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Abstract

This paper presents a simple but powerful extension
of the maximum margin clustering (MMC) algorithm that
optimizes multivariate performance measure specifically
defined for clustering, including Normalized Mutual In-

formation, Rand Index and F-measure. Different from
previous MMC algorithms that always employ the error
rate as the loss function, our formulation involves a
multivariate loss function that is a non-linear combination
of the individual clustering results. Computationally, we
propose a cutting plane algorithm to approximately solve
the resulting optimization problem with a guaranteed accu-
racy. Experimental evaluations show clear improvements
in clustering performance of our method over previous
maximum margin clustering algorithms.

I. Introduction

Recently, maximum margin clustering (MMC) has at-

tracted considerable interests in the data mining and ma-

chine learning communities [18], [19], [20], [23], [26],

[27], [24]. The key idea of MMC is to extend the maximum

margin principle of support vector machines (SVM) to

the unsupervised learning scenario. Given a set of data

samples, MMC performs clustering by labeling the sam-

ples such that the SVM margin obtained is maximized

over all possible cluster labelings. Recent studies have

demonstrated its superior performance over conventional

clustering methods.

Existing maximum margin clustering algorithms all

directly adopt the formulation of support vector machines.

Specifically, the (regularized) hinge loss is minimized with

respect to both the data labels and separating hyperplane.

In a classification problem, the classification error is an

obvious performance measure, and the hinge loss, which

upper bounds the classification error, is thus well justified

to be used as the loss function. However, its justification

for use in clustering is not so clear. Often, the objective

of clustering is not on learning the exact labels. Instead,

a good clustering solution should minimize the intra-

cluster variance and maximize the inter-cluster variance.

The most suitable and well-defined performance measures

for clustering include the Normalized Mutual Information
[28], Rand Index [13] and F-measure [12]. Empirical

studies show that MMC optimized for the error rate may

have suboptimal performance in terms of the Rand Index
(or NMI, F-measure) [26]. Indeed, despite the battery of

clustering algorithms that have been proposed, we are not

aware of any clustering algorithm (not necessarily based

on MMC) that can directly optimize clustering-specific per-

formance measures. So, a natural question is: Why do we

minimize a loss function that is defined for classification,

instead of directly minimizing those loss functions that are

specifically defined for measuring clustering performance?

Recently, a similar observation has also been made in

the context of ranking. Consequently, researchers in the

ranking community have proposed algorithms that directly

optimize the ranking performance measures such as the

mean average precision (MAP) [21] and the normalized

discounted cumulative gain (NDCG) [1], [10]. In this

paper, we reformulate maximum margin clustering so

that loss functions that are defined for clustering can be

explicitly optimized in the objective function. However,

different from the error rate, these clustering-specific loss

functions cannot be decomposed linearly into a sum of

loss functions over the individual examples. Instead, they

are non-linear combinations of the individual clustering

results.

Besides, as the pattern labels are unknown in a cluster-
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ing problem, the resulting optimization problem contains

an exponential number of constraints. In this paper, we

propose an efficient algorithm for solving the resulting

optimization problem based on the cutting plane algorithm

[8], [17]. As will be shown in the sequel, one can construct

a nested sequence of successively tighter relaxations of

the original problem, and each optimization problem in

this sequence can be efficiently solved as a quadratic
programming problem by using the constrained concave-
convex procedure (CCCP) [16]. A key issue to the success

of this approach is that the most violated constraint in each

cutting plane iteration can be found efficiently. Experimen-

tal evaluations on toy and real-world data sets show that the

proposed method outperforms existing maximum margin
clustering algorithms in terms of these clustering-specific

performance measures.

The rest of this paper is organized as follows. In Section

2, we first review the basics of maximum margin clustering
and performance measures widely used in clustering. The

formulation of MMC with clustering-specific loss functions

is presented in Section 3. Section 4 presents the experimen-

tal results on several toy and real-world data sets, followed

by some concluding remarks in Section 5.

II. Review

A. Maximum Margin Clustering

As briefly introduced in Section I, the key idea of

maximum margin clustering (MMC) is to extend the

maximum margin principle from supervised learning to

unsupervised learning. In the two-cluster case, given a set

of examples 𝒳 = {x1, . . . ,x𝑛}, MMC aims at finding the

best label combination y = {𝑦1, . . . , 𝑦𝑛} ∈ {−1,+1}𝑛
such that an SVM trained on {(x1, 𝑦1), . . . , (x𝑛, 𝑦𝑛)} will

yield the largest margin. Although it is indeed possible to

extend our approach to the multi-class case [20], [26], the

extension is not simple and for ease of presentation we

focus on simple two class clustering in this paper. Binary

clustering is still a reasonably well-motivated problem, as

binary clustering algorithms can play an important part in

hierarchical clustering.

