients μ = [μ1, · · · , μT ]′ of the base kernel
matrices and we solve the SVM’s dual

max
α∈A

− 1
2 (α� ŷ)′

( ∑T
t=1 μtKdt + E

)
(α� ŷ).

Then, by fixing α, we use the reduced gradient method to update μ. These two steps
are iterated until convergence.

3.4 Finding a Violated Constraint

While the cutting plane algorithm only needs to find a violated constraint in each itera-
tion, it is customary to find the most violated constraint. In the context of (9), we then
have to find the d̂ that maximizes

max
d∈Δ

∑r

i,j=1
αiαj ŷiŷj(ψd

i )′(ψd
j ). (13)

However, this is a concave QP and so can not be solved efficiently. Note, however, that
while the use of the most violated constraint may lead to faster convergence, the cutting
plane method only requires a violated constraint at each iteration. Hence, we propose
in the following a simple and efficient method for finding a good approximation of the
most violated d̂.

First, note that maximizing (13) could be rewritten as ‖∑r
i=1 αi ŷiψ

d
i ‖2. Using the

definition of ψd
i in (8), this can be rewritten as

max
d∈Δ

∥∥∥∥∥∥

p∑

i=1

αi

mi∑

j=1

di,jφ(xi,j)−
r∑

i=p+1

αiψ(x̂i)

∥∥∥∥∥∥
2

. (14)
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The key is to replace the �2-norm above with the infinity-norm. For simplicity, let
φ(x) = [x(1), x(2), · · · , x(g)]′ and ψ(x̂) = [x̂(1), x̂(2), · · · , x̂(g)]′, where g is the di-
mensionality of φ(x) and ψ(x̂). Then, we have

max
d∈Δ

∥∥∥∥∥∥

p∑

i=1

αi

mi∑

j=1

di,jψ(x̂i,j) −
r∑

i=p+1

αiψ(x̂i)

∥∥∥∥∥∥
∞

= max
l=1,··· ,g

max
d∈Δ

∣∣∣∣∣

p∑

i=1

αi

mi∑

j=1

di,jx
(l)
i,j −

r∑

i=p+1

αix̂
(l)
i

∣∣∣∣∣. (15)

The absolute sign for each inner subproblem (defined on the lth feature)

max
d∈Δ

∣∣∣∣∣

p∑

i=1

αi

mi∑

j=1

di,jx
(l)
i,j −

r∑

i=p+1

αix̂
(l)
i

∣∣∣∣∣. (16)

can be removed by writing as the maximum of:

max
d∈Δ

p∑

i=1

αi

mi∑

j=1

di,jx
(l)
i,j −

r∑

i=p+1

αix̂
(l)
i , (17)

and

max
d∈Δ

−
p∑

i=1

αi

mi∑

j=1

di,jx
(l)
i,j +

r∑

i=p+1

αix̂
(l)
i . (18)

Recall that each di,j ∈ {0, 1}. Hence, by setting the key instance of (the positive) bag

Bi to be the one corresponding to argmax1≤j≤mi x
(l)
i,j , i.e.,

di,j =

{
1 j = argmax1≤j′≤mi x

(l)
i,j′ ,

0 otherwise,

the maximum in (17) can be obtained as

p∑

i=1

αi max
1≤j≤mi

x
(l)
i,j −

r∑

i=p+1

αix̂
(l)
i . (19)

Similarly, for (18), we set the key instance of (the positive) bag Bi to be the one corre-
sponding to arg min1≤j≤mi x

(l)
i,j , i.e.,

di,j =

{
1 j = argmin1≤j′≤mi x

(l)
i,j′ ,

0 otherwise,

then the maximum in (18) is obtained as

−
p∑

i=1

αi min
1≤j≤mi

x
(l)
i,j +

r∑

i=p+1

αix̂
(l)
i . (20)
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Algorithm 2. Local search for d. Here, obj(d) is the objective value in (13).
1: Initialize d = arg maxd∈{d1,··· ,dT ,d̂} obj(d), v = obj(d).

2: if d = d̂ then
3: return d;
4: end if
5: for i = 1 : p do
6: d′

l = dl,∀l �= i.
7: for j = 1 : mi do
8: Set d′

i,j = 1, d′
i,q = 0 ∀q �= j

9: if obj(d′) > v then
10: d = d′ and v = obj(d′).
11: end if
12: end for
13: end for
14: return d;

These two candidate values (i.e., (19) and (20)) are then compared, and the larger value
is the solution of the lth subproblem in (16). With g features, there are thus a total of
2g candidates for d̂. By evaluating the objective values for these 2g candidates, we can
obtain the solution of (15) and thus the key instance assignment d̂.

Note that for all the positive bags, both max1≤j≤mi x
(l)
i,j and min1≤j≤mi x

(l)
i,j can

be pre-computed. Moreover, this pre-processing takes O(gJp) time and space only.
When a new α is obtained by SimpleMKL, the processing above takes O(2gr) time.
Therefore, d̂ can be solved efficiently without the use of any numeric optimization
solver.

