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ABSTRACT

Maximum likelihood linear regression (MLLR) has been a
popular speaker adaptation method for many years. In this
paper, we investigate a generalization of MLLR using non-
linear regression. Specifically, kernel regression is applied
with appropriate regularization to determine the transforma-
tion matrix in MLLR for fast speaker adaptation. The pro-
posed method, called maximum penalized likelihood kernel
regression adaptation (MPLKR), is computationally simple
and the mean vectors of the speaker adapted acoustic model
can be obtained analytically by simply solving a linear sys-
tem. Since no nonlinear optimization is involved, the obtained
solution is always guaranteed to be globally optimal. The new
adaptation method was evaluated on the Resource Manage-
ment task with 5s and 10s of adaptation speech. Results show
that MPLKR outperforms the standard MLLR method.

1. INTRODUCTION

Current speaker adaptation methods fall into one of the fol-
lowing three categories: speaker-clustering-based methods [1],
Bayesian-based methods such as the maximum a posteriori
(MAP) adaptation [2], and transformation-based methods, most
notably, maximum likelihood linear regression (MLLR) adap-
tation [3]. However, for many speech applications (e.g. tele-
phone services), fast online speaker adaptation is needed as
the amount of available adaptation speech can be really short
— perhaps only a few seconds. There are at least three ap-
proaches for fast speaker adaptation:

• Improving from the speaker-clustering-based approach:
In eigenspace-based adaptation methods [4, 7] and ref-
erence speaker weighting [5], a new speaker’s model
is constrained as a linear combination of a small set
of eigenvectors and training speaker models chosen ac-
cording to the adapting speaker respectively.
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• Improving from MLLR: To further reduce the number
of MLLR estimation parameters, techniques like the
use of diagonal MLLR transformation [3], MAPLR [6],
eigen-MLLR [7], eigenspace mapping [8], etc. have
been tried with some success.

• Exploiting nonlinearity in eigenspace-based methods:
The major procedure in eigenspace-based methods is
linear PCA. [9, 10, 11] exploit possible nonlinearity in
the speaker space by generalizing the procedure to non-
linear PCA using kernel method.

In this paper, we propose a novel approach for fast speaker
adaptation called maximum penalized likelihood kernel re-
gression (MPLKR) speaker adaptation by exploiting nonlin-
ear regression of the maximum likelihood (ML) adapted mean
vectors with the use of kernel methods [12]. The basic idea is
to first transform the speaker-independent (SI) mean vectors
to high-dimensional feature vectors via some nonlinear map
ϕ, which are then used for linear regression with appropriate
regularization. During the actual computation, the exact non-
linear map need not be known. The computational procedure
depends only on the inner products of the high-dimensional
feature vectors, which can be obtained efficiently with a suit-
able kernel function.

2. MAXIMUM LIKELIHOOD ADAPTATION

Let’s consider a speaker-independent (SI) speech recognition
system that uses hidden Markov models (HMMs) with a total
of N Gaussian components to represent its acoustic models.
Assume now there are T speech frames from a new speaker
for adaptation. If the maximum likelihood (ML) criterion
is used for adaptation, the ML mean vectors µ∗

j ∈ R
d, j =

1, . . . , N , are found by minimizing

N∑
j=1

T∑
t=1

γj(t)(ot − µj)
′C−1

j (ot − µj) (1)

w.r.t. µj’s, where Cj is a d × d covariance matrix of state j,
ot is the acoustic vector at frame t, and γj(t) is the posterior
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probability of state j at frame t given the T observations O =
[o1, . . . ,oT ]. The ML solution of µj is

µ∗
j =

∑T
t=1 γj(t)ot∑T
t=1 γj(t)

=
Oγj

1′γj

, (2)

where γj = [γj(1), . . . , γj(T )]′ and 1 = [1, . . . , 1]′ ∈ R
T .

In practice, because the amount of adaptation speech from
a new speaker is usually very limited, this ML solution results
in a poorly adapted model with poor recognition performance.