Computationally, MMC solves the following optimiza-

tion problem [26]:

min
y∈{±1}𝑛

min
w,𝑏,𝜉𝑖

1

2
w𝑇w +

𝐶

𝑛

𝑛∑
𝑖=1

𝜉𝑖 (1)

s.t. ∀𝑖 ∈ {1, . . . , 𝑛} :
𝑦𝑖[w

𝑇Φ(x𝑖) + 𝑏] ≥ 1− 𝜉𝑖, 𝜉𝑖 ≥ 0,

−𝑙 ≤
𝑛∑

𝑖=1

[w𝑇Φ(x𝑖) + 𝑏] ≤ 𝑙.

where the data samples 𝒳 are mapped into a high (pos-

sibly infinite) dimensional feature space using a possibly

nonlinear function 𝜙(x), and by using the kernel trick,

this mapping could be done implicitly. Specifically, we

define the kernel matrix 𝐾 formed from the inner products

of feature vectors, such that 𝐾𝑖𝑗 = 𝜙(x𝑖)
𝑇𝜙(x𝑗), and

transform the problem such that 𝜙(x) only appears in

the inner product. However, in those cases where kernel

trick cannot be applied, if we still want to use a nonlinear

kernel, it is possible to compute the coordinates of each

sample in the kernel PCA basis [14] according to the

kernel 𝐾. More directly, as stated in [2], one can also

compute the Cholesky decomposition of the kernel matrix

𝐾 = X̂X̂𝑇 , and set 𝜙(x𝑖) = (X̂𝑖,1, . . . , X̂𝑖,𝑛)
𝑇 . For

notational simplicity, we will use x instead of Φ(x) in

the sequel.

The last constraint in (1) is often called the class balance

constraint, and 𝑙 > 0 is a constant controlling the class

imbalance. More precisely, this constraint is a relaxation

of the integer constraint −𝑙 ≤∑𝑛
𝑖=1 𝑦𝑖 ≤ 𝑙, and is widely

used in maximum margin clustering [25], [26] and spectral

clustering [15]. Specifically, this constraint prevents the

trivially “optimal” solution that assigns all patterns to the

same class and thus achieves “infinite” margin. It also

avoids the unwanted solution of separating a single outlier

or a very small group of samples from the rest of the data.

B. Performance Measures in Clustering

In this section, we review three performance measures

that have been widely used in clustering, namely, Nor-
malized Mutual Information (NMI), Rand Index and the

F-measure.

The NMI measures the clustering quality from an

information-theoretic perspective. In the context of clus-

tering, let 𝒞 = {𝒞1,𝒞2, . . . ,𝒞𝑘} be the set of clusters

obtained on the 𝑛 samples, and ℒ = {ℒ1,ℒ2, . . . ,ℒ𝑚} be

the set of true class labels. Moreover, let 𝑃 (𝒞𝑖), 𝑃 (ℒ𝑗),
and 𝑃 (𝒞𝑖 ∩ ℒ𝑗) be the probabilities of an example in

cluster 𝒞𝑖, class ℒ𝑗 , and the intersection of 𝒞𝑖 and ℒ𝑗 ,

respectively. Then, NMI is defined as [28]:

𝑁𝑀𝐼(𝒞,ℒ) =
𝐼(𝒞,ℒ)√
𝐻(𝒞)𝐻(ℒ)

, (2)

where

𝐼(𝒞,ℒ) =
𝑘∑

𝑖=1

𝑚∑
𝑗=1

𝑃 (𝒞𝑖 ∩ ℒ𝑗) log
𝑃 (𝒞𝑖 ∩ ℒ𝑗)

𝑃 (𝒞𝑖)𝑃 (ℒ𝑗)

=
1

𝑛

𝑘∑
𝑖=1

𝑚∑
𝑗=1

∣𝒞𝑖 ∩ ℒ𝑗 ∣ log 𝑛∣𝒞𝑖 ∩ ℒ𝑗 ∣
∣𝒞𝑖∣∣ℒ𝑗 ∣ (3)
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is the mutual information between 𝒞 and ℒ, and

𝐻(𝒞)=−
𝑘∑

𝑖=1

𝑃 (𝒞𝑖)log𝑃 (𝒞𝑖)=−
𝑘∑

𝑖=1

∣𝒞𝑖∣
𝑛

log
∣𝒞𝑖∣
𝑛

(4)

is the entropy of 𝒞. A higher NMI value indicates better

clustering quality.

On the other hand, the Rand Index views clustering as a

series of decisions, one for each of the 1
2𝑛(𝑛− 1) pairs of

examples in the data set 𝒳. Ideally, a clustering algorithm

should assign two examples to the same cluster if and only

if they are similar. Thus, there are four possible scenarios

for each assignment. A true positive (TP) decision assigns

two similar examples to the same cluster, and a true

negative (TN) decision assigns two dissimilar examples

to different clusters; while a false positive (FP) decision

assigns two dissimilar examples to the same cluster, and a

false negative (FN) decision assigns two similar examples

to different clusters. The Rand index (RI) then measures

the percentage of correct decisions, as:

𝑅𝐼 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
. (5)

As with NMI, higher values indicate higher quality.

A potential problem with the Rand index is that it gives

equal weights to false positives and false negatives. How-

ever, in many real-world applications, having dissimilar

examples in the same cluster is often less undesirable

than separating similar examples into different clusters.

To alleviate this problem, the F measure introduces a

user-defined parameter 𝛽 to penalize false negatives more

strongly than false positives. Specifically, it is defined as

𝐹𝛽 =
(𝛽2 + 1)𝑃𝑅

𝛽2𝑃 +𝑅
, (6)

where 𝛽 ≥ 1, and

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(7)

are the precision and recall, respectively.

