
The Pre-Image Problem in Kernel Methods

James T. Kwok jamesk@cs.ust.hk

Ivor W. Tsang ivor@cs.ust.hk

Department of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong

Abstract

In this paper, we address the problem of
finding the pre-image of a feature vector in
the feature space induced by a kernel. This
is of central importance in some kernel ap-
plications, such as on using kernel principal
component analysis (PCA) for image denois-
ing. Unlike the traditional method in (Mika
et al., 1998) which relies on nonlinear opti-
mization, our proposed method directly finds
the location of the pre-image based on dis-
tance constraints in the feature space. It
is non-iterative, involves only linear algebra
and does not suffer from numerical instability
or local minimum problems. Performance of
this method is evaluated on performing ker-
nel PCA and kernel clustering on the USPS
data set.

1. Introduction

In recent years, there has been a lot of interest in the
study of kernel methods (Schölkopf & Smola, 2002;
Vapnik, 1998). The basic idea is to map the data in
the input space X to a feature space via some non-
linear map ϕ, and then apply a linear method there.
It is now well-known that the computational proce-
dure depends only on the inner products1 ϕ(xi)

′ϕ(xj)
in the feature space (where xi,xj ∈ X), which can
be obtained efficiently from a suitable kernel function
k(·, ·). Besides, kernel methods have the important
computational advantage that no nonlinear optimiza-
tion is involved. Thus, the use of kernels provides el-
egant nonlinear generalizations of many existing lin-
ear algorithms. A well-known example in supervised
learning is the support vector machines (SVMs). In

1In this paper, vector/matrix transpose (in both the
input and feature spaces) is denoted by the superscript ′.

unsupervised learning, the kernel idea has also led
to methods such as kernel-based clustering algorithms
(Girolami, 2002), kernel independent component anal-
ysis and kernel principal component analysis (PCA)
(Schölkopf et al., 1998b).

While the mapping ϕ from input space to feature space
is of primary importance in kernel methods, the re-
verse mapping from feature space back to input space
(the pre-image problem) is also useful. Consider for
example the use of kernel PCA for pattern denois-
ing. Given some noisy patterns, kernel PCA first ap-
plies linear PCA on the ϕ-mapped patterns in the fea-
ture space, and then performs denoising by projecting
them onto the subspace defined by the leading eigen-
vectors. These projections, however, are still in the
feature space and have to be mapped back to the in-
put space in order to recover the denoised patterns.
Another example is in visualizing the clustering so-
lution of a kernel-based clustering algorithm. Again,
this involves finding the pre-images of, say, the cluster
centroids in the feature space. More generally, meth-
ods for finding pre-images can be used as reduced set

methods to compress a kernel expansion (which is a
linear combination of many feature vectors) into one
with fewer terms. They can offer significant speed-ups
in many kernel applications (Burges, 1996; Schölkopf
et al., 1998a).

However, the exact pre-image typically does not ex-
ist (Mika et al., 1998), and one can only settle for an
approximate solution. But even this is non-trivial as
the dimensionality of the feature space can be infinite.
(Mika et al., 1998) cast this as a nonlinear optimiza-
tion problem, which, for particular choices of kernels
(such as the Gaussian kernel2), can be solved by a
fixed-point iteration method. However, as mentioned
in (Mika et al., 1998), this method suffers from nu-

2We will show in Section 4.1.2 that an analogous itera-
tion formula can also be derived for polynomial kernels.

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

merical instabilities. Moreover, as in any nonlinear
optimization problem, one can get trapped in a local
minimum and the pre-image obtained is thus sensitive
to the initial guess.

While the inverse of ϕ typically does not exist, there
is usually a simple relationship between feature-space
distance and input-space distance for many commonly
used kernels (Williams, 2001). In this paper, we use
this relationship together with the idea in multidimen-
sional scaling (MDS) (Cox & Cox, 2001) to address
the pre-image problem. The proposed method is non-
iterative and involves only linear algebra.