3. MAXIMUM LIKELIHOOD LINEAR
REGRESSION (MLLR)

To avoid the aforementioned problem with the ML solution
in Eqn. (2), MLLR [3] obtains the adapted mean vectors by
linear regression of the ML means. This is achieved by con-
straining the µj’s to be a linear transformation of the aug-
mented SI mean vector ξj = [1 µ′

j ]
′ ∈ R

(d+1); i.e., µj =
Wξj , where W ∈ R

d×(d+1). Without loss of generality,
we will assume that only a single global transformation W is
shared among all N Gaussians.

Similar to Eqn. (1), W can be estimated by maximizing
the likelihood of the adaptation data, or equivalently, by min-
imizing the following:

N∑
j=1

T∑
t=1

γj(t)(ot − Wξj)
′C−1

j (ot − Wξj). (3)

Comparing Eqn. (1) and Eqn. (3), we see that Wξj in
Eqn. (3) plays the role of µj in Eqn. (1). As the optimal
solution of µj in Eqn. (1) is µ∗

j , one can see that MLLR is in
effect trying to learn a W such that

Wξj = µ∗
j , j = 1, . . . , N. (4)

One may solve this linear system directly as follows. Let
Y = [µ∗

1, . . . ,µ
∗
N ], and Ξ = [ξ1, . . . , ξN ], so that we may

rewrite Eqn. (4) as

W[ξ1, . . . , ξN ] = WΞ = Y. (5)

We may also denote the row vectors of Y and W by
y′

i and w′
i respectively (i.e., Y = [y1, . . . ,yd]′ and W =

[w1, . . . ,wd]′). Thus, we have

WΞ = Y ⇒ Ξ′W′ = Y′

⇒ Ξ′wi = yi, i = 1, . . . , d. (6)

The “best” solution that minimizes the squared error is

wi = (Ξ′)+yi, (7)

where (Ξ′)+ denotes the pseudo-inverse of Ξ′.

4. MAXIMUM LIKELIHOOD KERNEL
REGRESSION ADAPTATION (MLKR)

Let’s examine the linear system in Eqn. (5) in greater detail.
Recall that each mean vector has a dimension of d. Hence, we
have d × (d + 1) unknowns (associated with matrix W) and
a total of dN constraints. When d+1 ≥ N , a solution can be
found1 for W; in fact, multiple solutions can be found when
d + 1 > N . Consequently, µj’s obtained from MLLR are the
same as the ML solution in Eqn. (2). On the other hand, when
d + 1 < N (which is the usual case in the context of speaker
adaptation), the system in Eqn. (5) is over-constrained and the
solution obtained by MLLR will, in general, be different from
that obtained in Eqn. (2).

For the case where d+1 < N , if we could introduce more
variables into the linear system in Eqn. (5) so that the number
of variables is greater than or equal to the number of con-
straints, then we would be able to get back the optimal µ∗

j ’s
in the ML sense. In the following, we consider first mapping
ξj ∈ R

d+1 to ϕ(ξj) ∈ R
N . The linear system in Eqn. (5)

then becomes

W̃ϕ(ξj) = µ∗
j , j = 1, . . . , N, (8)

or
W̃Φ = [µ∗

1, . . . ,µ
∗
N ] = Y,

where W̃ is of size d×N and ΦN×N ≡ [ϕ(ξ1), . . . , ϕ(ξN )].
The least-square solution is obtained by minimizing the Frobe-
nius norm,

‖Y − W̃Φ‖F . (9)

On assuming that Φ is symmetric and invertible, the solution
is given by

W̃ = YΦ−1, (10)

and the new adapted means will be equal to those obtained in
Eqn. (2), µ∗

1’s.
The mapping ϕ can be achieved with the use of kernels k

[12], and the method will be called maximum likelihood ker-
nel regression (MLKR). In particular, one may use a positive
definite kernel (such as the Gaussian kernel) and the corre-
sponding empirical kernel map2 for ϕ. Then, we have