III. Maximum Margin Clustering with Mul-
tivariate Loss Function

As can be seen from (1), MMC (as in the standard

SVM) uses the hinge loss, which is an upper bound of the

classification error. However, the objective of clustering is

often not on learning the exact labels, and therefore the

error rate may not be suitable. In this section, we consider

a direct optimization of the performance measures for

clustering, including the Normalized Mutual Information,

Rand Index and F-measure.

However, one advantage of using the hinge loss as

the loss function is that it can be decomposed linearly

as a combination of loss functions over all the examples.

Specifically, let Δ(ℎ(𝒳),y) be the loss function that mea-

sures the disagreement between hypothesis ℎ(𝒳) and the

learned labels y. Then,

Δhinge-loss(ℎ(𝒳),y) =

𝑛∑
𝑖=1

Δhinge-loss(ℎ(x𝑖), 𝑦𝑖).

However, the aforementioned performance measures for

clustering cannot be decomposed this way. For example,

to compute NMI, we need to have complete information

of the entire clustering result. In fact, these measures are

nonlinear combinations of the individual clustering results.

To employ the performance measures defined for clustering

as the loss function in maximum margin clustering, we

need to design algorithms that finds the hypothesis ℎ(𝒳)
which minimizes Δ(ℎ(𝒳),y) over the entire data set 𝒳.

In this paper, we present a new formulation of maximum
margin clustering that directly optimizes multivariate per-

formance measures defined for clustering (Section III-A).

Specifically, we build upon the approach used by [5],

[4] for optimizing multivariate performance measures for

classification. Unlike the supervised problem, however,

maximum margin clustering with multivariate loss func-

tion is formulated as a non-convex integer programming

problem and requires a substantially extended algorithm,

which we describe in Section III-B.

A. Multivariate Prediction Rule

Conventionally, maximum margin clustering defines hy-

pothesis ℎ as a univariate function from a single example

x to its corresponding label 𝑦 ∈ {−1,+1}: ℎ : 𝒳 → 𝒴.

This hypothesis is suitable for loss functions that can be

decomposed as linear combinations over the examples,

such as the error rate. However, for loss functions involving

nonlinear combinations of the individual clustering results,

this decomposition is no longer possible. Therefore, to

employ those performance measures defined specifically

for clustering as the loss function in maximum margin
clustering, we need to consider a multivariate hypothesis

ℎ̄ that maps a tuple of examples x̄ = (x1, . . . ,x𝑛) ∈
�̄� = 𝒳 × ⋅ ⋅ ⋅ × 𝒳 to a tuple of labels 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈
{−1,+1}𝑛.

To implement this multivariate mapping, a generalized

linear model

𝑓(x̄, ȳ) = w𝑇Ψ(x̄, ȳ) (8)

is employed to decode the top-scoring output ℎ̄w(x̄) =
argmaxȳ∈�̄� 𝑓(x̄, ȳ) for x̄. Here, w is a parameter vector

as in the conventional formulation of MMC, and Ψ is a

function that returns a feature vector measuring the match

between tuples x̄ = (x1, . . . ,x𝑛) and ȳ = (𝑦1, . . . , 𝑦𝑛).
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For maximum margin clustering, we define Ψ as

Ψ(x̄, ȳ) =

𝑛∑
𝑖=1

𝑦𝑖x𝑖. (9)

The multivariate prediction rule ℎ̄ allows us to refor-

mulate maximum margin clustering to enable the inclusion

of a sample-based multivariate loss function Δ̄(ℎ̄(x̄), ȳ),
instead of an example-based loss function Δ(ℎ(x), 𝑦) that

is only suitable for decomposable loss functions. For a non-

negative multivariate loss function Δ̄, we can reformulate

maximum margin clustering as the following optimization

problem:

min
ȳ,w,𝜉

1

2
w𝑇w+𝐶𝜉 (10)

s.t. ∀ȳ′∈ �̄� : w𝑇[Ψ(x̄, ȳ)−Ψ(x̄, ȳ′)]≥Δ̄(ȳ′, ȳ)−𝜉,
𝜉≥0,

−𝑙≤
𝑛∑

𝑖=1

w𝑇x𝑖≤ 𝑙.

Recall that the optimal label vector ȳ is given by

ȳ = argmax
ȳ′∈�̄�

{w𝑇Ψ(x̄, ȳ′)}

= argmax
𝑦′
𝑖∈{−1,+1}

𝑛∑
𝑖=1

𝑦′𝑖w
𝑇x𝑖, (11)

since each 𝑦𝑖 can be optimized individually. Thus, we

have ∀𝑖 ∈ {1, . . . , 𝑛} : 𝑦𝑖 = sgn(w𝑇x𝑖), and the corre-

sponding value for w𝑇Ψ(x̄, ȳ) is
∑𝑛

𝑖=1 ∣w𝑇x𝑖∣. Inserting

𝑦𝑖 = sgn(w𝑇x𝑖) into problem (10), performing maximum
margin clustering with the multivariate loss function Δ̄
can therefore be equivalently formulated as

min
w,𝜉

1

2
w𝑇w+𝐶𝜉 (12)

s.t. ∀ȳ′∈ �̄� :
𝑛∑

𝑖=1

∣w𝑇x𝑖∣−
𝑛∑

𝑖=1

𝑦′𝑖w
𝑇x𝑖≥

∑
ȳ∈�̄�

𝑧ȳΔ̄(ȳ′, ȳ)−𝜉, (13)

𝜉≥0,

−𝑙≤
𝑛∑

𝑖=1

w𝑇x𝑖≤ 𝑙,

where 𝑧ỹ =
∏𝑛

𝑖=1 𝐼([𝑦𝑖 = sgn(w𝑇x𝑖)) (with 𝐼(⋅) being

the indicator function) selects the optimal ȳ out from the

summmation.

