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Abstract—Hierarchical multilabel classification (HMC) al-
lows an instance to have multiple labels residing in a hier-
archy. A popular loss function used in HMC is the H-loss,
which penalizes only the first classification mistake along each
prediction path. However, the H-loss metric can only be used on
tree-structured label hierarchies, but not on DAG hierarchies.
Moreover, it may lead to misleading predictions as not all
misclassifications in the hierarchy are penalized. In this paper,
we overcome these deficiencies by proposing a hierarchy-aware
loss function that is more appropriate for HMC. Using Bayesian
decision theory, we develop a Bayes-optimal classifier with
respect to this loss function. Instead of requiring an exhaustive
summation and search for the optimal multilabel, the proposed
classification problem can be efficiently solved using a greedy
algorithm on both tree- and DAG-structured label hierarchies.
Experimental results on a large number of real-world data sets
show that the proposed algorithm outperforms existing HMC
methods.

Keywords-hierarchical classification; multilabel classifica-
tion; Bayesian decision theory

I. INTRODUCTION

Multilabel classification, which allows an instance to

have multiple labels, has been gaining a lot of interest in

recent years. It has found successful applications in diverse

domains including text classification [1], image annotation

[2], video annotation [3], and bioinformatics [4]. Recent

surveys on multilabel classification can be found in [5], [6].

To handle the myriad of labels, it is often useful to

organize them into hierarchies. This can be achieved with

the help of domain experts, or be automatically created from

the data using procedures such as hierarchical clustering

[7] or Bayesian network structure learning [8]. This whole

collection of labels may then be arranged as a tree, as in text

categorization [9], or more generally, in a directed acyclic

graph (DAG), as in the Gene Ontology [10]. It is well-known

that the use of this hierarchy information can boost classifi-

cation performance [4], [9], [11]. While most of the current

research efforts are concerned with the easier tree-structured

hierarchies [5], recently more powerful algorithms that can

be used on both tree- and DAG-structured hierarchies have

also been proposed [4], [12], [13].

On the other hand, the loss function is of central impor-

tance in any classification problem. For multilabel classifi-

(a) image.
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(b) ground truth.
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(c) prediction A.
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(d) prediction B.
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(e) prediction C.
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(f) prediction D.

Figure 1. An example illustrating the deficiencies of the various loss
functions. Please refer to the text for details.

cation, the most commonly used loss functions are the zero-

one loss and Hamming loss [3], [14]. Usually, the Hamming

loss is more informative, as is illustrated in Figure 1. Here,

predictions A and B have the same zero-one loss, but A,

which is intuitively less accurate, has a larger Hamming

loss. For data sets with significant class imbalance, the F1-

measure may be a better measure in balancing contributions

of recall and precision [15]. Other loss functions, such as

the rank loss, are particularly relevant in multilabel ranking

[16]. Once a loss function is chosen, it is highly desirable

to integrate this into the learning algorithm. Petterson and

Caetano [17] proposed a reverse multilabel learning for-

mulation in which macro-precision, macro-recall, macro-Fβ
and Hamming loss can be directly optimized. Lampert [18]

derived a maximum-margin formulation that can be used

with different loss functions. Some Bayes-optimal classifiers

are also recently derived in [19], [20].

However, when used in hierarchical classification, a major
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deficiency of these loss functions is that they do not incor-

porate hierarchy information. Referring back to Figure 1,

predictions B and C differ in two nodes, and have the same

Hamming loss. However, misclassifications at the upper

hierarchy levels are often considered more important in

hierarchical classification [9], [11], and so C should be

inferior. To alleviate this problem, Cesa-Bianchi et al. [11]

proposed the hierarchical loss (H-loss) that only counts the

first classification mistake (shown as square in Figure 1)

along a prediction path from the root to the labeled nodes.

As can be seen from Figure 1, B is then considered better

than C. Cesa-Bianchi et al. [21] further proposed the B-

SVM algorithm that can produce Bayes-optimal decisions

w.r.t. this H-loss. In [15], this is again extended to the

cost-sensitive learning setting where false positives and false

negatives are weighted differently.

However, the H-loss is not without its limitations. First,

it can only be used on tree-structured label hierarchies.

On DAGs, since the root may have multiple paths to a

node, how to define the “first”classification mistake in the

H-loss can be ambiguous (Figure 2). The second problem

associated with the H-loss can be illustrated by predictions

C and D in Figure 1. As can be seen, C and D have

the same H-loss. However, since the H-loss only penalizes

the first classification mistake, D further predicts (wrongly)

that the image belongs to a specific animal (pigeon) and a

specific tree (joshua tree), without incurring additional H-

loss. On the other hand, C is more prudent and only predicts

the image as belonging to animal and tree. Apparently,

prediction D can be more misleading in many practical

applications.

