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Abstract. Crowdsourcing allows the collection of labels from a crowd
of workers at low cost. In this paper, we focus on ordinal labels, whose
underlying order is important. Crowdsourced labels can be noisy as
there may be amateur workers, spammers and/or even malicious workers.
Moreover, some workers/items may have very few labels, making the esti-
mation of their behavior difficult. To alleviate these problems, we propose
a novel Bayesian model that clusters workers and items together using
the nonparametric Dirichlet process priors. This allows workers/items in
the same cluster to borrow strength from each other. Instead of directly
computing the posterior of this complex model, which is infeasible, we
propose a new variational inference procedure. Experimental results on
a number of real-world data sets show that the proposed algorithm is
more accurate than the state-of-the-art, and is more robust to sparser
labels.

1 Introduction

In many real-world classification applications, acquisition of labels is difficult and
expensive. Recently, crowdsourcing provides an attractive alternative. With plat-
forms like the Amazon Mechanical Turk, cheap labels can be efficiently obtained
from non-expert workers. However, the collected labels are often noisy because of
the presence of inexperienced workers, spammers and/or even malicious workers.

To clean these labels, a simple approach is majority voting [14]. By assum-
ing that most workers are reliable, labels on a particular item are aggregated
by selecting the most common label. However, this ignores relationships among
labels provided by the same worker. To alleviate this problem, one can assume
that labels of each worker are generated according to an underlying confusion
matrix, which represents the probability that the worker assigns a particular
label conditioned on the true label [7,19]. Others have also modeled the dif-
ficulties in labeling various items [2,13,23–25] and workers’ dedications to the
labeling task [2].

On the other hand, besides the commonly encountered binary and multiclass
labels, labels can also be ordinal. For example, in web search, the relevance of a
query-URL pair can be labeled as “irrelevant”, “relevant” and “highly-relevant”.
Unlike nominal labels, it is important to exploit the underlying order of ordinal
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labels. In particular, adjacent labels are often more difficult to differentiate than
those that are further apart.

To solve the aforementioned problem, Lakshminarayanan and Teh [16]
assumed that the ordinal labels are generated by the discretization of some
continuous-valued latent labels. The latent label for each worker-item pair is
drawn from a normal distribution, with its mean equal to the true label and its
variance related to the worker’s reliability and the item’s difficulty. While this
model is useful for “good” workers, it is not appropriate for malicious workers
whose labels can be very different from the true label. Moreover, it can be too
simplistic to use only one reliability (resp. difficulty) parameter to model each
worker (resp. item).

A more recent model is the minimax entropy framework [26], which is
extended from the minimax conditional entropy approach for multiclass label
aggregation [25]. To encode ordinal information, they compare the worker and
item labels with a reference label that can take all possible label values. The con-
fusion for each worker-item pair as obtained from the model is then constrained
to be close to its empirical counterpart. Finally, the true labels and probabili-
ties are obtained by solving an optimization problem derived from the minimax
entropy principle. In comparison with [16], ordering of the ordinal labels is now
explicitly considered.

In crowdsourcing applications, some workers may only provide very few labels.
Similarly, some items may receive very few labels. Parameter estimation for these
workers and items can thus be unreliable. To alleviate this problem, one can con-
sider the latent connections among workers and items. Intuitively, workers with
similar characteristics (e.g., gender, age, and nationality) tend to have similar
behaviors, and similarly for items. By clustering them together, one can borrow
strength fromoneworker/itemto another.Kajino et al. [12] formulated label aggre-
gation as a multitask learning problem [8]. Each worker is modeled as a classifier,
and the classifiers of similar workers are encouraged to be similar. However, the
ground-truth classifier, which generates the true labels, is required to lie in one of
the worker clusters. Moreover, this algorithm requires access to item features and
cannot be usedwith ordinal labels. Venanzi et al. [21] proposed to clustermulticlass
labels by using the Dirichlet distribution. However, the number of clusters needs to
be pre-specified, which may not be practical. Moreover, item grouping is not con-
sidered. Lakkaraju et al. [15] modeled both item and worker groups. However, they
again require the use of both worker and item features. Moreover, clustering and
label inference are performed as separate tasks.

In this paper, motivated by the conditional probability derived in the dual
of [26], we propose a novel algorithm to aggregate ordinal labels. Different
from [26], a full Bayesian model is constructed, in which clustering of both work-
ers and items are encouraged via the Dirichlet process (DP) [9] priors. DP is a
nonparametric model which is advantageous in that the number of clusters does
not need to be pre-specified. The resultant Bayesian model allows detection of
clustering structure, learning of worker/item characteristics and label aggrega-
tion be performed simultaneously. Empirically, it also significantly outperforms
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the state-of-the-art. However, as we use DP priors with non-conjugate base dis-
tributions, exact inference is infeasible. To address this problem, we extend the
techniques in [11], and derive a mean field variational inference algorithm for
parameter estimation.