Φ =

⎡
⎢⎣

k(ξ1, ξ1) · · · k(ξ1, ξN )
... · · · ...

k(ξN , ξ1) · · · k(ξN , ξN )

⎤
⎥⎦ ≡ K, (11)

which is usually called the kernel matrix. From [12], we know
that when a positive definite kernel is used, the kernel matrix

1A solution can always be found for W unless the system is inconsistent.
From Eqn. (6), we will have an inconsistent system when for some i, ξa =
ξb but yia �= yib (i.e., µ∗

ai �= µ∗
bi) for some a, b. For an inconsistent

system, a solution can still be found by using the pseudo-inverse.
2For a given set {ξ1, . . . , ξN}, the empirical kernel map [12] maps a

pattern ξ to (k(ξ1, ξ), . . . , k(ξN , ξ))′, where k is the kernel function.
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in Eqn. (11) always has a full rank (assuming that the ξj’s,
j = 1, . . . , N , are distinct). Hence, Φ is symmetric and in-
vertible, and the desired W̃ can be obtained as in Eqn. (10).
Thus, we have shown that the ML solution can always be ob-
tained with MLKR when a positive definite kernel is used. In
other words, although the W̃ matrix is tied across all Gaus-
sians, the use of kernels allows the ML solution to be perfectly
recovered.

4.1. Maximum Penalized Likelihood Kernel Regression
Adaptation (MPLKR)

However, as discussed in Section 2, the use of this ML so-
lution is undesirable and so, equivalently, this MLKR solu-
tion is also not useful. From the regression perspective, lin-
ear regression used by MLLR can only capture linear char-
acteristics in the data; on the other hand, nonlinear regres-
sion without regularization (analogous to our unregularized
MLKR described above) can be overly flexible, and can at-
tain zero training error (which is analogous to our situation
here where the ML solution can be perfectly recovered) and
thus suffers from over-fitting. Finally, nonlinear regression
with appropriate regularization is then able to capture pos-
sible nonlinearity in the data, and at the same time, effec-
tively control the degree of freedom. This thus leads to the
maximum penalized likelihood kernel regression adaptation
method (MPLKR).

Given that the SI model is often a fail-safe model in speech
recognition, we require W̃ to be close to the SI model trans-
formation W̃(si) = ΞK−1 (by replacing Y by Ξ in Eqn. (10)).
Therefore, the cost function in Eqn. (9) is modified by adding
the following regularizer,

‖Y − W̃K‖2
F + β‖W̃ − ΞK−1‖2

F , (12)

where β is a regularization parameter. It can be shown that
the solution of Eqn. (12) is given by

W̃ = (YK′ + βΞK−1)(KK′ + βI)−1

= (YK + βΞK−1)(K2 + βI)−1, (13)

making use of the fact that the kernel matrix must be sym-
metric. Finally, the mean vectors of the new speaker-adapted
(SA) model can be recovered as

µ = W̃K = (YK + βΞK−1)(K2 + βI)−1K. (14)

Compared to kernel-based speaker adaptation techniques
such as kernel eigenvoice (KEV) [9], MPLKR has the ad-
vantage that the final mean vectors of the SA model can be
computed analytically by simply solving a linear system. As
no nonlinear optimization is involved, unlike KEV adapta-
tion, the solution obtained by MPLKR adaptation is always
globally optimal (w.r.t. Eqn. (12)).

5. EXPERIMENTAL EVALUATION

Maximum penalized likelihood kernel regression (MPLKR)
speaker adaptation method was evaluated on the DARPA Re-
source Management continuous speech database RM1. RM1
consists of 3990 SI training utterances from 109 speakers, and
12 speakers in the SD section, each having 600 utterances for
training, 100 utterances for development, and 100 utterances
for evaluation.