(a) ground truth.

�

�

(b) prediction.

Figure 2. Ambiguity in defining the H-loss. Node a is always counted as
a classification mistake, but node b is a classification mistake only if the
left path is taken.

In this paper, we first introduce a loss function which

is more appropriate for hierarchical multilabel classifica-

tion (HMC). Similar to the H-loss, it weights the mis-

classifications according to their positions in the hierarchy,

while avoiding the deficiencies of the H-loss discussed

above. Next, using Bayesian decision theory, we derive

the optimal prediction rule by minimizing the conditional

risk with respect to the proposed loss. On both tree- and

DAG-structured label hierarchies, the conditional risk can

be efficiently computed and minimized by simple greedy

algorithms, without the need for summing and searching

over an exponential number of label combinations.

The rest of this paper is organized as follows. Section II

briefly reviews some related work. Section III introduces

the loss function to be used in this paper, and Section IV

shows how the resultant conditional risk can be efficiently

computed and minimized. Experimental results are presented

in Section V. In the last section, we gives some concluding

remarks. All the proofs are in the appendix.

Notations: In the following, H denotes the label hierarchy.

Its nodes are indexed as 0 (for the root), 1, 2, . . . , N − 1,

where N is the number of nodes in H. For a node i, we

use pa(i) to denote its (unique) parent when H is a tree,

and Pa(i)/anc(i)/sibl(i) to denote the set of its parent(s)

/ ancestors / siblings. Finally, I(·) is the indicator function

that returns 1 when the argument holds, and 0 otherwise.

II. RELATED WORK

A. Hierarchy Constraints in Hierarchical Classification

In hierarchical classification, we are given a set of

(x,y)’s, where x is the input and y is the multilabel

[y0, . . . , yN−1]
T ∈ {0, 1}N denoting the memberships of

x to each of the nodes in H. The label hierarchy can be a

tree, or more generally, an arbitrary DAG. For tree-structured

label hierarchies, a node i (except the root) can be labeled

positive only if its parent is also labeled positive, i.e.,

yi = 1⇒ ypa(i) = 1. (1)

For DAG-structured label hierarchies, there are two inter-

pretations of its hierarchy constraint [4], [13]. One is the

AND-interpretation, which means that a node can be labeled

positive only if all its parents are positive. The other is

the OR-interpretation, which means a node can be labeled

positive as long as one of its parents is positive. In this paper,

we adopt the AND-interpretation which is more common.

Thus, for each node i (except the root), we have

yi = 1⇒ yPa(i) = 1, (2)

where yPa(i) is the subvector of y with indices from Pa(i).

B. Hierarchical Multilabel Classification: CSSA

Recently, Bi and Kwok [13] proposed a novel hierarchical

multilabel classification algorithm which can be used on

both tree- and DAG-structured hierarchies. A key step is

to find the multilabel ŷ that is (i) most similar to a crudely

estimated multilabel ỹ; (ii) consistent with the label hierar-

chy; and (iii) has a pre-determined number of nodes (say, L)

predicted positive. For the label tree, they formulated this as
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the following optimization problem:

max{ψi}i∈H

∑
i∈H

ψiỹi (3)

s.t. ψi ≤ ψpa(i) ∀i ∈ H\{0}, (4)

ψ0 = 1, ψi = {0, 1}, (5)
N−1∑
i=0

ψi = L. (6)

Here, ψi is a binary indicator such that ψi = 1 denotes that

node i is predicted positive in ŷ; and 0 otherwise. Constraint

(4) encodes the hierarchy constraint in (1); while constraint

(6) requires that L nodes are predicted positive. Bi and Kwok

[13] showed that problem (3) can be solved efficiently, in

O(N logN) time, via a greedy algorithm called Condensing

Sort and Selection Algorithm (CSSA), which is originally

used in signal processing [22].

When the label hierarchy is a DAG, one only has to

replace constraint (4), which is used to encode the hierarchy

constraint for label trees, to

ψi ≤ ψj ∀i ∈ H\{0}, ∀j ∈ Pa(i), (7)

which corresponds to the hierarchy constraint in (2). The

resultant optimization problem can also be solved efficiently

by a DAG extension of CSSA (called CSSAG). For more

details, interested readers are referred to [13].

As mentioned above, both CSSA and CSSAG require the

user to pre-determine the number of positive labels L in ŷ.

Moreover, no loss function is explicitly considered in their

formulation.