Our exposition in the sequel will focus on the pre-
image problem in kernel PCA, though it can be applied
equally well to other kernel methods. The rest of this
paper is organized as follows. Brief introduction to
the kernel PCA is given in Section 2. Section 3 then
describes our proposed method. Experimental results
are presented in Section 4, and the last section gives
some concluding remarks.

2. Kernel PCA

2.1. PCA in the Feature Space

In this Section, we give a short review on the kernel
PCA. While standard expositions (Mika et al., 1998;
Schölkopf et al., 1998b) usually focus on the simpler
case where the ϕ-mapped patterns have been centered,
we will carry out this centering explicitly in the follow-
ing.

Given a set of patterns {x1, . . . ,xN} ∈ R
d. Kernel

PCA performs the traditional linear PCA in the fea-
ture space. Analogous to linear PCA, it also involves
an eigen decomposition HKH = UΛU′, where K is
the kernel matrix with Kij = k(xi,xj),

H = I− 1

N
11′ (1)

is the centering matrix, I is the N×N identity matrix,
1 = [1, 1, . . . , 1]′ is an N × 1 vector, U = [α1, . . . , αN]
with αi = [αi1, . . . , αiN]′ and Λ = diag(λ1, . . . , λN).
Denote the mean of the ϕ-mapped patterns by ϕ̄ =
1
N

∑N

i=1 ϕ(xi) and define the “centered” map ϕ̃ as:

ϕ̃(x) = ϕ(x) − ϕ̄.

The kth orthonormal eigenvector of the covariance ma-
trix in the feature space can then be shown to be

Vk =

N∑

i=1

αki√
λk

ϕ̃(xi) =
1√
λk

ϕ̃αk,

where ϕ̃ = [ϕ̃(x1), ϕ̃(x2), . . . , ϕ̃(xN)]. Denote the pro-
jection of the ϕ-image of a pattern x onto the kth

component by βk. Then,

βk = ϕ̃(x)′Vk =
1√
λk

N∑

i=1

αkiϕ̃(x)′ϕ̃(xi)

=
1√
λk

N∑

i=1

αkik̃(x,xi), (2)

where

k̃(x,y) = ϕ̃(x)′ϕ̃(y)

= (ϕ(x) − ϕ̄)′(ϕ(y) − ϕ̄)

= k(x,y) − 1

N

N∑

i=1

k(x,xi) −
1

N

N∑

i=1

k(xi,y)

+
1

N2

N∑

i,j=1

k(xi,xj)

= k(x,y) − 1

N
1′kx − 1

N
1′ky +

1

N2
1′K1,

and kx = [k(x,x1), . . . , k(x,xN)]′. Denote

k̃x = [k̃(x,x1), . . . , k̃(x,xN)]′

= kx − 1

N
11′kx − 1

N
K1 +

1

N2
11′K1

= H

(
kx − 1

N
K1

)
, (3)

then (2) can be written more compactly as βk =
1√
λk

α
′
kk̃x.

The projection PKϕ(x) of ϕ(x) onto the subspace
spanned by the first K eigenvectors3 is then

PKϕ(x) =

K∑

k=1

βkVk + ϕ̄ =

K∑

k=1

1

λk

(α′
kk̃x)(ϕ̃αk) + ϕ̄

= ϕ̃Mk̃x + ϕ̄, (4)

where M =
∑K

k=1
1

λk
αkα

′
k is symmetric.

2.2. Iterative Scheme for Finding the

Pre-Image

As Pϕ(x) is in the feature space, we have to find its
pre-image x̂ in order to recover the denoised pattern
(Figure 1). As mentioned in Section 1, the exact pre-
image may not even exist, and so we can only recover
an x̂ where ϕ(x̂) ' Pϕ(x). (Mika et al., 1998) ad-
dressed this problem by minimizing the squared dis-
tance between ϕ(x̂) and Pϕ(x):

‖ϕ(x̂)−Pϕ(x)‖2 = ‖ϕ(x̂)‖2 − 2Pϕ(x)′ϕ(x̂) + Ω, (5)

3For simplicity, PKϕ(x) will often be denoted as Pϕ(x)
in the sequel.

where Ω includes terms independent of x̂. This, how-
ever, is a nonlinear optimization problem. As men-
tioned in Section 1, it will be plagued by the problem
of local minimum and is sensitive to the initial guess
of x̂.