5.1. Feature Extraction and Acoustic Modeling

Forty-seven context-independent phoneme models were trained
using the SI training set. Each phoneme model was a strictly
left-to-right 3-state hidden Markov model (HMM) with 10
Gaussian mixtures per state. In addition, there were a 1-state
short pause model and a 3-state silence model. The acoustic
vector has a dimension d = 13, consisting of 12 MFCCs and
the normalized log energy extracted from speech frames of
25 ms long at the frame rate of 100Hz3.

5.2. Experimental Procedure

Experiments were performed with either 5s or 10s adaptation
data. (If we exclude the silence portion, there are about 4s or
8s of speech in the adaptation utterances.) To improve relia-
bility of the results, for each test speaker, 3 sets of adaptation
data were randomly chosen from his 100 development utter-
ances. All reported results are the averages of experiments
over the 3 adaptation sets of all speakers, and the adapted
models were tested on their 100 evaluation utterances using
word-pair grammar.

The following models or adaptation methods are com-
pared:

SI: speaker-independent model;

MLLR: MLLR adaptation using either diagonal or full trans-
formation;

EMLLR : eigenspace based MLLR adaptation [7];

MPLKR: maximum penalized likelihood kernel regression;

eKEV: embedded kernel eigenvoice [10];

KEMLLR : eigenspace based MLLR adaptation [11].

MLLR adaptation was done using the HTK software with
a regression tree of 32 classes, and the best results obtained
with either diagonal or full transformation is reported. No-
tice that, by default, HTK requires at least 700 frames of
speech for each regression class; as some configurations had

3Notice that as a first trial, we tested our new method on smaller acoustic
models so that many experiments might be run during the exploration. If we
used context-dependent HMM and the conventional 39-dimensional MFCC
acoustic vectors, the word accuracy was about 95% on the SD test set.

I ­ 999



0 2 4 6 8 10 12
65

70

75

80

85

90

95

100

Speaker Index

R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
(in

 %
)

SI model
MPLKR (5s adaptation)
MPLKR (10s adaptation)

Fig. 1. Performance of MPLKR on each speaker of RM.

very few data, this threshold was lowered in order to force
HTK to perform MLLR whenever the situation permits. For
MPLKR, we use the following Gaussian kernel: k(x,y) =
exp(γ‖x − y‖2) with γ = 0.01, and β in Eqn. (12) is set to
5.0. Preliminary experiments suggest that the results are not
sensitive to changes in these parameters.

Figure 1 shows the performance of MPLKR on each test
speaker. It can be seen that the SA model obtained by MPLKR
is consistently better than the original SI model on all speak-
ers by about 2% and 5%. Table 1 compares its average perfor-
mance with other speaker adaptation methods. It can be seen
that MPLKR is the best among all the non-kernelized meth-
ods. Among the kernelized methods, the previously proposed
eKEV and KEMLLR are slightly better than our new MPLKR
on 5s adaptation. With 10s of adaptation speech, eKEV satu-
rates very fast with little improvement over its 5s-adaptation
performance; on the other hand, MPLKR is comparable with
KEMLLR which has the best adaptation performance. Unlike
KEV, eKEV or KEMLLR which are nonlinear optimization
problems and are currently solved by gradient-based methods
in [9, 10, 11], MPLKR has the advantage that it is not an it-
erative procedure, and the transformation (and hence the new
model means) can be obtained analytically by solving a linear
system.

Table 1. Performance of various adaptation methods on RM.

Model/Method 5s 10s

SI 78.28% 78.28%
MLLR 78.43% 82.10%
EMLLR 79.92% 80.51%
MPLKR 79.94% 82.51%
eKEV 80.58% 80.70%

KEMLLR 80.57% 82.62%

6. CONCLUSION

In this paper, we improve the standard maximum likelihood
linear regression speaker adaptation method by using kernel
methods to capture possible nonlinearity in the data. Compu-
tationally, the proposed method is simple and the solution can
be analytically obtained by simply solving a linear system.
No nonlinear optimization is involved, and thus the solution
obtained here is always globally optimal. In the Resource
Management task, it is found that the proposed maximum
penalized likelihood kernel regression (MPLKR) adaptation
method outperforms MLLR.
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