III. HIERARCHICAL LOSS FUNCTION

A. Definition

For a pattern x, let y be its ground truth multilabel

and ŷ the predicted multilabel. As discussed in Section I,

the decision on each label node represents the classifier’s

cognition on that label. Thus, every mistake on any node

should be taken into account. In this paper, we introduce

the following loss function, which will be called HMC-loss

in the sequel.

�(ŷ,y) = α
∑

i:yi=1∧ŷi=0

ci + β
∑

i:yi=0∧ŷi=1

ci. (8)

Here, each misclassified node i incurs a fixed cost ci ≥ 0.

The first term corresponds to the loss incurred due to false

negatives, while the second term is due to the false positives;

and α, β ≥ 0 weight the false negatives/positives differently.

Cai and Hofmann [14] defined a similar loss function, but

only in the context of hierarchical multiclass classification.

The hierarchy information can be incorporated into

�(ŷ,y) via the setting of ci’s. In HMC, misclassifications

at the upper hierarchy levels (which correspond to more

generic concepts) are often treated as more expensive than

those at the lower levels (which correspond to more specific

concepts). Thus, we can incorporate the structure informa-

tion by penalizing the upper-level misclassified nodes more

heavily. When the label hierarchy is a tree, this can be

achieved by following the H-loss in [9] and define ci’s as

ci =

{
1 i = 0 (the root)
cpa(i)

nsibl(i)
i > 0

, (9)

where nsibl(i) is the number of siblings of i (including i).
Intuitively, the penalty cost associated with a parent node is

equally shared by all its children. More generally, when the

label hierarchy forms a DAG, we extend (9) as

ci =

{
1 i = 0∑
j∈Pa(i)

cj
nchild(j)

i > 0
. (10)

where nchild(j) is the number of children of j.

B. Special Cases

Note that the proposed HMC-loss in (8) is quite flexible.

Even for the special case where all ci’s are 1, it already

encompasses a number of loss functions popularly used in

both flat and hierarchical classification, including:

• α = β = 1: �(ŷ,y) then reduces to the exclusive OR

of ŷ and y. This is often called the Hamming loss (or

symmetric loss), and is the most frequently used loss

function in multilabel classification [19].

• Suppose that a given number of labels are to be

predicted, i.e., the size of the support1 of ŷ, |supp(ŷ)|,
is a constant. On setting α = 0, β = 1/|supp(ŷ)|,

�(ŷ,y) = 1−
|supp(ŷ ∧ y)|

|supp(ŷ)|
= 1−

∑
i I(ŷi = yi = 1)∑

i I(ŷi = 1)
.

Note that
∑
i I(ŷi = yi = 1) is the number of true

positives, and
∑
i I(ŷi = 1) is the number of predicted

positives. Hence, �(ŷ,y) becomes 1 − precision,2 and

minimizing �(ŷ,y) becomes maximizing precision.

• For the special case of hierarchical multiclass classifica-

tion, both ŷ and y consist of one single path. On setting

α = 0 and β = 1, �(ŷ,y) becomes the height of the

lowest common ancestor between ŷ and y (Figure 3),

which is similar to the hierarchical cost advocated in

[23]. On the other hand, if we set α = β = 1,

�(ŷ,y) becomes the length of the path between the

most specific nodes of ŷ and y minus 1 (as the lowest

common ancestor of ŷ and y is correctly classified,

and thus not counted in �(ŷ,y)). This is similar to the

hierarchical cost used in [24].

1The support of a vector y is supp(y) = {i : yi �= 0}.

2Precision =
number of true positives

number of true positives+number of false positives
.
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Figure 3. When α = 0 and β = 1, �(ŷ,y) (circled in red) measures the
height of the lowest common ancestor (which is equal to 2 in this example).

IV. MINIMIZING THE RISK

Given a loss function �(ŷ,y) and a test pattern x, the

conditional risk (or expected loss) R(ŷ) is defined as the

expectation of �(ŷ,y) over all possible y’s:

R(ŷ) =
∑
y

�(ŷ,y)P (y|x). (11)

Here, P (y|x)’s are either known or, more typically, es-

timated from the data. As in [11], we assume that the

labels of a group of sibling nodes in the label hierarchy are

conditionally independent given their parent label(s). This

simplification is standard in Bayesian networks and also

commonly used in HMC [25], [26]. Thus, for the tree label

hierarchy, we have

P (y|x) =
∏

i∈H\{0}

P (yi|ypa(i),x). (12)

Moreover, P (yi = 1|ypa(i) = 0,x) = 0 as such a label

combination violates the hierarchy constraint (1). Similarly,

for a DAG label hierarchy, we have

P (y|x) =
∏

i∈H\{0}

P (yi|yPa(i),x), (13)

and P (yi = 1|yPa(i),x) = 0 if yj = 0 for any j ∈ Pa(i).
With this simplification, we only need to train estimators

for p(yi = 1|ypa(i) = 1,x) (or p(yi = 1|yPa(i) = 1,x))
for each node i, using methods such as logistic regression

or support vector machines. The algorithm to be proposed

is nevertheless independent of the way these probability

estimators are learned.