2 Ordinal Label Aggregation by Minimax Conditional
Entropy

Let there be N workers, M items, and m ordinal label classes. We use i, j,m
to index the workers, items, and labels, respectively. The true label of item j is
denoted Yj , with probability distribution Q. The label assigned by worker i to
item j is Xij , and Ξ is the set of (i, j) tuples with Xij ’s observed. We assume that
there is at least one observed Xij for each worker i, and at least one observed
Xij for each item j.

Zhou et al. [26] formulated label aggregation as a constrained minimax
optimization problem, in which H(X|Y ) − H(Y ) − 1

αΩ(ξ) − 1
β Ψ(ζ) is maxi-

mized w.r.t. P (Xij = k | Yj = c) and minimized w.r.t. Q(Yj = c). Here,
H(X|Y ) is the conditional entropy of X given Y , H(Y ) is the entropy of Y ,
Ω(ξ) =

∑
i,s(ξ

�,�
is )2, Ψ(ζ) =

∑
j,s(ζ

�,�
js )2 are �2-regularizers on the slack vari-

ables ξ�,�
is , ζ�,�

js (in (1) and (2)), and α, β are regularization parameters. Let
φij(c, k) = Q(Yj = c)P (Xij = k|Yj = c) be the expected confusion from label
c to label k by worker i on item j, and φ̂ij(c, k) = Q(Yj = c)I(Xij = k) be its
empirical counterpart. Besides the standard normalization constraints on prob-
ability distributions P and Q, Zhou et al. [26] requires φij(c, k) be close to the
empirical φ̂ij(c, k):

∑

c�s

∑

k�s

∑

j

[φij(c, k) − φ̂ij(c, k)] = ξ�,�
is , ∀i,∀2 ≤ s ≤ m, (1)

∑

c�s

∑

k�s

∑

i

[φij(c, k) − φ̂ij(c, k)] = ζ�,�
js , ∀j,∀2 ≤ s ≤ m. (2)

Here, s is a reference label for comparing the true label c with worker label
k, and �,� is a binary relation operator (either ≥ or <). Together, they allow
consideration of the four cases: (i) c < s, k < s; (ii) c < s, k ≥ s; (iii) c ≥ s, k < s;
and (iv) c ≥ s, k ≥ s.

At optimality, it can be shown that

P (Xij = k|Yj = c) = exp[σi(c, k) + τj(c, k)]/Zijc, (3)

where Zijc is a normalization factor,

σi(c, k) =
∑

1≤s≤m

∑

�,�
σ�,�

is I(c � s, k�s), (4)

τj(c, k) =
∑

1≤s≤m

∑

�,�
τ�,�
js I(c � s, k�s), (5)
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σ�,�
is , τ�,�

js are Lagrange multipliers for the constraints (1) and (2), respectively,
and I(·) is the indicator function. Note that σi(c, k) controls how likely worker i
assigns label k when the true label is c, and τj(c, k) controls how likely item j is
assigned label k when the true label is c. Equations (4) and (5) can be written
more compactly as σi(c, k) = tT

ckσi and τj(c, k) = tT
ckτ j , where σi = [σ�,�

is ],
τ j = [τ�,�

js ], and tck = [I(c�s, k�s)]. Moreover, let X = [Xij ](i,j)∈Ξ , and Y =
[Yj ]. Equation (3) can be rewritten as

P (X|Y) =
∏

(i,j)∈Ξ

∏

c,k

P (Xij = k|Yj = c)I(Xij=k,Yj=c)

=
∏

(i,j)∈Ξ

∏

c,k

[
1

Zijc
exp[tT

ck(σi + τ j)]
]I(Xij=k,Yj=c)

. (6)

3 Bayesian Clustering of Workers and Items

Note that each worker i (resp. item j) has its own set of variables {σi(c, k)} (resp.
{τj(c, k)}). When the data are sparse, i.e., the set Ξ of observed labels is small,
an accurate estimation of these variables can be difficult. In this section, we
alleviate this data sparsity problem by clustering workers and items. While the
minimax optimization framework in [26] can utilize ordering information in the
ordinal labels, it is non-Bayesian and clustering cannot be easily encouraged. In
this paper, we propose a full Bayesian model, and encourage clustering of workers
and items using the Dirichlet process (DP) [9]. The DP prior is advantageous in
that the number of clusters does not need to be specified in advance. However,
with the non-conjugate priors and DPs involved, inference of the proposed model
becomes more difficult. By extending the work in [11], we derive a variational
Bayesian inference algorithm to infer the parameters and aggregate labels.