For particular choices of kernels, such as Gaussian ker-
nels of the form k(x,y) = exp(‖x − y‖2/c), this non-
linear optimization can be solved by a fixed-point iter-
ation method. On setting the derivative of (5) to zero,
the following iteration formula is obtained:

x̂t+1 =

∑N

i=1 γ̃i exp(−‖x̂t − xi‖2/c)xi∑N

i=1 γ̃i exp(−‖x̂t − xi‖2/c)
. (6)

Here4, γi =
∑K

k=1 βkαki and γ̃i = γi+
1
N

(1−∑N

j=1 γj).
However, as mentioned in (Mika et al., 1998), this it-
eration scheme is numerically unstable and one has to
try a number of initial guesses for x̂.

Figure 1. The pre-image problem in kernel PCA.

Notice from (6) that the pre-image obtained is in
the span of xi’s. Besides, because of the exponential
exp(−‖x̂t −xi‖2/c), the contributions of xi’s typically
drop rapidly with increasing distance from the pre-
image. These observations will be useful in Section 3.

3. Finding the Pre-Image Based on

Distance Constraints

For any two points xi and xj in the input space, we
can obtain their Euclidean distance d(xi,xj). Anal-
ogously, we can also obtain the feature-space dis-
tance d̃(ϕ(xi), ϕ(xj)) between their ϕ-mapped im-
ages. Moreover, for many commonly used kernels,
there is a simple relationship between d(xi,xj) and

d̃(ϕ(xi), ϕ(xj)) (Williams, 2001). The idea of the pro-
posed method is then as follows (Figure 2). Let the
pattern to be denoised be x. As mentioned in Sec-
tion 1, the corresponding ϕ(x) will be projected to
Pϕ(x) in the feature space. For each training pattern
xi, this Pϕ(x) will be at a distance d̃(Pϕ(x), ϕ(xi))

4The apparent difference with the equations in (Mika
et al., 1998) is because we explicitly perform centering of
the ϕ-mapped patterns here.

from each ϕ(xi) in the feature space. Using the dis-
tance relationship mentioned above, we can obtain the
corresponding input-space distance between the de-
sired pre-image x̂ and each of the xi’s. Now, in mul-
tidimensional scaling (MDS)5 (Cox & Cox, 2001), one
attempts to find a representation of the objects that
preserves the dissimilarities between each pair of them.
Here, we will use this MDS idea to embed Pϕ(x) back
to the input space. When the exact pre-image exists, it
would have exactly satisfied these input-space distance
constraints6. In cases where the exact pre-image does
not exist, we will require the approximate pre-image
to satisfy these constraints approximately (to be more
precise, in the least-square sense).

Figure 2. Basic idea of the proposed method.

Notice that instead of finding the pre-image of Pϕ(x)
in kernel PCA, this procedure can also be used to
find the pre-image of any feature vector in the fea-
ture space. For example, we can use this to find the
pre-images of the cluster centroids obtained from some
kernel clustering algorithm, as will be demonstrated in
Section 4.

The following sections describe these steps in more
detail. Computation of the feature-space distances
d̃(Pϕ(x), ϕ(xi)) is described in Section 3.1. Section 3.2
uses the distance relationship to obtain the corre-
sponding distances in the input space. Finally, Sec-
tion 3.3 uses these distances to constrain the embed-
ding of the pre-image.

3.1. Distances in the Feature Space

For any two patterns x and xi, the squared feature-
space distance between the projection Pϕ(x) and

5Interested readers may also refer to (Cox & Cox, 2001)
for a connection between PCA and MDS, and to (Williams,
2001) for a connection between kernel PCA and kernel
MDS.