B. Cutting Plane Algorithm

The major difficulty with problem (12) lies in the

fact that there are an exponential number of constraints

involved. For each admissible tuple ȳ′ ∈ {−1,+1}𝑛,

a corresponding constraint (13) must be satisfied. The

massive amount of constraints renders solving the problem

exactly very time demanding. Therefore, the algorithm

we propose in this paper targets to find an approximate

solution to problem (12) with user-defined precision 𝜖.
That is to say, the approximate solution we seek satisfies

all the constraints in problem (12) up to precision 𝜖,
where 𝜖 can be arbitrarily small. Technically, the algorithm

finds a small subset of constraints from the whole set

of constraints in problem (12) that ensures a sufficiently

accurate solution. Specifically, we employ an adaptation of

the cutting plane algorithm [8], [6], [17], [5], [26], where

we construct a nested sequence of successively tighter

relaxations of problem (12). Computationally, the cutting
plane algorithm keeps a subset Ω of working constraints

and computes the optimal solution to problem (12) subject

to the constraints in Ω. The algorithm then adds the most

violated constraint for problem (12) into Ω. In this way, a

successively strengthening approximation of the original

maximum margin clustering with the multivariate loss

function is constructed by a cutting plane that cuts off

the current optimal solution from the feasible set [8]. The

algorithm stops when no constraint in (12) is violated by

more than 𝜖.
The cutting plane algorithm for solving problem (12)

is presented in Algorithm 1. There are two steps involved

in the main procedure: solving problem (12) subject to

the constraint subset Ω and finding the most violated

constraint. We will elaborate on these two steps in the

following sections.

Algorithm 1 Cutting plane algorithm for maximum margin

clustering with multivariate loss function.

Initialize: Constraint subset Ω = ∅.
repeat

Solve problem (12) for w under the current working

constraint set Ω.

Select the most violated constraint ȳ′ and set Ω =
Ω ∪ {ȳ′}.

until the newly selected constraint ȳ′ is violated by no

more than 𝜖.

1) Optimization via the CCCP: In each iteration of the

cutting plane algorithm, we need to solve problem (12) to

obtain the optimal hypothesis ℎ̄ under the current working

constraint subset Ω. Although the objective function in

(12) is convex, the constraints are not, and this makes

problem (12) difficult to solve. Fortunately, the constrained
concave-convex procedure (CCCP) is just designed to

solve those optimization problems with a concave-convex

objective function under concave-convex constraints [22],

[16].

Specifically, the concave-convex procedure (CCP) [22]

is a method for solving non-convex optimization problem
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whose objective function could be expressed as a differ-

ence of convex functions. It can be viewed as a special

case of variational bounding [7] and related techniques

including lower(upper) bound maximization(minimization)

[11], surrogate functions and majorization [9]. While in

[22] the authors only considered linear constraints, Smola

et al. [16] proposed a generalization, the constrained
concave-convex procedure (CCCP), for problems with a

concave-convex objective function under concave-convex

constraints.
Assume we are solving the following optimization

problem [16]

min
z

𝑓0(z)− 𝑔0(z) (14)

𝑠.𝑡. 𝑓𝑖(z)− 𝑔𝑖(z) ≤ 𝑐𝑖 𝑖 = 1, . . . , 𝑛

where 𝑓𝑖 and 𝑔𝑖 are real-valued convex functions on a

vector space 𝒵 and 𝑐𝑖 ∈ ℛ for all 𝑖 = 1, . . . , 𝑛. Denote

by 𝑇1{𝑓, z}(z′) the first order Taylor expansion of 𝑓 at

location z, that is 𝑇1{𝑓, z}(z′) = 𝑓(z) + ∂z𝑓(z)(z
′ − z),

where ∂z𝑓(z) is the gradient of the function 𝑓 at z. For

non-smooth functions, it can be easily shown that the

gradient ∂z𝑓(z) would be replaced by the subgradient [3].