3.1 Model

Recall that σi(c, k) = tT
ckσi controls how likely worker i assigns label k when

the true label is c. To encourage worker clustering, we define a prior Ga on
{σi}N

i=1. Ga is drawn from the Dirichlet process DP(βa, Ga0), where βa is the
concentration parameter, and Ga0 is the base distribution (here, we use the
normal distribution N (μ0,Σ0)). Similarly, as τj(c, k) = tT

ckτ j controls how likely
item j assigns label k when the true label is c, we define a prior Gb ∼ DP(βb, Gb0)
on {τ j}M

j=1 to encourage item clustering (with Gb0 = N (ν0,Ω0)).
To make variational inference possible, we use the stick-breaking represen-

tation [20] and rewrite Ga as
∑∞

l=1 φlδσ∗
l
, where φl = Vl

∏l−1
d=1(1 − Vd), Vl ∼

Beta(1, βa), and σ∗
l ∼ Ga0. When we draw σ from Ga, δσ∗

l
= 1 if σ = σ∗

l , and
0 otherwise. Similarly, Gb =

∑∞
i=1 ϕhδτ∗

h
, where ϕh = Hh

∏h−1
d=1(1 − Hd), Hh ∼

Beta(1, βb) and τ ∗
h ∼ Gb0. Similar to σi(c, k), τj(c, k) in [26], σ∗

l (c, k) = tT
ckσ∗

l
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controls how likely workers in cluster l assign label k when the true label is c,
and τ∗

h(c, k) = tT
ckσ∗

h controls how likely items in cluster h are assigned label k
when the true label is c Let zi (resp. uj) indicate the cluster that worker i (resp.
item j) belongs to. We then have σi(c, k) = tT

ckσ∗
zi

and τj(c, k) = tT
ckτ ∗

uj
for all

i, j, c, k. Putting these into (6), we obtain the conditional probability as

P (X|Y, z,u,σ∗, τ ∗) =
∏

(i,j)∈Ξ

∏

c,k

[
1

Zijc
exp

[
tT
ck(σ∗

zi
+ τ ∗

uj
)
]]I(Xij=k,Yj=c)

,

(7)
where Zijc =

∑
k exp[tT

ck(σ∗
zi

+ τ ∗
uj

)], σ∗ = [σ∗
l ], τ

∗ = [τ ∗
h], z = [zi], and

u = [uj ]. In other words, rating Xij is generated from a softmax function [3]
conditioned on Yj , zi, uj ,σ

∗, τ ∗. Finally, the true label Yj of item j is drawn
from the multinomial distribution Mult(π1, π2, . . . , πm), where π1, . . . , πm are
drawn from a Dirichlet prior with hyperparameter α. The whole label genera-
tion process is shown in Algorithm 1. A graphical representation of the Bayesian
model, which will be called Cluster-based Ordinal Label Aggregation (COLA)
in the sequel, is shown in Fig. 1.

Algorithm 1. The proposed generation process.
1: for j = 1, 2, . . . , M do � Generate true labels
2: draw π = [π1, . . . , πm] ∼ Dir(α/m, α/m, . . . , α/m); // Dirichlet distribution
3: draw Yj ∼ Mult(π);
4: end for
5: for l = 1, 2, . . . do � Generate worker clusters
6: draw Vl ∼ Beta(1, βa);
7: φl = Vl

∏l−1
d=1(1 − Vd);

8: draw σ∗
l ∼ Ga0 = N (μ0,Σ0);

9: end for
10: for i = 1, 2, . . . , N do � Generate workers from worker clusters
11: draw zi ∼ Mult(φ);
12: end for
13: for h = 1, 2, . . . do � Generate item clusters
14: draw Hh ∼ Beta(1, βb);
15: ϕh = Hh

∏h−1
d=1 (1 − Hd);

16: draw τ ∗
h ∼ Gb0 = N (ν0,Ω0);

17: end for
18: for j = 1, 2, . . . , M do � Generate items from item clusters
19: draw uj ∼ Mult(ϕ);
20: end for
21: for i = 1, 2, . . . , N ; j = 1, 2, . . . , M do � Generate worker labels
22: draw Xij ∼ P (Xi|Yj , zi, uj , σ

∗, τ ∗);
23: end for
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Fig. 1. Graphical representation of the proposed model.

3.2 Inference Procedure

The joint distribution can be written as

P (X,Y, σ∗, τ ∗, z,u,V,H|μ0,Σ0, ν0,Ω0, α, βa, βb)

= P (X|Y, σ∗, τ ∗, z,u)P (σ∗|μ0,Σ0)P (τ ∗|ν0,Ω0)

P (Y|π)P (π|α)P (z|V)P (V|β1)P (u|H)P (H|β2),

where V = [Vl], and H = [Hh]. Monte Carlo Markov Chain (MCMC) sampling
[1] can be used to approximate the posterior distribution. However, it can be slow
and its convergence is difficult to diagnose [4]. Another approach is variational
inference [11], which approximates the posterior distribution by maximizes a
lower bound of the marginal likelihood. However, due to the infinite number of
variables in the DPs and our use of non-conjugate priors, standard variational
inference cannot be used. To solve this problem, we propose an integration of the
techniques in [4,5] with variational inference. Specifically, we infer the variational
parameters of the DPs based on an extension of [4], and handle the non-conjugate
priors by a technique similar to [5].