6One can visualize these xi’s as range sensors (or global
positioning system satellites) that help to pinpoint the lo-
cation of an object (i.e., the pre-image).

ϕ(xi) is given by:

d̃2(Pϕ(x), ϕ(xi)) = ‖Pϕ(x)‖2 + ‖ϕ(xi)‖2

−2Pϕ(x)′ϕ(xi). (7)

Now, from (3) and (4), we have

‖Pϕ(x)‖2

=

(
K∑

k=1

βkVk + ϕ̄

)′(
K∑

k=1

βkVk + ϕ̄

)

= k̃′
x
Mk̃x +

1

N2
1′K1

+2

(
1

N
1′K − 1

N2
1′K11′

)
Mk̃x

=

(
kx +

1

N
K1

)′

H′MH

(
kx − 1

N
K1

)
+

1

N2
1′K1,

and

Pϕ(x)′ϕ(xi)

= (ϕ̃Mk̃x + ϕ̄)′ϕ(xi)

= k′
xi

H′MH(kx − 1

N
K1) +

1

N
1′kxi

. (8)

Thus, (7) becomes:

d̃2(Pϕ(x), ϕ(xi))

=

(
kx +

1

N
K1− 2kxi

)′

H′MH

(
kx − 1

N
K1

)

+
1

N2
1′K1 + Kii −

2

N
1′kxi

, (9)

where Kii = k(xi,xi).

3.2. Distances in the Input Space

Given the feature-space distances between Pϕ(x) and
the ϕ-mapped training patterns (Section 3.1), we now
proceed to find the corresponding input-space dis-
tances, which will be preserved when Pϕ(x) is em-
bedded back to the input space (Section 3.3). Re-
call that the distances with neighbors are the most
important in determining the location of any point
(Section 2.2). Hence, in the following, we will only
consider the (squared) input-space distances between
Pϕ(x) and its n nearest neighbors7, i.e.,

d2 = [d2
1, d

2
2, . . . , d

2
n]′. (10)

This in turn can offer significant speed-up, especially
during the singular value decomposition step in Sec-
tion 3.3. Moreover, this is also in line with the ideas

7In this paper, we use the n nearest neighbors in the
feature space. Alternatively, we can use the neighbors in
the input space with similar results.

in metric multidimensional scaling (Cox & Cox, 2001),
in which smaller dissimilarities are given more weight,
and in locally linear embedding (Roweis & Saul, 2000),
where only the local neighborhood structure needs to
be preserved.

We first consider isotropic kernels8 of the form
k(xi,xj) = κ(‖xi − xj‖2). There is a simple relation-

ship between the feature-space distance d̃ij and the
input-space distance dij (Williams, 2001):

d̃2
ij = d̃2(xi,xj) = Kii + Kjj − 2κ(‖xi − xj‖2)

= Kii + Kjj − 2κ(d2
ij),

and hence,

κ(d2
ij) =

1

2
(Kii + Kjj − d̃2

ij). (11)

Typically, κ is invertible. For example, for the Gaus-
sian kernel κ(z) = exp(−βz) where β is a constant, we
have d2

ij = − 1
β

log(1
2 (Kii + Kjj − d̃2

ij)).

Similarly, for dot product kernels of the form
k(xi,xj) = κ(x′

ixj), there is again a simple relation-
ship between the dot product Kij = k(xi,xj) in the
feature space and the dot product sij = x′

ixj in the
input space (Williams, 2001):

Kij = ϕ(xi)
′ϕ(xj) = k(x′

ixj) = κ(sij). (12)

Moreover, κ is often invertible. For example, for the
polynomial kernel κ(z) = zp where p is the polyno-

mial order, sij = K
1

p

ij when p is odd. Similarly, for
the sigmoid kernel κ(z) = tanh(vz − c) where v, c ∈ R

are parameters, sij = (tanh−1(Kij)+ c)/v. The corre-
sponding squared distance in the input space is then

d2
ij = s2

ii + s2
jj − 2sij . (13)

Thus, in summary, we can often use (9), (11) for
isotropic kernels, or (8), (12), (13) for dot product
kernels, to construct the input-space distance vector
d2 in (10).