Given an initial point z0, the CCCP computes z𝑡+1 from

z𝑡 by replacing 𝑔𝑖(z) with its first-order Taylor expansion

at z𝑡, i.e. 𝑇1{𝑔𝑖, z𝑡}(z), and setting z𝑡+1 to the solution to

the following relaxed optimization problem

min
z

𝑓0(z)− 𝑇1{𝑔0, z𝑡}(z) (15)

𝑠.𝑡. 𝑓𝑖(z)− 𝑇1{𝑔𝑖, z𝑡}(z) ≤ 𝑐𝑖 𝑖 = 1, . . . , 𝑛

The above procedure continues until z𝑡 converges, and

Smola et al. [16] proved that the CCCP is guaranteed to

converge.
For problem (12), both the objective function and

class balance constraint are convex. Moreover, con-

straint (13) is, although non-convex, the difference of

two convex functions. Notice that while
∑𝑛

𝑖=1 ∣w𝑇x𝑖∣ −∑
ỹ∈{−1,+1}𝑛 𝑧ỹΔ̄(ȳ′, ỹ) is convex, it is a non-smooth

function of w. To use the CCCP, we need to calculate

the subgradients:

∂w

⎧⎨⎩
𝑛∑

𝑖=1

∣w𝑇x𝑖∣−
∑
ȳ∈�̄�

𝑧ȳΔ̄(ȳ′, ȳ)

⎫⎬⎭
∣∣∣∣∣∣
w=w𝑡

=
𝑛∑

𝑖=1

sgn(w𝑇x𝑖)x𝑖

Given an initial point w0, the CCCP computes w𝑡+1 from

w𝑡 by replacing
∑𝑛

𝑖=1 ∣w𝑇x𝑖∣−
∑

ỹ∈{−1,+1}𝑛 𝑧ỹΔ̄(ȳ′, ỹ)
in constraint (13) with its first-order Taylor expansion at

w𝑡, i.e.,
𝑛∑

𝑖=1

∣w𝑇
𝑡x𝑖∣−

∑
ȳ∈�̄�

𝑧ȳ𝑡Δ̄(ȳ′, ȳ)+
𝑛∑

𝑖=1

sgn(w𝑇
𝑡x𝑖)(w−w𝑡)

𝑇x𝑖

=
𝑛∑

𝑖=1

sgn(w𝑇
𝑡x𝑖)w

𝑇x𝑖−
∑
ȳ∈�̄�

𝑧ȳ𝑡Δ̄(ȳ′, ȳ) (16)

By substituting the above first-order Taylor expansion into

problem (12), we obtain the following quadratic program-
ming (QP) problem:

min
w,𝜉

1

2
w𝑇w+𝐶𝜉 (17)

s.t. ∀ȳ′∈ �̄� :
𝑛∑

𝑖=1

𝑦′𝑖w
𝑇x𝑖−𝜉−

𝑛∑
𝑖=1

sgn(w𝑇
𝑡x𝑖)w

𝑇x𝑖

+
∑
ȳ∈�̄�

𝑧ȳ𝑡Δ̄(ȳ′, ȳ)≤0,

𝜉≥0,

−𝑙≤
𝑛∑

𝑖=1

w𝑇x𝑖≤ 𝑙.

The above QP problem can be solved in polynomial time.

Following the CCCP, the obtained solution (w, 𝜉) from

this QP problem is then used as (w𝑡+1, 𝜉𝑡+1), and the

iteration continues until convergence. The algorithm for

solving problem (12) subject to the constraint subset Ω
is summarized in Algorithm 2. As for its termination

criterion, we check if the difference in objective values

from two successive iterations is less than 𝛼% (which is

set to 0.01 in the experiments).

Algorithm 2 Solve problem (12) subject to constraint

subset Ω via the CCCP.
Initialize w0.

repeat
Obtain (w, 𝜉) as the solution to the quadratic pro-
gramming problem (17).

Set w𝑡+1 = w and 𝑡 = 𝑡+ 1.

until the stopping criterion is satisfied.

2) The Most Violated Constraint: In each iteration of

the cutting plane algorithm, we need to locate the most

violated constraint. Here, the feasibility of a constraint is

measured by the corresponding value of 𝜉. Therefore, the

most violated constraint is the one that would result in the

largest 𝜉, i.e.,

max
ȳ′∈{−1,+1}𝑛

𝑛∑
𝑖=1

𝑦′𝑖w
𝑇x𝑖 + Δ̄(ȳ′, ȳ), (18)

where ȳ is the optimal label vector in (11). The tuple

of labels ȳ′ can take an exponential number of different

values, and this renders an exhaustive search over all ȳ′ ∈
{−1,+1}𝑛 infeasible. Luckily, as in [5], the performance

measures defined for clustering can all be computed from

the contingency table (Table I).

In the following, we show how the performance mea-

sures for clustering can be calculated from the contingency

table.
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Table I. Contingency table for binary cluster-
ing.

𝑦 = 1 𝑦 = −1
𝑦′ = 1 𝑎 𝑏
𝑦′ = −1 𝑐 𝑑

Normalized Mutual Information: Using the definition

of Normalized Mutual Information in (2), it can be com-

puted from the contingency table as

𝑁𝑀𝐼=

{
𝑎 log

𝑎𝑛

(𝑎+𝑐)(𝑎+𝑏)
+𝑏 log

𝑏𝑛

(𝑏+𝑑)(𝑎+𝑏)

+𝑐 log
𝑐𝑛

(𝑎+𝑐)(𝑐+𝑑)
+𝑑 log

𝑑𝑛

(𝑏+𝑑)(𝑐+𝑑)

}/
{√[

(𝑎+ 𝑐) log
𝑎+ 𝑐

𝑛
+ (𝑏+ 𝑑) log

𝑏+ 𝑑

𝑛

]
√[

(𝑎+ 𝑏) log
𝑎+ 𝑏

𝑛
+ (𝑐+ 𝑑) log

𝑐+ 𝑑

𝑛

]}
.