Let θ = {σ∗, τ ∗,Y,π, z,u,V,H}. In variational inference, the posterior
P (θ|X) is approximated by a distribution q(θ). The log likelihood of the mar-
ginal distribution of X is log P (X) = L(q) + KL(q‖Pθ|X), where L(q) =
∫

q(θ) log P (X,θ)
q(θ) dθ, and KL(q‖Pθ|X) =

∫
q(θ) log q(θ)

P (θ|X)dθ is the KL divergence
between q and Pθ|X. As KL(q‖Pθ|X) ≥ 0, we simply maximize the lower bound
L(q) of log P (X). Using the variational mean field approach, q(θ) is assumed to
be factorized as

∏S
n=1 qn(θn), where S is the number of factors, {θ1, . . . ,θS} is

a partition of θ, and qn is the variational distribution of θn [22]. We perform
alternating maximization of L

(∏S
n=1 qn(θn)

)
w.r.t. qn’s. It can be shown that

the optimal qn is given by

q∗
n(θn) = exp

[
Eq(θ¬n) log P (X,θ)

]
+ constant, (8)

where θ¬n is the subset of variables in θ excluding θn, and Eq(θ¬n) is the corre-
sponding expectation operator.
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As there are infinite variables in the stick-breaking representations of
DP(βa, Ga0) and DP(βb, Gb0), we set a maximum on the numbers of clusters
as in [4]. Note that the exact distributions of the stick-breaking process are not
truncated. The factorized variational distribution is

q(σ∗, τ ∗,Y,π, z,u,V,H)
= qσ∗(σ∗)qτ∗(τ ∗)qY(Y)qπ(π)qz(z)qu(u)qV(V)qH(H)

=
K1∏

l=1

qσ∗
l
(σ∗

l )
K2∏

h=1

qτ∗
h
(τ ∗

h)
M∏

j=1

qYj
(Yj)qπ(π)

N∏

i=1

qzi
(zi)

M∏

j=1

quj
(uj)

K1∏

l=1

qVl
(Vl)

K2∏

h=1

qHh
(Hh),

where K1,K2 are the truncated numbers of clusters for workers and items,
respectively. Using (8), it can be shown that the variational distributions of
{Y,π, z,u,H,V} can be easily obtained as:

q∗
Yj

(Yj) = Mult(rY
j ), q∗

π(π) = Dir(α1, α2, . . . αm),
q∗
zi

(zi) = Mult(rz
i ), q∗

uj
(uj) = Mult(ru

j ),
q∗
Vl

(Vl) = Beta(γl,1, γl,2), q∗
Hh

(Hh) = Beta(ηh,1, ηh,2),

where {rY
j }M

j=1, {rz
i }N

i=1, {ru
j }M

j=1, {αc}m
c=1, {γl,1, γl,2}K1

l=1, and {ηh,1, ηh,2}K2
h=1 are

variational parameters. All these have closed-form updates as

rY
jc ← 1

ZY
j

exp

⎡

⎣Eq(θ¬Y) log πc +
N∑

i:(i,j)∈Ξ

K1∑

l=1

K2∑

h=1

rz
ilr

u
jhUijlhc

⎤

⎦ ,

rz
il ← 1

Zz
i

exp

⎡

⎣Eq(θ¬z) log φl +
∑

j:(i,j)∈Ξ

m∑

c=1

K2∑

h=1

ru
jhrY

jcUijlhc

⎤

⎦ ,

ru
jh ← 1

Zu
j

exp

⎡

⎣Eq(θ¬u) log ϕh +
∑

i:(i,j)∈Ξ

m∑

c=1

K1∑

l=1

rz
ilr

Y
jcUijlhc

⎤

⎦ ,

αc ← α

m
+

M∑

j=1

rY
jc, γl,1 ← 1 +

N∑

i=1

rz
il, γl,2 ← βa +

N∑

i=1

K1∑

d=l+1

rz
id,

ηh,1 ← 1 +
M∑

j=1

ru
jh, ηh,2 ← βb +

M∑

j=1

K2∑

d=h+1

ru
jd,

where ZY
j , Zz

i , Zu
j are normalization constants,

Uijlhc =
m∑

k=1

I(Xij = k)tT
ck[Eq(σ∗

l )
(σ∗

l ) + Eq(τ∗
h)

(τ ∗
h)] − Eq(σ∗

l ,τ∗
h)

Z∗
lhc (9)
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and Z∗
lhc =

∑m
k=1 exp[tT

ck(σ∗
l + τ ∗

h)]. Computing Uijlhc requires knowing the
variational distributions of σ∗

l and τ ∗
h, and will be derived in the following.

Recall that P (σ∗
l ), P (τ ∗

h) are normal distributions. These are not the con-
jugate prior of P (X|Y, z,u,σ∗, τ ∗) in (7). Thus, on maximizing L, q(σ∗) and
q(τ ∗) do not have closed-form solutions. Note that the 1

Zijc
exp

[
tT
ck(σ∗

zi
+ τ ∗

uj
)
]

term in (7) is a softmax function similar to that in [5], which uses variational
inference to learn discrete choice models. However, while the parameters of dif-
ferent sets of choices in [5] are conditionally independent, here in (7) they are
coupled together. Thus, the inference procedure in [5] cannot be directly applied
and has to be extended.