However, a deficiency of this infinity-norm approximation is that the d̂ obtained
may not always correspond to a violated constraint. As the cutting plane algorithm only
requires the addition of a violated constraint at each iteration, a simple local search is
used to refine the d̂ solution (Algorithm 2). Specifically, we iteratively update the key
instance assignment for each positive bag, while keeping the key instance assignments
for all the other positive bags fixed. Finally, the d that leads to the largest objective
value in (13) will be reported.

3.5 Prediction

On prediction, each instance x can be treated as a bag, and its output from the KI-SVM
is given by f(x) =

∑T
t=1 μt

∑N
i=1 αiŷi(ψdt

i )′φ(x).

4 Experiments

In this section, we evaluate the proposed methods on both CBIR image data and bench-
mark data sets of multi-instance learning.
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Table 1. Some statistics of the image data set

concept #images average #ROIs per image
castle 100 19.39
firework 100 27.23
mountain 100 24.93
sunset 100 2.32
waterfall 100 13.89

4.1 Locating ROI in Each Image

We employ the image database that has been used by Zhou et al. [29] in studying the
ROI detection performance of multi-instance learning methods. This database consists
of 500 COREL images from five image categories: castle, firework, mountain, sunset
and waterfall. Each category corresponds to a target concept to be retrieved. Moreover,
each image is of size 160×160, and is converted to the multi-instance feature represen-
tation by using the bag generator SBN [16]. Each region (instance) in the image (bag)
is of size 20 × 20. Some of these regions are labeled manually as ROIs. A summary of
the data set is shown in Table 1.

The one-vs-rest strategy is used. In particular, a training set of 50 images is created
by randomly sampling 10 images from each of the five categories. The remaining 450
images constitute a test set. The training/test partition is randomly generated 30 times,
and the average performance is recorded.

The proposed KI-SVMs are compared with the MI-SVM [1] and two other SVM-
based methods in multi-instance learning, namely the mi-SVM [1] and the SVM with a
multi-instance kernel (MI-Kernel) [8]. Moreover, we further compare with three state-
of-art methods on locating the ROIs, namely, Diverse Density (DD) [15], EM-DD [26]
and CkNN-ROI [29]. For the MI-SVM, mi-SVM, MI-Kernel and KI-SVMs, the RBF
kernel is used and the parameters are selected using cross-validation on the training sets.
Experiments are performed on a PC with 2GHz Intel Xeon(R)2-Duo running Windows
XP with 4GB memory.

Following [29], we evaluate the success rate, i.e., the ratio of the number of successes
divided by the total number of relevant images. For each relevant image in the database,
if the ROI returned by the algorithm is a real ROI, then it is counted as a success. For
a fair comparison, all the SVM-based methods are only allowed to identify one ROI,
which is the region in the image with maximum prediction value.

Table 2 shows the success rates (with standard deviations) of the various meth-
ods. Besides, we also show the rank of each method in terms of its success rate.
As can be seen, among all the SVM-based methods, Ins-KI-SVM achieves the
best performance on all five concepts. As for its performance comparison with
the other non-SVM type methods, Ins-KI-SVM is still always better than DD and
CkNN-ROI, and is comparable to EM-DD. In particular, EM-DD achieves the
best performance on two out of five categories, while Ins-KI-SVM achieves the best
performance on the other three. As can be seen, the proposed Bag-KI-SVM also achieves
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Table 2. Success rate (%) in locating ROIs. The number in parentheses is the relative rank of the
algorithm on the corresponding data set (the smaller the rank, the better the performance).

Method castle firework mountain sunset waterfall total rank

Ins-KI-SVM 64.74 (2) 83.70 (1) 76.78 (2) 66.85 (1) 63.41 (1) 7
±6.64 ±15.43 ±5.46 ±6.03 ±10.56

Bag-KI-SVM 60.63 (3) 54.00 (4) 72.70 (3) 47.78 (4) 45.04 (2) 16
±7.53 ±22.13 ±7.66 ±13.25 ±21.53

SVM MI-SVM 56.63 (4) 58.04 (3) 67.63 (5) 33.30 (6) 33.30 (5) 23
methods ±5.06 ±20.31 ±8.43 ±2.67 ±8.98

mi-SVM 51.44 (6) 40.74 (6) 67.37 (6) 32.19 (7) 22.04 (7) 32
±4.93 ±4.24 ±4.48 ±1.66 ±4.97

MI-Kernel 50.52 (7) 36.37 (8) 65.67 (7) 32.15 (8) 19.93 (8) 38
±4.46 ±7.92 ±5.18 ±1.67 ±4.65

DD 35.89 (8) 38.67 (7) 68.11 (4) 57.00 (2) 37.78 (4) 25
±15.23 ±30.67 ±7.54 ±18.40 ±29.61

non-SVM EM-DD 76.00 (1) 79.89 (2) 77.22 (1) 53.56 (3) 44.33 (3) 10
methods ±4.63 ±19.25 ±13.29 ±16.81 ±15.13

CkNN-ROI 51.48 (5) 43.63 (5) 60.59 (8) 34.59 (5) 30.48 (6) 29
±4.59 ±12.40 ±4.38 ±2.57 ±6.34

Fig. 1. ROIs located by (from left to right) DD, EM-DD, CkNN-ROI, MI-SVM, mi-SVM, MI-
Kernel, Ins-KI-SVM and Bag-KI-SVM. Each row shows one category (top to bottom: castle,
firework, mountain, sunset and waterfall).

highly competitive performance with the other state-of-the-art multi-instance learn-
ing methods. Fig. 1 shows some example images with the located ROIs. It can
be observed that Ins-KI-SVM can correctly identify more ROIs than the other
methods.