From Bayesian decision theory [27], the optimal ŷ∗ is the

one that minimizes the risk, i.e.,

ŷ∗ = arg minŷ R(ŷ) (14)

s.t. ŷ satisfies the hierarchy constraint.

Obviously, the two key issues in obtaining ŷ∗ are

1) How to efficiently compute R(ŷ) for a particular ŷ,

without exhaustively summing all the 2N combina-

tions of y’s in (11)?

2) How to efficiently minimize R(ŷ), without exhaus-

tively enumerating all the 2N possible combinations

of ŷ?

We will address these in the following sections.

A. Efficient Computation of R(ŷ)

Let pi be the probability that node i is positive given x.

By the hierarchy constraint in (1) or (2), all the ancestors of

i must also be positive. Hence, for a valid multilabel y,

pi ≡ P (yi = 1|x) = P (yi = 1,yanc(i) = 1|x). (15)

The following proposition shows that the risk R(ŷ) in (11)

can be easily computed from these pi’s for both tree- and

DAG-structured label hierarchies. The proof can be found

in Appendix A.

Proposition 1.

R(ŷ) = α
∑
i:ŷi=0

cipi + β
∑
i:ŷi=1

ci(1− pi). (16)

The first term on the right is due to contributions from

the false negatives, while the second term is due to the false

positives. Given the pi’s, R(ŷ) can be computed in O(N)
time.

The pi’s can be efficiently computed. First, consider a

label tree. On using (12), we have

pi = P (yi = 1|ypa(i) = 1,x)
∏

j∈anc(i)\{0}

P (yj = 1|ypa(j) = 1,x)

= P (yi = 1|ypa(i) = 1,x)ppa(i).

Thus, one can recursively obtain all pi’s by starting from the

root (with p0 = 1 as the root is always labeled positive) and

traverse the tree with breadth-first-search (BFS) or depth-

first-search (DFS). The total time is O(N).

For a label DAG, we have, on using (13),

pi = P (yi = 1|yPa(i) = 1,x)
∏

j∈anc(i)\{0}

P (yj = 1|yPa(j) = 1,x).

Observe that anc(i) = Pa(i) ∪ {anc(j)}j∈Pa(i). Hence,

the anc(i) sets for all i’s can be obtained recursively by

traversing the hierarchy using BFS, which takes O(N +E)
time (E is the number of edges in the hierarchy). Moreover,

note that all these anc(i)’s only need to be computed once

and then stored, as part of preprocessing. With anc(i), each

pi can be computed in O(|anc(i)|) time. To obtain an upper

bound on the total time
∑N

i=1 |anc(i)|, consider visiting the

nodes in a certain topological order. For node i, |anc(i)| is

upper-bounded by the number of nodes placed before it in

this order. Hence,
∑N

i=1 |anc(i)| ≤
∑N

i=1 i = O(N2).

B. Efficient Minimization of R(ŷ)

Next, we consider how to find the ŷ∗ that minimizesR(ŷ)
in (16). First, notice that problem (14) can be decomposed

into N subproblems, as

ŷ∗ = arg min
L=1,...,N

R(ŷ∗(L)), (17)
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where each subproblem finds the optimal multilabel with L
nodes labeled positive:

ŷ∗(L) = arg minŷ R(ŷ) (18)

s.t. |supp(ŷ)| = L,

ŷ satisfies the hierarchy constraint.

The following proposition shows how we can obtain ŷ∗(L)
given the pi’s. Proof can be found in Appendix B. It can be

seen that δni
in (19) is the reduction in risk by predicting

node ni positive in the multilabel.

Proposition 2. The L nodes that are labeled positive in ŷ∗(L)
can be obtained as

arg max
{n1,n2,...,nL}⊂H

L∑
i=1

δni
, (19)

where

δi = ci (αpi − β(1− pi)) . (20)

To solve (19), we associate a binary indicator ψi ∈ {0, 1}
with each node i, such that ψi = 1 denotes that node i
is selected by ŷ∗(L), and 0 otherwise. The objective can

then be written as
∑N−1
i=0 ψiδi. Moreover, the hierarchy

constraints can be enforced by adding constraints (4) for

label trees, or (7) for label DAGs. Thus, we obtain the

following reformulations of (18).