First, (7) can be rewritten as

P (X|Y, z,u, σ∗, τ ∗) =
∏

(i,j)∈Ξ

∏

c,k,l,h

[
exp
[
tT

ck(σ∗
l + τ ∗

h)
]

Z∗
lhc

]
I(zi=l,uj=h,Xij=k,Yj=c)

.

Since P (σ∗
l ), P (τ ∗

h) are normal distributions, we constrain the variational dis-
tributions of σ∗

l and τ ∗
h to be also normal, i.e., qσ∗

l
(σ∗

l ) = N (μl,Σl), and
qτ∗

h
(τ ∗

h) = N (νh,Ωh). Let μ = [μl], ν = [νh], Σ = [Σl], and Ω = [Ωh]. On
maximizing L(q), it can be shown that the variational parameters {μ,Σ,ν,Ω}
can be obtained as

minμ,Σ,ν,Ω Eq(θ) [log qσ∗(σ∗)qτ∗(τ ∗)] − Eq(θ) [log P (σ∗)P (τ ∗)]
−Eq(θ) [log P (X|Y,σ∗, τ ∗, z,u)] . (10)

The first term is the entropy of the normal distribution, and the second
term is the cross-entropy of two normal distributions. Both are easy to com-
pute. The last term can be rewritten as

∑
(i,j)∈Ξ

∑
c,k,l,h rz

ilr
u
jhrY

jcI(Xij =
k)

(
tT
ck(μl + νh) − Eq(σ∗,τ∗) log Z∗

lhc

)
. The term Eq(σ∗,τ∗) log Z∗

lhc, which also
appears in (9), can be approximated as in [5]:

log
m∑

k=1

exp(tT
ckμl +

1
2
tT
ckΣltck) exp(tT

ckνh +
1
2
tT
ckΩhtck).

Problem (10) can then be solved via gradient-based methods, such as L-BFGS
[17]. Denote the objective by f . It can be shown that

∂f

∂μl

= −Σ−1
0 (μl − μ0) +

∑

(i,j)∈Ξ

m∑

c=1

K2∑

h=1

rz
ilr

u
jhrY

jc

m∑

k=1

[I(Xij = k) − wklh]tck,

where

wklh =
exp(tT

ckνh + 1
2t

T
ckΩhtck) exp(tT

ckμl + 1
2t

T
ckΣltck)

∑m
k=1 exp(tT

ckνh + 1
2t

T
ckΩhtck) exp(tT

ckμl + 1
2t

T
ckΣltck)

.
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Moreover, as Σl � 0, we assume that Σl = LT
l Ll, where Ll is lower-triangular.

It can then be shown that

∂f

∂Ll
= L−T

l −
⎡

⎣Σ−1
0 −

∑

(i,j)∈Ξ

m∑

c=1

K2∑

h=1

rz
ilr

u
jhrY

jc

(
m∑

k=1

wklhtT
cktck

)⎤

⎦Ll.

Recall that Ll is lower-triangular, so in updating Ll, we only need the diagonal
elements (L−T

l )ii = 1/(Ll)ii. of the upper-triangular L−T
l [5]. The gradients of

f w.r.t. ν and Ω can be obtained in a similar manner.

4 Experiments

4.1 Synthetic Data Set

In this section, we perform experiments on synthetic data. Workers are generated
from three clusters (w1, w2, w3), items from three clusters (i1, i2, i3), and ordinal
labels in {1, 2, 3, 4, 5}. The cluster parameters σ∗, τ ∗ are sampled independently
from the normal distribution with means in Table 1 and standard deviation 0.1.
Confusion matrices1 of the clusters are shown in Fig. 2. As can be seen, workers
in cluster w1 are the least confused in label assignment. This is followed by
cluster w2, and workers in cluster w3 are most confused (spammers). Similarly,
items in cluster i1 are the least confused, while those in i3 are the most confused.

Table 1. Parameter means of the worker clusters (w1, w2, w3) and item clusters
(i1, i2, i3).

(σ∗
ls)

<,< (σ∗
ls)

<,≥ (σ∗
ls)

≥,< (σ∗
ls)

≥,≥

w1 1 0 0 1
w2 1 0.8 0.8 1
w3 0.3 1 0.5 1

(τ∗
hs)

<,< (τ∗
hs)

<,≥ (τ∗
hs)

≥,< (τ∗
hs)

≥,≥

i1 1 0 0 1
i2 1 0.8 0.8 1
i3 1 0.5 1 0.5

We generate two data sets. Both have 300 workers from the 3 clusters (w1,
w2, w3), with sizes 200, 50, and 50, respectively. The first data set (D1) has
1200 items coming from the 3 clusters (i1, i2, i3), with sizes 800, 200, and 200,
respectively. Each item is labeled by 6 randomly selected workers. The second
data set (D2) has 300 items coming from the 3 clusters with sizes 200, 50, and
50, respectively. Each item is labeled by 30 workers.