Each multi-instance algorithm typically has higher confidences (i.e., higher predic-
tion value on the predicted ROI) on some bags than in others. In the next experiment,
instead of reporting one ROI in each image, we vary a threshold on the confidence so
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castle firework mountain

sunset waterfall (legend)

Fig. 2. Success rates when different number of top-confident bags are considered

Table 3. Average wall clock time per query (in seconds)

non-SVM-based methods SVM-based methods
DD EM-DD CkNN-ROI MI-SVM mi-SVM MI-Kernel Ins-KI-SVM Bag-KI-SVM

155.02 15.91 0.003 6.03 6.39 3.04 19.47 5.57

that more than one ROIs can be detected. Fig. 2 shows how the success rate varies when
different number of top-confident bags are considered. As can be seen, the proposed
Ins-KI-SVM and Bag-KI-SVM achieve highly competitive performance. In particular,
Ins-KI-SVM is consistently better than all the other SVM-based methods across all the
settings.

Table 3 compares the average query time for the various methods. As can be seen,
DD is the slowest since it has to perform gradient descent with multiple restarts. EM-
DD is about ten times faster than DD as it involves a much smaller DD optimization at
each step. Moreover, note that both the Ins-KI-SVM and mi-SVM work at the instance
level while MI-SVM and Bag-KI-SVM work at the bag level. Therefore, MI-SVM and
Bag-KI-SVM are in general faster than Ins-KI-SVM and mi-SVM. On the other hand,
CkNN-ROI is very efficient as it pre-computes the distances and only needs to compute
the citer and reference information when locating ROIs. Moreover, unlike CkNN-ROI
which uses the standard Euclidean distance, MI-Kernel needs to compute a small kernel
matrix. Therefore, MI-Kernel is slower than CkNN-ROI but is still faster than the other
SVM methods in that it only needs to solve the SVM once. However, although CkNN-
ROI and MI-Kernel are fast, their performance is much inferior to those of the proposed
KI-SVMs, as shown in Table 2.
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Table 4. Testing accuracy (%) on the multi-instance classification benchmark data sets

Methods Musk1 Musk2 Elephant Fox Tiger
SVM-based Methods Ins-KI-SVM 84.0 84.4 83.5 63.4 82.9

Bag-KI-SVM 88.0 82.0 84.5 60.5 85.0
MI-SVM 77.9 84.3 81.4 59.4 84.0
mi-SVM 87.4 83.6 82.0 58.2 78.9

MI-Kernel 88.0 89.3 84.3 60.3 84.2
Non-SVM-based Methods DD 88.0 84.0 N/A N/A N/A

EM-DD 84.8 84.9 78.3 56.1 72.1

4.2 Multi-instance Classification

Finally, we evaluate the proposed KI-SVM methods on five multi-instance classifica-
tion data sets2 that have been popularly used in the literature [1,5,6,8,28]. These in-
clude Musk1, Musk2, Elephant, Fox and Tiger. The Musk1 data set contains 47 positive
and 45 negative bags, Musk2 contains 39 positive and 63 negative bags, and each of
the remaining three data sets contains 100 positive and 100 negative bags. Details of
these data sets can be found in [1,6]. The RBF kernel is used and the parameters are
determined by cross-validation on the training set. Comparison is made with the MI-
SVM [1], mi-SVM [1], SVM with MI-Kernel [8], DD [15] and EM-DD [26]. Ten-fold
cross-validation is used to measure the performance3. The average test accuracies of the
various methods are shown in Table 4. As can be seen, the performance of KI-SVMs
are competitive with all these state-of-the-art methods.

5 Conclusion

Locating ROI is an important problem in many real-world image involved applications.
In this paper, we focus on SVM-based methods, and propose two convex optimiza-
tion methods, Ins-KI-SVM and Bag-KI-SVM, for locating ROIs in images. The KI-
SVMs are efficient and based on convex relaxation of the multi-instance SVM. They
maximize the margin via generating the most violated key instance step by step, and
then combines them via efficient multiple kernel learning. Experiments show that KI-
SVMs achieve excellent performance in locating ROIs. The performance of KI-SVMs
on multi-instance classification is also competitive with other state-of-the-art methods.

The current work assumes that the bag labels are triggered by single key instances.
However, it is very likely that some labels are triggered by several instances together
instead of a single key instance. Moreover, some recent studies disclosed that in multi-
instance learning the instances should not be treated as i.i.d. samples [27,28]. To identify
key instances or key instance groups under these considerations will be studied in the
future.

2 http://www.cs.columbia.edu/∼andrews/mil/datasets.html
3 The accuracies of these methods were taken from their corresponding literatures. All of them

were obtained by ten-fold cross-validation.
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