Corollary 1. For a label tree, problem (18) can be refor-

mulated as the following problem:

max{ψi}i∈H

∑
i

ψiδi (21)

s.t. ψi ≤ ψpa(i) ∀i ∈ H\{0},

ψ0 = 1, ψi = {0, 1},
N−1∑
i=0

ψi = L.

Corollary 2. For a label DAG, problem (18) can be refor-

mulated as the following problem:

max{ψi}i∈H

∑
i

ψiδi (22)

s.t. ψi ≤ ψj ∀i ∈ H\{0}, ∀j ∈ Pa(i),

ψ0 = 1, ψi = {0, 1},
N−1∑
i=0

ψi = L.

Interestingly, both (21) and (22) are of the same form

as the optimization problem in (3), except that ỹi in (3) is

now replaced by δi. Thus, we can reuse the efficient CSSA

(resp. CSSAG) algorithm in [13] for the tree (resp. DAG)

label hierarchy.

Recall from (17) that we need to first compute the risks

for L = 1, . . . , N using the above procedure, and then pick

the L with the smallest risk. A straightforward procedure

is to run CSSA or CSSAG N − 1 times (the case for

L = 1 trivially yields the multilabel with only the root

labeled positive). However, since CSSA/CSSAG is a greedy

algorithm, by the optimal substructure property, the optimal

solution of size L1 contains all the optimal solutions of sizes

L2 < L1. Thus, we can simply set L = N , and keep track

of the optimal solution obtained for each intermediate value

of L. The total time to obtain the optimal solution (with the

L value yielding the smallest risk) is then still O(N logN).
The complete algorithms, which will be called HIROM

(HIerarchical Risk-Optimizing Multilabel classification), for

tree- and DAG-structured label hierarchies are shown in

Algorithm 1 and 2, respectively. Recall that CSSA/CSSAG

in [13] requires as input the number of labels (L) to be

predicted. On the other hand, HIROM can automatically

determine the value of L.

Algorithm 1 HIROM for tree label hierarchies.

1: Traverse the tree H using BFS or DFS to compute pi
for all i ∈ H.

2: Compute δi for all i ∈ H using (20).

3: Use the CSSA algorithm in [13] with the computed δi’s,

and obtain {ŷ∗(1), . . . , ŷ
∗
(N)}.

4: ŷ∗ ← argminŷ∗
(L)
R(ŷ∗(L)).

Algorithm 2 HIROM for DAG label hierarchies.

1: Perform BFS and obtain anc(i)’s for all i ∈ H.

2: Compute all pi’s with anc(i)’s.

3: Compute δi for all i ∈ H using (20).

4: Use the CSSAG algorithm in [13] with the computed

δi’s, and obtain {ŷ∗(1), . . . , ŷ
∗
(N)}.

5: ŷ∗ ← argminŷ∗
(L)
R(ŷ∗(L)).

V. EXPERIMENTS

A. Setup

In this section, we perform experiments on a large number

of real-world data sets commonly used in multilabel classifi-

cation. These include 21 data sets with tree-structured label

hierarchies (Table I):

• Five of them are subsets of RCV1v2 [28].3 These

contain documents in the REUTERS topics categories.

The label hierarchy has 104 nodes constructed from the

REUTERS topics categories.

• Enron [29]:4 This is a text data set for email analysis,

and its label hierarchy describes the relationships of the

email users.

• imageClef07A and imageClef07D:5 These are image

data sets from the ImageCLEF 2007 competition. Both

have the same set of features extracted from X-ray

3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multilabel.html
4http://www.cs.cmu.edu/∼enron/
5http://ir.ohsu.edu/image/2007data.html
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images, but with output labels coming from different

hierarchies.

• Caltech101 [30]:6 This is another image data set on

object annotation, with 101 label classes. We use the

label hierarchy in the related Caltech256 data set [31],

and take the 101 classes as leaf nodes. The total number

of nodes in the resultant hierarchy is increased to 143.

• Twelve genomic data sets [4]:7 These contain different

aspects of genes in the yeast genome, with annotations

from MIPS’s Functional Catalog (Funcat).