1 To obtain the confusion matrices of items, we remove the effects of workers by assum-
ing that workers assign labels randomly. Using (7), it can be shown that the (k, c)th
entry of the confusion matrix of item cluster h is exp

(
t�

ckτ ∗
h

)
/
∑

k exp
(
t�

ckσ∗
l

)
.

Similarly, for worker cluster l, the (k, c)th entry of its confusion matrix is
exp
(
t�

ckσ∗
l

)
/
∑

k exp
(
t�

ck(σ∗
l )
)
.
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Fig. 2. True confusion matrices of the worker and item clusters.

We set the truncated numbers of clusters K1,K2 in COLA to 8, and μ0 =
0,ν0 = 0, Σ0 = 1

λa
I,Ω0 = 1

λb
I, where λb = λaM/N , as in [26]. Parameters

βa, βb, α and λa are tuned by maximizing the log-likelihood as in [26]. Latent
variables are initialized in an non-informative manner: μl = 0,νh = 0, rz

i =
[1/K1, . . . , 1/K1]T , ru

j = [1/K2, . . . , 1/K2]T , ηh,1 = 1, ηh,2 = βa γl,1 = 1, γl,2 =
βb, and rY

j is from the empirical probabilities of the observed labels. We compare
the proposed algorithm with the following state-of-the-art:

1. Ordinal minimax entropy (OME) [26], with the hyperparameters tuned by
the cross-validation method suggested in [26].

2. Ordinal mixture (ORDMIX) [16]: The predicted labels are obtained by dis-
cretizing (normally distributed) continuous-valued latent labels.

3. Dawid-Skene model (DS) [7]: A well-known approach for label aggregation,
which estimates a confusion matrix for each worker.

4. Majority voting (MV) [14], which has been commonly used as a simple base-
line.

To allow statistical significance testing, we learn the model using 90% of the
items and run each experiment for 10 repetitions. As in [16,26], the following
measures are used: (i) mean squared error: MSE = 1

|S|
∑

j∈S((EQ[Yj ] − Y ∗
j )2),

where S is the set of items with ground-truth labels Y ∗
j ’s; (ii) �0 error =

1
|S|

∑
j∈S EQ[I(Yj 	= Y ∗

j )]; (iii) �1 error = 1
|S|

∑
j∈S EQ[|Yj − Y ∗

j |]; and (iv) �2

error =
√

1
|S|

∑
j∈S EQ[(Yj − Y ∗

j )2].
Results are shown in Table 2. As can be seen, on data set D1, the proposed

COLA significantly outperforms the other methods. On D2, with more labels
per item, inference becomes easier and all methods have improved performance.
COLA is still better in terms of MSE and �2 error, but can be slightly outper-
formed by the simpler methods of DS and MV in terms of �0 and �1 errors.

Figure 3 shows the normalized sizes of the worker and item clusters obtained
by COLA. Recall that z indicates the cluster memberships of workers. The nor-
malized size of worker cluster l is defined as E(Sz

l )/
∑K1

l=1 E(Sz
l ), where Sz

l is the

size of worker cluster l, and E(Sz
l ) = E

[∑N
i=1 I(zi = l)

]
=

∑N
i=1 P (zi = l) =

∑N
i=1 rz

il. Similarly, the normalized size of item cluster h is E(Su
h)/

∑K2
h=1 E(Su

h),
where Su

h is the size of item cluster h, and E(Su
h) =

∑M
j=1 ru

jh. As can be seen,
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Table 2. Errors obtained on the synthetic data sets. The best results and those that
are not statistically worse (using paired t-test at 95 % significance level) are in bold.

COLA OME ORDMIX DS MV

D1 MSE 0.249 ± 0.006 0.314± 0.011 0.341± 0.025 0.446± 0.009 0.401± 0.006

�0 0.180 ± 0.003 0.228± 0.001 0.229± 0.006 0.225± 0.003 0.225± 0.003

�1 0.209 ± 0.002 0.284± 0.004 0.273± 0.012 0.289± 0.004 0.304± 0.005

�2 0.522 ± 0.005 0.642± 0.009 0.616± 0.021 0.668± 0.007 0.717± 0.008

D2 MSE 0.073 ± 0.007 0.101± 0.005 0.112± 0.009 0.089± 0.013 0.268± 0.012

�0 0.080± 0.010 0.81± 0.005 0.83± 0.013 0.074± 0.000 0.073 ± 0.004

�1 0.081± 0.010 0.82± 0.004 0.84± 0.013 0.079 ± 0.004 0.083± 0.006

�2 0.282 ± 0.017 0.310± 0.013 0.315± 0.018 0.298± 0.022 0.319± 0.020

the sizes of the three dominant worker clusters are close to the ground truth
on both data sets. However, the item cluster (normalized) sizes on D1 are less
accurate than those on D2. This is due to that each item in D1 only has 6 labels,
while each item in D2 has 30 (in comparison, each worker on average has 24
labels for D1 and 30 labels for D2).