3.3. Using the Distance Constraints

For the n neighbors {x1, . . . ,xn} ∈ R
d obtained in

Section 3.2, we will first center them at their cen-
troid x̄ = 1

n

∑n

i=1 xi and define a coordinate sys-
tem in their span. First, construct the d × n matrix
X = [x1,x2, . . . ,xn]. Using the n×n centering matrix
H in (1), HX′ will center the xi’s at the centroid (i.e.
the column sums of HX′ are zero). Assuming that

8A kernel is isotropic if k(xi,xj) depends only on the
distance ‖xi − xj‖

2.

the training patterns span a q-dimensional space (i.e.,
X is of rank q), we can obtain the singular value de-
composition (SVD) of the d×n matrix (HX′)′ = XH

as:
XH = UΛV′ = UZ,

where U = [e1, . . . , eq] is a d×q matrix with orthonor-
mal columns ei and Z = [z1, . . . , zn] is a q × n matrix
with columns zi being the projections of xi onto the
ej ’s. Note that the computational complexity for per-
forming SVD on an d × n matrix is O(kd2n + k′n3),
where k and k′ are constants. Hence, using only the n
neighbors instead of all N training patterns can offer a
significant speed-up. Besides, the squared distance of
xi to the origin, which is still at the centroid, is equal
to ‖zi‖2. Again, collect these into an n-dimensional
vector, as d2

0 = [‖z1‖2, . . . , ‖zn‖2]′.

Recall from Section 2.2 that the approximate pre-
image x̂ obtained in (Mika et al., 1998) is in the span
of the training patterns, with the contribution of each
individual xi dropping exponentially with its distance
from x̂. Hence, we will assume in the following that
the required pre-image x̂ is in the span of the n neigh-
bors. As mentioned in Section 3, its location will be
obtained by requiring d2(x̂,xi) to be as close to those
values obtained in (10) as possible, i.e.,

d2(x̂,xi) ' d2
i , i = 1, . . . , n.

In the ideal case, we should have exactly preserved
these distances. However, as mentioned in Section 1,
in general there is no exact pre-image in the input
space and so a solution satisfying all these distance
constraints may not even exist. Hence, we will set-
tle for the least-square solution ẑ. Following (Gower,
1968), this can be shown to satisfy:

−2Z′ẑ = (d2 − d2
0) −

1

n
11′(d2 − d2

0).

Now, Z11′ = 0 because of the centering. Hence, the
pre-image can be obtained as

ẑ = −1

2
(ZZ′)−1Z(d2 − d2

0) = −1

2
Λ−1V′(d2 − d2

0).

This ẑ is expressed in terms of the coordinate system
defined by the ej ’s. Transforming back to the original
coordinate system in the input space, we thus have

x̂ = Uẑ + x̄.

4. Experiment

4.1. Pre-Images in Kernel PCA

In this Section, we report denoising results on the
USPS data set consisting of 16 × 16 handwritten

digits9. For each of the ten digits, we randomly choose
some examples (300 and 60 respectively) to form the
training set, and 100 examples as the test set. Kernel
PCA is performed on each digit separately.

Two types of additive noise are then added to the test
set. The first one is the Gaussian noise N(0, σ2) with
variance σ2. The second type is the “salt and pepper”
noise with noise level p, where p/2 is the probability
that a pixel flips to black or white. The model selection
problem for the number (K) of eigenvectors is side-
stepped by choosing K = arg minn ‖Pnϕ(x) − ϕ(x̃)‖2

where x is the noisy image and x̃ is the original (clean)
image. 10 neighbors is used in locating the pre-image.
Moreover, comparison will be made with the tradi-
tional method in (Mika et al., 1998).