Table I
TREE-STRUCTURED DATA SETS USED IN THE EXPERIMENTS.

data set #training #test dim #label

rcv1v2 subset1 3,000 3,000 47,236 104

rcv1v2 subset2 3,000 3,000 47,236 104

rcv1v2 subset3 3,000 3,000 47,236 104

rcv1v2 subset4 3,000 3,000 47,236 104

rcv1v2 subset5 3,000 3,000 47,236 104

imageclef07a 10,000 1,006 80 97

imageclef07d 10,000 1,006 80 47

enron 988 660 1,001 57

caltech101 4,572 4,572 21504 143

seq 2,580 1,339 489 500

pheno 1,009 582 170 456

struc 2,978 1,313 19,629 500

hom 2,539 1,315 47,035 500

cellcycle 2,909 1,281 77 500

church 2,911 1,281 26 500

derisi 2,450 1,275 63 500

eisen 1,587 837 79 462

gasch1 2,480 1,284 173 500

gasch2 2,488 1,291 52 500

spo 2,437 1,266 83 500

expr 2,488 1,291 551 500

For the DAG-structured data sets8 (Table II), they are the

same set of genomic data sets, but the patterns are annotated

from the Gene Ontology (GO) [4]. There are three subgraphs

in its label DAG, and the first subgraph is used in the

experiment. For pre-processing, as in [15], we remove labels

with fewer than 10 positive training instances.

Each of the constituent probabilities in P (y|x) (namely,

P (yi = 1|ypa(i) = 1) in (12) for tree hierarchies, and P (yi =
1|yPa(i) = 1) in (13) for DAG hierarchies) are obtained

from a SVM. Specifically, for each node i, we first train

a binary SVM, using as training examples those patterns

that the parent(s) of i is labeled positive [21]. Then, we

convert the SVM output to a probability estimate using the

procedure in [32]. The SVM parameters are tuned by putting

aside one third of the training set as validation set. We use

the linear SVM with the C parameter chosen from the set

{2−10, 2−9, . . . , 1, . . . , 29, 210}.

6http://www.vision.caltech.edu/Image Datasets/Caltech101/
7http://dtai.cs.kuleuven.be/clus/hmcdatasets/
8http://dtai.cs.kuleuven.be/clus/hmcdatasets/

Table II
DAG-STRUCTURED DATA SETS USED IN THE EXPERIMENTS.

data set #training #test dim #label

seq 2,517 1,311 489 143

pheno 983 573 170 58

struc 2,467 1,285 19,629 142

hom 2,477 1,289 47,035 140

cellcycle 2,422 1,258 77 141

church 2,420 1,258 26 141

derisi 2,396 1,252 63 141

eisen 1,580 834 79 101

gasch1 2,426 1,261 173 141

gasch2 2,433 1,268 52 141

spo 2,383 1,243 83 139

expr 2,434 1,268 551 141

The proposed HIROM algorithm will be compared with

the following methods:

1) CSSA (resp. CSSAG) for data sets with tree-structured

(resp. DAG-structured) label hierarchies [13]: As dis-

cussed in Section II-B, this is most similar to the

proposed algorithm, except that the loss function is not

used in the formulation of CSSA. Recall that CSSA

requires as input the number of labels to be predicted

(L). Here, we first run HIROM and use the number

of labels obtained as input to CSSA.

2) H-SVM [11]: This trains a binary classifier at each

node. On prediction, if p(yi = 1|ypa(i) = 1,x) or

p(yi = 1|yPa(i) = 1,x) is ≥ 0.5, node i is predicted

positive and the process continues to its children.

3) B-SVM [15]: We use the cost-sensitive extension of

the B-SVM in [21]. It is optimal w.r.t. the H-loss, and

can only be used on tree-structured label hierarchies.

For the label tree, we set the ci of each node using

(9) for HIROM and B-SVM. For the label DAG, we use

(10) for HIROM. Moreover, as in [15], we set α = λ · β
while keeping α + β = 2, where λ is a parameter that

balances the misclassification cost between positive and

negative examples.

B. Classification Performance

In this experiment, we set λ = n−
n+

, where n− (resp. n+)

is the number of negative (resp. positive) training labels.

This is a standard setting used in cost-sensitive learning

[15]. Table III shows the HMC-loss values (averaged over

the test samples) on the various tree-structured data sets.

As can be seen, HIROM achieves the smallest loss as

expected. Note that the B-SVM, though it minimizes the

H-loss instead of the HMC-loss, is also quite competitive.

This is because when the misclassification happens near the

bottom of the hierarchy, the difference between HMC-loss

and H-loss can become very small (Figure 4). Hence, B-

SVM also approximately minimizes the HMC-loss.