Fig. 3. Normalized sizes of the worker and item clusters on D1 (left) and D2 (right).
The true normalized sizes of the worker and item clusters are 0.667,0.167,0.167.

Next, we show the confusion matrices of the obtained clusters. Since we only
have the distributions of σ∗ and τ ∗, we will use their expectations. Note that
E[σ∗

l ] = μl. From (7), the (c, k)th entry of the confusion matrix of worker cluster
l can be represented as exp[t�

ckμl]/
∑

k exp[t�
ckμl], and similarly, that of the

item cluster h is exp[t�
ckνh]/

∑
k exp[t�

ckνh]. The obtained confusion matrices for
worker and item clusters are shown in Fig. 4. Here, we focus on the three largest
worker/item clusters, which can be seen to dominate in Fig. 3. Comparing with
the ground-truth in Fig. 2, the 3 worker and item clusters can be well detected.
Note again that the item clusters obtained on D2 are more accurate than those
on D1, as each item in D2 has more labels for inference.

4.2 Real Data Sets

In this section, experiments are performed on three commonly-used data sets
(Table 3).
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Fig. 4. Confusion matrices of the obtained worker/item clusters on D1 (top) and D2
(bottom).

Table 3. Summary of the data sets used.

#items #workers #classes #observed

labels

#labels/worker #labels/item

total w/ground truth min mean max min mean max

AC2 11,040 333 825 4 89,799 1 108.8 7551 1 8.1 27

TREC 19,721 3,250 762 3 90,244 1 118.4 7467 1 4.6 34

WEB 2,665 2,665 177 5 15,567 1 87.9 1225 1 5.8 12

1. AC2 [10]: This contains AMT judgments for website ratings, with the 4 levels:
“G”, “PG”, “R”, and “X”;

2. TREC [6]: This is a web search data set, with the 3 levels: “NR” (non-
relevant), “R” (relevant) and “HR” (highly relevant);

3. WEB [26]: This is another web search relevance data set, with the 5 levels:
“P” (perfect), “E” (excellent), “G” (good), “F” (fair) and “B” (bad).

The ordinal labels are converted to numbers (e.g., on the AC2 data set, “G”,
“PG”, “R”, and “X” are converted to 1, 2, 3, 4, respectively). As can be seen
from Table 3, the number of labels provided by the workers can vary significantly.

For the proposed algorithm, we set the truncated numbers of clusters K1,K2

to 10 (on WEB, K1 = 15). Larger values do not improve performance. The
other parameters of all the algorithms are set as in Sect. 4.1. To allow statistical
significance testing, again we learn the model using 90% of the items2, and
repeat this process 10 times.

Results are shown in Table 4. As can be seen, COLA consistently outper-
forms all the other methods on AC2 and WEB. Moreover, ORDMIX is compet-
itive with COLA on TREC, but much inferior on AC2 and WEB. As AC2 and

2 For AC2 and TREC, since performance can only be evaluated on items with ground-
truth labels and these two data sets have fewer such items, all these items (with
ground-truth labels) are always selected into the 90 % subset.



438 X. Guo and J.T. Kwok

Table 4. Errors obtained on the real-world data sets. The best results and those that
are not statistically worse (using paired t-test at 95 % significance level) are in bold.

COLA OME ORDMIX DS MV

AC2 MSE 0.262 ± 0.003 0.317 ± 0.001 0.364 ± 0.028 0.302 ± 0.007 0.292 ± 0.000

�0 0.228 ± 0.002 0.230 ± 0.004 0.279 ± 0.015 0.271 ± 0.006 0.241 ± 0.000

�1 0.245 ± 0.002 0.255 ± 0.005 0.348 ± 0.030 0.283 ± 0.006 0.297 ± 0.000

�2 0.513 ± 0.005 0.546 ± 0.005 0.712 ± 0.053 0.564 ± 0.007 0.643 ± 0.000

TREC MSE 0.641 ± 0.006 0.679 ± 0.001 0.603 ± 0.019 0.750 ± 0.004 0.649 ± 0.000

�0 0.492 ± 0.003 0.495 ± 0.001 0.557 ± 0.006 0.513 ± 0.003 0.543 ± 0.000

�1 0.602 ± 0.004 0.615 ± 0.002 0.606 ± 0.011 0.635 ± 0.003 0.661 ± 0.000

�2 0.886 ± 0.005 0.924 ± 0.003 0.838 ± 0.013 0.938 ± 0.004 0.947 ± 0.000

WEB MSE 0.105 ± 0.003 0.106 ± 0.003 0.360 ± 0.032 0.230 ± 0.005 0.517 ± 0.004

�0 0.096 ± 0.003 0.103 ± 0.004 0.194 ± 0.003 0.169 ± 0.006 0.269 ± 0.002

�1 0.108 ± 0.004 0.117 ± 0.004 0.242 ± 0.010 0.204 ± 0.006 0.425 ± 0.004

�2 0.369 ± 0.007 0.381 ± 0.008 0.633 ± 0.024 0.534 ± 0.008 0.923 ± 0.006

WEB have more label classes than TREC (Table 3), ORDMIX, which has fewer
parameters and is less flexible than COLA, is unable to sufficiently model the
confusion matrices of workers and items. The performance of DS is also poor, as
ordinal information of the labels is not utilized. Finally, as expected, the simple
MV performs the worst overall.