The corresponding loss function is then defined as

Δ̄𝑁𝑀𝐼 = 1−𝑁𝑀𝐼 .

Rand Index: Unlike NMI, the computation of Rand
index is more complicated as it considers whether each

pair of examples are correctly grouped together or not.

Recall that from Table I, there are two clusters obtained,

one for 𝑦′ = 1 and the other for 𝑦′ = −1. For the

cluster corresponding to 𝑦′ = 1, 𝑎 patterns have true label

𝑦 = 1 while 𝑏 patterns have true label 𝑦 = −1. Let

𝑚𝐶2 = 𝑚(𝑚−1)
2 . There are thus a total of 𝑎𝐶2 + 𝑏𝐶2 + 𝑎𝑏

pattern pairs in this cluster, of which 𝑎𝐶2 + 𝑏𝐶2 pairs are

true positives (i.e., pattern pairs that should be and are in

the same cluster), while 𝑎𝑏 pairs are false positives (i.e.,

patterns pairs that are in the same cluster but should be

in different clusters). Similarly, for the obtained cluster

corresponding to 𝑦′ = −1, 𝑐𝐶2 + 𝑑𝐶2 pairs are true

positives, while 𝑐𝑑 pairs are false positives. Hence,

𝑇𝑃 = 𝑎𝐶2 + 𝑏𝐶2 + 𝑐𝐶2 + 𝑑𝐶2,

and

𝐹𝑃 = 𝑎𝑏+ 𝑐𝑑.

Similarly, 𝑇𝑁 counts the number of pattern pairs that

should be and are in different clusters, and it is obvious

that

𝑇𝑁 = 𝑎𝑑+ 𝑏𝑐.

Analogously, we also have

𝐹𝑁 = 𝑎𝑐+ 𝑏𝑑.

Hence, the Rand Index in (5) can be computed from the

contingency table as:

𝑅𝐼 =
𝑎𝐶2 + 𝑏𝐶2 + 𝑐𝐶2 + 𝑑𝐶2 + 𝑎𝑑+ 𝑏𝑐

𝑎+𝑏+𝑐+𝑑𝐶2
.

Similar to the NMI, we define the corresponding loss

function as Δ̄𝑅𝐼 = 1−𝑅𝐼 .

F-measure: Similar to the Rand Index, we first need to

compute the precision and recall. Using (7) and the equa-

tions for 𝑇𝑃, 𝐹𝑃, 𝑇𝑁, 𝐹𝑁 above, these can be computed

from the contingency table as:

𝑃 =
𝑎𝐶2 + 𝑏𝐶2 + 𝑐𝐶2 + 𝑑𝐶2

𝑎𝐶2 + 𝑏𝐶2 + 𝑐𝐶2 + 𝑑𝐶2 + 𝑎𝑏+ 𝑐𝑑
,

𝑅 =
𝑎𝐶2 + 𝑏𝐶2 + 𝑐𝐶2 + 𝑑𝐶2

𝑎𝐶2 + 𝑏𝐶2 + 𝑐𝐶2 + 𝑑𝐶2 + 𝑎𝑐+ 𝑏𝑑
.

The 𝐹𝛽 score can therefore be computed using (6), as

𝐹𝛽 =
(𝛽2 + 1)𝑠

𝛽2(𝑠+ 𝑎𝑐+ 𝑏𝑑) + (𝑠+ 𝑎𝑏+ 𝑐𝑑)
, (19)

where 𝑠 = 𝑎𝐶2+ 𝑏𝐶2+ 𝑐𝐶2+ 𝑑𝐶2. In particular, note that

(19) is different from the computation of the 𝐹𝛽 score in

[5], as we are considering example pairs in this clustering

context. The corresponding loss function is defined as

Δ̄𝐹𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 1−𝐹𝛽 . Thus, all the performance measures

designed for clustering can be directly computed from the

contingency table.

The computation of argmax can be achieved by scan-

ning all different contingency tables. Since the elements

in the contingency table satisfies the conditions: 𝑎 + 𝑐 =
#(𝑦 = 1) and 𝑏+ 𝑑 = #(𝑦 = −1), there are only 𝑂(𝑛2)
different contingency tables for a binary clustering problem

with 𝑛 examples. Therefore, the loss function introduced

in Section II-B can take at most 𝑂(𝑛2) different values.

Specifically, we denote the loss function value that is

computed from the contingency table as Δ̄(𝑎, 𝑏, 𝑐, 𝑑). Our

algorithm for locating the most violated constraint iterates

over all possible contingency tables. Let �̄�𝑛
𝑎𝑏𝑐𝑑 be the set

containing all tuples ȳ ∈ {−1,+1}𝑛 that results in contin-

gency table (𝑎, 𝑏, 𝑐, 𝑑) [5]. As the value of Δ̄(𝑎, 𝑏, 𝑐, 𝑑) is

the same for all tuples in �̄�𝑛
𝑎𝑏𝑐𝑑, maximization over �̄�𝑛

𝑎𝑏𝑐𝑑

can be calculated as

ȳ𝑎𝑏𝑐𝑑 = argmax
ȳ′∈�̄�𝑛

𝑎𝑏𝑐𝑑

𝑛∑
𝑖=1

𝑦′𝑖w
𝑇x𝑖.