Table IV shows the testing losses on the DAG-structured

data sets. Again, HIROM consistently outperforms CSSA
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Table III
TESTING HMC-LOSS VALUES ON THE TREE-STRUCTURED DATA SETS.

data set HIROM CSSA H-SVM B-SVM

rcv1v2 subset1 0.040 0.064 0.113 0.042

rcv1v2 subset2 0.040 0.057 0.099 0.043

rcv1v2 subset3 0.043 0.060 0.109 0.046

rcv1v2 subset4 0.042 0.064 0.116 0.045

rcv1v2 subset5 0.042 0.062 0.110 0.046

imageclef07a 0.124 0.166 0.217 0.132

imageclef07d 0.045 0.088 0.095 0.048

enron 0.146 0.149 0.304 0.158

caltech101 0.051 0.096 0.183 0.057

seq 0.084 0.251 0.350 0.091

pheno 0.104 0.309 0.406 0.105

struc 0.090 0.263 0.368 0.093

hom 0.084 0.223 0.324 0.090

cellcycle 0.089 0.257 0.384 0.097

church 0.092 0.276 0.391 0.099

derisi 0.090 0.266 0.390 0.098

eisen 0.094 0.265 0.373 0.100

gasch1 0.086 0.242 0.363 0.095

gasch2 0.089 0.255 0.377 0.101

spo 0.090 0.281 0.387 0.099

expr 0.085 0.236 0.358 0.094

� ��� ��� ��� ��� ��� ��	 ��
 ���
�

���

���

���

���

���

��	

��


���������

�
�
��
��
���
�

�

�
�������
�����

(a) HIROM solution.

� ��� ��� ��� ��� ��� ��	 ��
 ���
�

���

���

���

���

���

��	

��


���

���������

�
�
��
��
���
�

�

�
�������
�����

(b) B-SVM solution.

Figure 4. Distributions of the values of HMC-loss and H-loss, as obtained
by HIROM and B-SVM.

and H-SVM. Note that the bottom-up strategy used in B-

SVM cannot be extended to handle DAG label structures.

To further illustrate the difference between HIROM and

B-SVM, Figure 5 shows the predictions of two test samples

from the Caltech101 data set. On both samples, HIROM

yields a smaller HMC-loss but a larger H-loss than B-SVM.

Apparently, though both algorithms cannot obtain the correct

solution, the prediction of HIROM (which minimizes the

HMC-loss) is still more informative that of B-SVM (which

minimizes the H-loss), and has fewer misclassifications at

the more specific (i.e., lower) levels of the hierarchy. This

echoes our discussion in the previous sections that the HMC-

loss can be a better measure than the H-loss in HMC.

C. Variation in Misclassification Costs

In this experiment, we vary the relative misclassifi-

cation cost of positive and negative examples, λ, from

{ 1
10 ,

1
9 , . . . ,

1
2 , 1, 2, . . . , 9, 10}, and compare the performance

of HIROM, CSSA, H-SVM and B-SVM. Note that only

Table IV
TESTING HMC-LOSS VALUES ON THE DAG-STRUCTURED DATA SETS.

data set HIROM CSSAG H-SVM

seq 0.11 0.31 2.27

pheno 0.21 0.27 2.18

struc 0.13 0.35 2.26

hom 0.10 0.35 2.27

cellcycle 0.12 0.24 2.26

church 0.13 0.25 2.26

derisi 0.12 0.24 2.26

eisen 0.14 0.24 2.25

gasch1 0.12 0.23 2.26

gasch2 0.12 0.23 2.26

spo 0.13 0.24 2.26

expr 0.12 0.23 2.26

HIROM and B-SVM are cost-sensitive and thus depend on

the setting of λ.

Figure 6 shows the false positive rate FP =
1
ntest

∑
i:yi=0∧ŷi=1 ci (where ntest is the number of test pat-

terns), the false negative rate FN = 1
ntest

∑
i:yi=1∧ŷi=0 ci, and

the HMC-loss. Because of the lack of space, only results

on some data sets are reported. As can be seen, when

α is increased, false negatives are penalized more heavily

while false positives are penalized less. Thus, HIROM’s

FP increases and FN decreases, and vice versa. Since H-

SVM is not cost-sensitive, its FP and FN remain constant

over the whole range of λ. CSSA is also cost-insensitive.

However, as we use the number of labels (L) obtained by

HIROM as input to CSSA, its performance also changes

with λ. As for the HMC-loss, recall that it is a weighted

sum of FP and FN. With increasing α, the HMC-loss

obtained by HIROM rises and then drops. Overall, HIROM

outperforms the other methods, with B-SVM closely trailing

behind (because it approximately minimizes the HMC-loss

as discussed in Section V-B). However, note again that

B-SVM cannot be used on the more complicated DAG-

structured label hierarchies.