4.1.1. Gaussian Kernel

We first experiment with the Gaussian kernel
exp(−βz), where we set 1

β
= 1

N(N−1)

∑N

i,j=1 ‖xi −
xj‖2. Figures 3 and 4 show some typical noisy test
images for the two types of noise, and the correspond-
ing denoised images. Tables 1 and 2 show the numeri-
cal comparisons using the signal-to-noise ratio (SNR).
As can be seen, the proposed method produces better
results both visually and quantitatively.

Table 1. SNRs (in dB) of the denoised images using the
Gaussian kernel, at different number of training samples
and different noise variances (σ2) of the Gaussian noise.

number of SNR
training noisy our
images σ2 images method Mika et al.

300 0.25 2.32 6.36 5.90
0.3 1.72 6.24 5.60
0.4 0.91 5.89 5.17
0.5 0.32 5.58 4.86

60 0.25 2.32 4.64 4.50
0.3 1.72 4.56 4.39
0.4 0.90 4.41 4.19
0.5 0.35 4.29 4.06

4.1.2. Polynomial Kernel

Next, we perform experiment on the polynomial kernel
(xy+1)d with d = 3. Following the exposition of (Mika
et al., 1998) in Section 2.2, (5) now becomes (x̂′x̂ +

1)d−2
∑N

i=1 γ̃i(x̂
′xi+1)d+Ω. On setting its derivative

w.r.t. x̂ to zero, we obtain an iteration formula for the

9The USPS database can be downloaded from
http://www.kernel-machines.org.

Figure 3. Typical test images corrupted by the Gaussian noise, and the corresponding denoised results with N = 100 and
the Gaussian kernel (The noise variances for the columns from left to right are 0.2, 0.3, 0.4 and 0.5 respectively). Top:
noisy images; Middle: results by (Mika et al., 1998); Bottom: results by the proposed method.

Figure 4. Typical test images corrupted by the “salt and pepper” noise, and the corresponding denoised results with
N = 100 and the Gaussian kernel (The noise levels for the columns from left to right are 0.3, 0.4, 0.5 and 0.7 respectively).
Top: noisy images; Middle: results by (Mika et al., 1998); Bottom: results by the proposed method.

Table 2. SNRs (in dB) of the denoised images using the
Gaussian kernel, at different number of training samples
and different noise levels (p) of the “salt and pepper” noise.

number of SNR
training noisy our
images p images method Mika et al.

300 0.3 1.27 6.43 5.98
0.4 0.06 5.96 5.24
0.5 -0.90 5.31 4.62
0.6 -1.66 4.69 4.17
0.7 -2.66 4.08 3.86

60 0.3 1.26 4.65 4.55
0.4 0.24 4.45 4.24
0.5 -0.89 4.13 3.93
0.7 -2.99 3.52 3.48

polynomial kernel:

x̂t+1 =

N∑

i=1

γ̃i(
x̂′

txi + 1

x̂′
tx̂t + 1

)d−1xi.

However, this iteration scheme fails to converge in
the experiments, even after repeated restarts. On the
other hand, our proposed method is non-iterative and
can always obtain reasonable pre-images (Figure 5).
Tables 3 and 4 show the resulting SNRs for the Gaus-
sian noise and “salt and pepper” noise.

Table 3. SNRs (in dB) of the denoised images using the
polynomial kernel, at different number of training samples
and different noise variances (σ2) of the Gaussian noise.

number of SNR of
training images σ2 our method

300 0.25 5.39
0.3 5.08
0.4 4.61
0.5 4.24

60 0.25 4.33
0.3 4.09
0.4 3.74
0.5 3.50

4.2. Pre-Images in Kernel k-Means Clustering

In this Section, we perform the kernelized version of
k-means clustering algorithm on the USPS data set,
and then use the proposed method to find the pre-
images of the cluster centroids. We select a total of
3000 random images from the USPS data set and the
same Gaussian kernel as in Section 4.1.1. Figure 6
shows the resultant pre-images. For comparison, the

Table 4. SNRs (in dB) of the denoised images using the
polynomial kernel, at different number of training samples
and different noise levels (p) of the “salt and pepper” noise.

number of SNR of
training images p our method

300 0.3 5.84
0.4 5.09
0.5 4.28
0.6 3.56
0.7 3.10

60 0.3 4.66
0.4 4.08
0.5 3.49
0.7 2.84

cluster centroids obtained by averaging in the input
space are also shown.