The above objective function is a linear combination over

the individual examples. Therefore, the solution ȳ𝑎𝑏𝑐𝑑 can

be computed elementwise. Specifically, for a particular

contingency table (𝑎, 𝑏, 𝑐, 𝑑), denote the set of examples

with 𝑦 = 1 as 𝒳+ and the set of examples with 𝑦 = −1
as 𝒳−. The maximum value of

∑𝑛
𝑖=1 𝑦

′
𝑖w

𝑇x𝑖 is achieved

when the 𝑎 examples from 𝒳+ with the largest values

of w𝑇x𝑖 are classified as positive, and the 𝑑 examples

from 𝒳− with the lowest values of w𝑇x𝑖 are classified as
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negative. Finally, the overall argmax can be computed by

maximizing over the stratified maxima plus their constant

loss Δ̄(𝑎, 𝑏, 𝑐, 𝑑) in 𝑂(𝑛2) time [5].

C. Accuracy of the Cutting Plane Algo-
rithm

The cutting plane algorithm selects a subset of con-

straints from the whole set of constraints in problem (12)

and calculates an approximate solution. The following

theorem characterizes the accuracy of the solution returned

by the proposed algorithm.
Theorem 1: For any data set 𝒳 = (x1, . . . ,x𝑛) and any

𝜖 > 0, the cutting plane algorithm returns a point (w, 𝜉)
for which (w, 𝜉 + 𝜖) is feasible in problem (12).

Proof: The cutting plane algorithm terminates when

the newly selected constraint satisfies the inequality

∀ȳ′∈ �̄� : w𝑇[Ψ(x̄, ȳ)−Ψ(x̄, ȳ′)]≥Δ̄(ȳ′, ȳ)−(𝜉+𝜖). (20)

If this holds, then since the newly selected constraint is

the most violated one, all the other constraints will also

satisfy inequality (20). Therefore, if (w, 𝜉) is the solution

returned by the proposed algorithm, then (w, 𝜉 + 𝜖) is a

feasible solution to problem (12).
According to Theorem 1, 𝜖 indicates how close one

wants the error rate of the best hypothesis to be, and it

can thus be used as a stopping criterion.

D. Links with Conventional MMC

Denote the conventional maximum margin clustering
with loss function being the error rate as MMCuni, and the

formulation proposed in this paper as MMCmulti. It would

be interesting to study the relationship between these two

formulations of maximum margin clustering. Specifically,

we have the following theorem:
Theorem 2: When using the error rate as the loss

function, MMCuni arises as a special case of MMCmulti.
Proof: (sketch) For MMCmulti with loss function

being error rate, define Δ̄ = 2𝑒𝑟𝑟𝑜𝑟 [5]. Specifically,

we can show that for every w, the smallest feasible 𝜉
and

∑𝑛
𝑖=1 𝜉𝑖 are related by 𝜉 = 2

∑𝑛
𝑖=1 𝜉𝑖. By selecting

𝐶𝑚𝑢𝑙𝑡𝑖 = 𝐶𝑢𝑛𝑖/2, the two optimization problems have the

same objective value and an equivalent set of constraints.

IV. Experiments

In this section, we study the clustering performance

of the maximum margin clustering with multivariate loss

function algorithm on several data sets. All the experiments

are performed with MATLAB 7.0 on a 1.66GHZ Intel

CoreTM2 Duo PC running Windows XP with 1.5GB main

memory.

A. Data Sets

We use six data sets which are selected to cover a

wide range of properties: ionosphere, digits, letter and

satellite (from the UCI repository), ringnorm1 and 20
newsgroup2. For the digits data, we follow the experi-

mental setup of [26] and focus on those pairs (3 vs 8, 1

vs 7, 2 vs 7, and 8 vs 9) that are difficult to differentiate.

For the letter and satellite data sets, there are multiple

classes and we use their first two classes only [26]. For

the 20-newsgroup data set, we choose the topic rec which

contains autos, motorcycles, baseball and hockey from the

version 20-news-18828. We preprocess the data in the

same manner as in [29] and obtain 3970 document vectors

in a 8014-dimensional space. Similar to the digits data

set, we focus on those pairs (autos vs. motorcycles (Text-
1), and baseball vs. hockey (Text-2)) that are difficult to

differentiate. A summary of all these data sets is in Table

2.

Table II. Descriptions of the data sets.