Figure 5(a)–(j) show the confusion matrices of worker clusters obtained on
AC2. For most of them (ŵ1−ŵ8), the diagonal values for “G” and “X” are high,
indicating that most clusters can identify these two types of websites easily. For
the largest worker cluster (ŵ1), the highest value on each row lies on the diagonal,
and so the labels assigned by this cluster are mostly consistent with the ground
truth. As for cluster ŵ5, the diagonal entries are much larger than the non-
diagonal ones. Hence, the worker labels are often the same as the ground truth,
suggesting that these workers are experts. This is also confirmed in Table 5,
which shows the �2 error for each cluster. On the other hand, workers in cluster
ŵ9 almost always predict “G”. They are likely to be spammers as observed in
many crowdsourcing platforms [18]. In cluster ŵ10, the off-diagonal values are
larger than the diagonal ones, indicating that workers in this cluster may not
understand this website rating task or may even be malicious.

Table 5. �2 errors for worker clusters obtained on the AC2 data set.

Cluster ŵ1 ŵ2 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7 ŵ8 ŵ9 ŵ10

�2 error 0.714 0.627 0.789 0.938 0.618 0.922 0.732 0.950 1.133 1.445

Figure 5(k)–(o) show the confusion matrices of the obtained item clusters. In
general, as each item has fewer labels than each worker, the clustering structure
here is less obvious (as discussed in Sect. 4.1). For the item cluster î1, the diagnal
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Fig. 5. Confusion matrices for worker clusters (top two rows) and item clusters (bottom
row) obtained by COLA on the AC2 data set (clusters are ordered by decreasing size).
In each cluster, columns are the cluster-assigned labels (left-to-right: “G”, “PG”, “R”,
“X”), and rows are the true labels (top-to-down: “G”, “PG”, “R”, “X”). The five
smallest item clusters occupy less than 2% of the total size, and so are not shown.

elements have high values, indicating that items belonging to this cluster are
relatively easy to distinguish. Item cluster î2 tends to assign label “G” more
often. In î3, “G” and “PG” are sometimes confused, and so are “R” and “X”.

Varying the Number of Items. In this experiment, we use item subsets of
different sizes to learn the model. With a smaller number of items, the number
of labels per worker is also reduced (Fig. 6), and estimating the workers’ behav-
ior become more difficult. Here, we focus on the two top performers in Table 4,
namely, COLA and OME. Figure 7(a)–(i) show the errors averaged over 10 repe-
titions. As can be seen, as OME does not consider any structure among workers
and items, its performance deteriorates significantly with fewer worker labels.
On the other hand, COLA clusters workers and items. Thus, information within
a cluster can be shared, and the performance is less affected.

Varying the Concentration Parameters. In this experiment, we study the
effect of the DP’s concentration parameters on the performance of COLA. In
general, a smaller concentration parameter encourages fewer clusters, and vice
verse. We first fix βb to the value obtained in the previous experiment, and vary
βa from 0.1 to 3.5.

Figure 8(a) shows how the �2 error varies with βa. Because of the lack of space,
we only show results on the AC2 data set. COLA has stable performance over a
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Fig. 6. Number of labels per worker with different numbers of items.

Fig. 7. �0, �1 and �2 errors for COLA and OME with different proportions(%) of items
used.

wide range of βa. When βa becomes too small, workers can only form very few
clusters, and each cluster may not be coherent. When βa is too large, clusters
are split, and each cluster may not have enough data for accurate parameter
estimation. Figure 8(b) shows the results on varying βb. As can be seen, βb has
little influence on the performance. Again, this is consistent with the observation
in the previous section that items’ cluster structure is more difficult to identify.
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Fig. 8. �2 errors of COLA on the AC2 data set, with different values for βa, βb.

5 Conclusion

In this paper, we proposed a Bayesian clustering model to aggregate crowd-
sourced ordinal labels. Using the Dirichlet process, we encourage the formation
of worker and item clusters in the label generating process, which leads to more
accurate label estimation. While the probability model is complex and uses non-
conjugate DPs, we derive an efficient variational inference procedure to infer the
posterior distributions. Experimental results show that the proposed method
yields significantly better accuracy than the state-of-the-art, and is more robust
to sparser labels. Moreover, it detects meaningful clusters, which can help the
user to study the group’s behavior.
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