(a) Using input space averaging.

(b) Using the proposed pre-image
method.

Figure 6. Cluster centroids obtained on the USPS data set.

Note that, in general, these cluster centroids may have
to be interpreted with caution. As in ordinary k-means
clustering, the (exact or approximate) pre-images of
the cluster centroids may sometimes fall outside of the
data distribution.

5. Conclusion

In this paper, we address the problem of finding the
pre-image of a feature vector in the kernel-induced fea-
ture space. Unlike the traditional method in (Mika
et al., 1998) which relies on nonlinear optimization and
is iterative in nature, our proposed method directly
finds the location of the pre-image based on distance
constraints. It is non-iterative, involves only linear al-
gebra and does not suffer from numerical instabilities
or the local minimum problem. Moreover, it can be
applied equally well to both isotropic kernels and dot
product kernels. Experimental results on denoising
the USPS data set show significant improvements over

Figure 5. Denoised results using the proposed method with N = 100 and polynomial kernel. Top: Gaussian noise (noise
variances from left to right are 0.2, 0.3, 0.4 and 0.5 respectively). Bottom: “salt and pepper” noise (noise levels from left
to right are 0.3, 0.4, 0.5 and 0.7 respectively).

(Mika et al., 1998).

In the future, other classes of kernel functions will also
be investigated, especially those that are defined on
structured objects, in which the pre-image problem
then becomes an important issue (Weston et al., 2003).

Acknowledgments

This research has been partially supported by the
Research Grants Council of the Hong Kong Special
Administrative Region under grants HKUST2033/00E
and HKUST6195/02E.

References

Burges, C. (1996). Simplified support vector decision
rules. Proceedings of the Thirteenth International

Conference on Machine Learning (pp. 71–77). San
Francisco, CA: Morgan Kaufmann.

Cox, T., & Cox, M. (2001). Multidimensional scaling.
Monographs on Statistics and Applied Probability
88. Chapman & Hall / CRC. Second edition.

Girolami, M. (2002). Mercer kernel-based clustering
in feature space. IEEE Transactions on Neural Net-

works, 13, 780–784.

Gower, J. (1968). Adding a point to vector diagrams
in multivariate analysis. Biometrika, 55, 582–585.

Mika, S., Schölkopf, B., Smola, A., Müller, K., Scholz,
M., & Rätsch, G. (1998). Kernel PCA and de-
noising in feature spaces. Advances in Neural In-

formation Processing Systems 11. San Mateo, CA:
Morgan Kaufmann.

Roweis, S., & Saul, L. (2000). Nonlinear dimensional-
ity reduction by locally linear embedding. Science,
290, 2323–2326.

Schölkopf, B., Knirsch, P., Smola, A., & Burges, C.
(1998a). Fast approximation of support vector ker-
nel expansions, and an interpretation of clustering
as approximation in feature spaces. Proceedings of

the DAGM Symposium Mustererkennung (pp. 124–
132).

Schölkopf, B., & Smola, A. (2002). Learning with ker-

nels. MIT.

Schölkopf, B., Smola, A., & Müller, K. (1998b). Non-
linear component analysis as a kernel eigenvalue
problem. Neural Computation, 10, 1299–1319.

Vapnik, V. (1998). Statistical learning theory. New
York: Wiley.

Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B.,
& Vapnik, V. (2003). Kernel dependency estima-
tion. Advances in Neural Information Processing

Systems 15. Cambridge, MA: MIT Press.

Williams, C. (2001). On a connection between kernel
PCA and metric multidimensional scaling. Advances

in Neural Information Processing Systems 13. Cam-
bridge, MA: MIT Press.