Data Size Dimension

digits1v7 361 64

digits2v7 356 64

digits3v8 357 64

digits8v9 354 64

ionosphere 354 64

ringnorm 1000 20

letterAvB 1555 16

satellite 2236 36

Text-1 1980 8014

Text-2 1989 8014

B. Clustering Performance

Besides our MMCmulti algorithm, we also implement

some other competitive algorithms and present their results

for comparison. Specifically, we use K-Means (KM) and

Normalized Cut (NC) [15] as baselines, and also com-

pared with the Maximum Margin Clustering algorithm

proposed in [26] which achieves state-of-the-art cluster-

ing accuracy among all MMC algorithms. For notational

convenience, we denote this algorithm as MMCuni. For

k-means, the cluster centers are initialized randomly. For

NC, the implementation is the same as in [15], and the

width of the Gaussian kernel is set by exhaustive search

from the grid {0.1𝜎0, 0.2𝜎0, . . . , 𝜎0}, where 𝜎0 is the

range of distance between any two data points in the

dataset. Moreover, for MMCuni, the implementation is

1http://ida.first.fraunhofer.de/projects/bench/
2http://people.csail.mit.edu/jrennie/20Newsgroups/
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the same as in [26]. For MMCuni and MMCmulti, a

linear kernel is employed and parameters are selected via

grid search using the same grid. For k-means, MMCuni

and MMCmulti, we present the results averaged over 50

random runs.

Table 3 shows the results for Normalized Mutual In-
formation on the various data sets. As can be seen,

our algorithm MMCmulti outperforms other competing

algorithms on almost all data sets. Similarly, Table 4

Table III. Normalized Mutual Information com-
parisons.

Data KM NC MMCuni MMCmulti

digits1v7 0.975 0.008 1.00 1.00
digits2v7 0.801 0.075 1.00 1.00
digits3v8 0.714 0.069 0.816 0.861
digits8v9 0.562 0.002 0.845 0.860

ionosphere 0.072 0.164 0.122 0.197
ringnorm 0.199 0.220 0.207 0.422
letterAvB 0.323 0.219 0.695 0.703
satellite 0.771 0.765 0.894 0.923
Text-1 0.021 0.722 0.761 0.830
Text-2 0.018 0.653 0.808 0.900

also demonstrates the advantage of MMCmulti over other

clustering algorithms in terms of the Rand Index. For the

Table IV. Rand Index comparisons.

Data KM NC MMCuni MMCmulti

digits1v7 0.995 0.504 1.00 1.00
digits2v7 0.940 0.550 1.00 1.00
digits3v8 0.904 0.545 0.945 0.961
digits8v9 0.835 0.500 0.956 0.962

ionosphere 0.564 0.626 0.599 0.640
ringnorm 0.635 0.653 0.642 0.676
letterAvB 0.706 0.644 0.873 0.895
satellite 0.922 0.919 0.971 0.982
Text-1 0.499 0.884 0.905 0.939
Text-2 0.500 0.842 0.929 0.969

F-measure, we set 𝛽 = 1.5 and provide the clustering

results in Table 5. Again, it is clear that MMCmulti

achieves higher 𝐹𝛽 . Clearly, experimental results shown

in Table 3,4,5 demonstrate the advantage of MMCmulti in

clustering accuracy over competing algorithms. Moreover,

while MMCuni may sometimes be inferior to NC (say,

e.g. on ionosphere and ringnorm in table 3), MMCmulti

is always the best.

C. CPU Time

One potential concern on MMCmulti is that its im-

provement on clustering accuracy might come from sacri-

Table V. F-measure comparisons (with 𝛽 =
1.5).

Data KM NC MMCuni MMCmulti

digits1v7 0.994 0.503 1.00 1.00
digits2v7 0.940 0.549 1.00 1.00
digits3v8 0.904 0.544 0.945 0.961
digits8v9 0.835 0.498 0.956 0.962

ionosphere 0.594 0.652 0.627 0.672
ringnorm 0.689 0.685 0.688 0.724
letterAvB 0.706 0.644 0.897 0.900
satellite 0.944 0.942 0.978 0.986
Text-1 0.761 0.887 0.907 0.940
Text-2 0.762 0.849 0.931 0.970

ficing time efficiency. Here, we compare the CPU time

of MMCmulti (using Δ̄𝑅𝐼 ) with the maximum margin
clustering algorithm in [26], which is so far the most

efficient MMC algorithm. As shown in Figure 1, the

speed of MMCmulti is comparable to that of MMCuni.

Indeed, MMCmulti even converges faster than MMCuni

on several data sets. However, unlike MMCuni which can

only employ the error rate as the loss function, MMCmulti

can handle much more complicated loss functions.

1v7 2v7 3v8 8v9 iono ringletter sat text1text2
0

5

10

15

20

MMC−uni
MMC−multi

Figure 1. CPU time (in seconds) comparisons
of MMCmulti and MMCuni.

V. Conclusions

We propose maximum margin clustering (MMC) that di-

rectly optimizes multivariate performance measure defined

for clustering, including Normalized Mutual Information,
Rand Index and F-measure. To tackle the exponential

number of constraints involved in the optimization prob-

lem, we employ cutting plane algorithm to efficiently

solve the problem. Preliminary theoretical analysis of the
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algorithm is provided, where we show that the formulation

for maximum margin clustering proposed in this paper

generalizes the conventional MMC. Experimental evalu-

ations show clear improvements in clustering performance

of our method over previous maximum margin clustering
algorithms.

In the future, we plan to extend the current method

to multi-cluster problems. Note that while a direct multi-

cluster extension is possible, it is complicated by the fact

that it might involve an exponential number of contingency

tables while finding the most violated constraint. There-

fore, an efficient strategy for searching in this space of

contingency tables is required.
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