VI. CONCLUSION

In this paper, we proposed a new loss function (HMC-

loss) for hierarchical multilabel classification. It can trade

off false negatives and false positives, and can also weight

the classification errors differently according to the label

hierarchy. Compared to the traditional H-loss, the HMC-loss

is more informative and can be used on both tree- and DAG-

structured label hierarchies. Following the Bayesian deci-

sion theory, we further developed a Bayes-optimal classifier

that minimizes the expectation of this HMC-loss. Both the

computation and minimization of the risk can be efficiently

obtained without exhaustive enumeration on an exponential

number of possible multilabels. Experimental results on a

large number of real-world data sets with both tree- and

DAG-structured hierarchies demonstrate that the proposed
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(b) HIROM prediction.
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(c) B-SVM prediction.
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(d) ground truth for test sample 2.
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(e) HIROM prediction.
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(f) B-SVM prediction.

Figure 5. Two test samples from the Caltech101 data set, and the corresponding predictions by HIROM and B-SVM.

algorithm outperforms existing hierarchical multilabel clas-

sification methods.
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Figure 6. FP (left), FN (center) and HMC-loss (right) obtained by the various methods at different weightings of α and β. The label hierarchies for the
top two data sets are tree-structured, while those for the bottom two are DAG-structured.
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APPENDIX A.

PROOF OF PROPOSITION 1

Using the definition of �(ŷ,y) in (8), the risk R(y) can

be decomposed accordingly as

R(ŷ) = αFN(ŷ) + βFP(ŷ), (23)

where

FN(ŷ) =
∑
y

⎛
⎝ ∑
i:yi=1∧ŷi=0

ci

⎞
⎠P (y|x), (24)

FP(ŷ) =
∑
y

⎛
⎝ ∑
i:yi=0∧ŷi=1

ci

⎞
⎠P (y|x) (25)

are contributions due to false negatives and false positives,

respectively. Based on the definition of pi in (15), we first

introduce the following two lemmas.

Lemma 1. FN(ŷ) =
∑
i:ŷi=0 cipi.

Proof: (24) can be rewritten as

FN(ŷ) =
∑
i:ŷi=0

ci
∑
y

P (yi = 1,yH\{i}|x).

With yi = 1, the hierarchy constraint in (1) or (2) requires

that yanc(i) = 1. Hence,
∑

y
P (yi = 1,yH\{i}|x) = P (yi =

1,yanc(i) = 1|x) = pi, and the result follows.

Lemma 2. FP(ŷ) =
∑
i:ŷi=1 ci(1− pi).

Proof: (25) can be rewritten as

FP(ŷ) =
∑

i:yi=0∧ŷi=1

∑
y

ciP (y|x)

=
∑
i:ŷi=1

∑
y:yi=0

ciP (y|x)

=
∑
i:ŷi=1

ciP (yi = 0|x)

=
∑
i:ŷi=1

ci(1− pi).

On combining both lemmas, we immediately obtain

Proposition 1.

APPENDIX B.

PROOF OF PROPOSITION 2

Recall that ŷ(L) is the multilabel with L nodes labeled

positive. Without loss of generality, assume that these L
nodes (denoted n1, n2, . . . , nL) are sorted in topological

order. Let ŷ(l) be the multilabel with the first l of these nodes

labeled positive, and denote the corresponding set of nodes

be Sl = {n1, n2, . . . , nl}. Recall that the root is always

labeled positive. Hence, ŷ(1) is the multilabel with only the

root node labeled positive, and S1 = {0}.
From (18) and using telescoping, we have

ŷ∗(L) = arg max
ŷ:|supp(ŷ)|=L

R(ŷ(1))−R(ŷ)

= arg max
n1,n2,...,nL

L∑
i=1

δni
, (26)

where δn1 ≡ 0, and δni
≡ R(ŷ(i−1))−R(ŷ(i)). From (23),

δni
can be rewritten as

δni
= (αFN(ŷ(i−1)) + βFP(ŷ(i−1)))

−(αFN(ŷ(i)) + βFP(ŷ(i)))

= α(FN(ŷ(i−1))− FN(ŷ(i)))

+β(FP(ŷ(i−1))− FP(ŷ(i))). (27)

Note that Si = Si−1 ∪ {ni} and ŷ(i) is a valid multilabel.

Thus, on using Lemma 1, we have

FN(ŷ(i−1))− FN(ŷ(i)) =
∑

j:ŷ(i−1),j=0

cjpj −
∑

j:ŷ(i),j=0

cjpj

= cni
pni

. (28)

Similarly, on using Lemma 2,

FP(ŷ(i−1))− FP(ŷ(i)) =
∑

j:ŷ(i−1),j=1

cj(1− pj)

−
∑

j:ŷ(i),j=1

cj(1− pj)

= −cni
(1− pni

). (29)

On combining (27), (28), and (29), thus, δni
= cni

(αpni
−

β(1− pni
)).
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