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Abstract

In kernel methods, an interesting recent de-
velopment seeks to learn a good kernel from
empirical data automatically. In this pa-
per, by regarding the transductive learn-
ing of the kernel matrix as a missing data
problem, we propose a Bayesian hierarchi-
cal model for the problem and devise the
Tanner-Wong data augmentation algorithm
for making inference on the model. The
Tanner-Wong algorithm is closely related to
Gibbs sampling, and it also bears a strong re-
semblance to the expectation-maximization
(EM) algorithm. For an efficient implementa-
tion, we propose a simplified Bayesian hierar-
chical model and the corresponding Tanner-
Wong algorithm. We express the relation-
ship between the kernel on the input space
and the kernel on the output space as a
symmetric-definite generalized eigenproblem.
Based on this eigenproblem, an efficient ap-
proach to choosing the base kernel matrices is
presented. The effectiveness of our Bayesian
model with the Tanner-Wong algorithm is
demonstrated through some classification ex-
periments showing promising results.

1. Introduction

In recent years, kernel methods have rapidly gained
much popularity due to their flexibility and theoreti-
cal elegance. For most kernel-based learning methods
in existence, the practitioner has to prespecify a kernel
function in advance before learning proceeds. Choos-
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ing a good kernel for the problem at hand is more of
an art than a science. Since a kernel induces a feature
space, it is easy to understand that an appropriate ker-
nel choice should take into account the empirical data
available for a learning problem. Since in practice we
often deal with finite-sized data sets, almost all infor-
mation in the kernel function can be encoded by the
kernel matrix. As a result, one could bypass the learn-
ing of the kernel function by just learning the kernel
matrix instead. For simplicity, from now on, we do
not make any distinction between learning the kernel
function and learning the kernel matrix.

Some recent studies pursue to learn the kernel matrix
from empirical data automatically. One major issue
to consider is what constitutes a good kernel matrix.
More specifically, we need a criterion for optimizing
the kernel matrix. The alignment was proposed as
such a criterion defined in the form of a similarity
measure between kernel matrices (Cristianini et al.,
2002). Based on this criterion, several methods have
been proposed for optimizing the kernel matrix, in-
cluding a spectral method (Cristianini et al., 2002),
semi-definite programming (SDP) (Lanckriet et al.,
2002), the Gram-Schmidt method (Kandola et al.,
2002), and a gradient-based method (Bousquet & Her-
rmann, 2003). Crammer et al. (2003) cast the kernel
matrix learning problem under the boosting paradigm
for constructing an accurate kernel from simple base
kernels. In the case that there are missing data in the
kernel matrix, Tsuda et al. (2003) developed a para-
metric approach to kernel matrix completion using the
em algorithm based on information geometry (Amari,
1995). In their approach, the Kullback-Leibler (KL)
divergence is used for measuring the similarity between
kernel matrices.

Assuming that the kernel matrix is a random posi-
tive definite matrix following the Wishart distribution
(Gupta & Nagar, 2000), Zhang et al. (2003b) first pro-



posed a generative model of the kernel matrix. In the
transductive setting, Zhang et al. (2003a) presented
a Bayesian hierarchical model and showed that the
expectation-maximization (EM) algorithm (Dempster
et al., 1977) can be used to learn the kernel matrix
through maximum a posteriori (MAP) estimation or,
more generally, maximum penalized likelihood estima-
tion. In particular, given the kernel matrix on the
training data, the EM algorithm is used to alternately
infer the kernel matrix on the test data and the kernel
matrix relating the training data to the test data, as
well as the parameter matrix of the Wishart distribu-
tion for the kernel matrix.

In this paper, based on the Bayesian hierarchical
model proposed by Zhang et al. (2003a), we use the
Tanner-Wong data augmentation algorithm (Tanner &
Wong, 1987) for Bayesian inference to solve the kernel
matrix learning problem under the transductive set-
ting. The Tanner-Wong algorithm is closely related to
Gibbs sampling which is a type of Markov chain Monte
Carlo (MCMC) method. Like the EM algorithm, the
Tanner-Wong algorithm has been widely used in statis-
tical inference for incomplete data problems (Schafer,
1997). Moreover, it also strongly resembles the EM al-
gorithm. The Tanner-Wong algorithm consists of the
Imputation step (I-step) and the Posterior step (P-
step). The I-step simulates a random draw of some
complete-data sufficient statistics, whereas the E-step
of EM computes the expectation of the complete-data
sufficient statistics. Typically, the implementation of
the I-step is very similar to that of the E-step. On
the other hand, the P-step of the Tanner-Wong al-
gorithm is a random draw from some complete-data
posterior, while the M-step of EM performs maximiza-
tion of the complete-data likelihood. In other words,
both the I-step and the E-step are used to estimate the
values of the missing data, while the P-step and the
M-step are both used to estimate the unknown values
of the model parameters. Our results in Section 3 fur-
ther demonstrate this strong resemblance between the
Tanner-Wong algorithm and the EM algorithm.

For our kernel matrix learning problem, the computa-
tional requirements would be very high if the Tanner-
Wong algorithm works on matrix variate distributions.
To make our method feasible in practice, we present in
this paper a simplified Bayesian hierarchical model so
that the Tanner-Wong algorithm can work on distribu-
tions over random variables or random vectors (instead
of random matrices). This is motivated by some exist-
ing kernel matrix learning methods (Crammer et al.,
2003; Cristianini et al., 2002; Lanckriet et al., 2002;
Tsuda et al., 2003), which constrain the target ker-
nel matrix to a weighted combination of some fixed

base kernel matrices so that the kernel matrix learn-
ing problem can be simplified to the estimation of the
weighting coefficients. Apparently, the performance of
these methods depends critically on the choice of the
base kernel matrices. However, very little has been ad-
dressed on how to prespecify the base kernel matrices.
Usually, they are obtained from the eigenvectors of an
empirical kernel matrix on the input space. In this
paper, by a symmetric-definite generalized eigenprob-
lem we associate the kernel matrix on the input space
and the kernel matrix on the output space. Based on
this eigenproblem, we present an efficient approach to
choosing the base kernel matrices by exploiting infor-
mation not just from the input kernel matrix but also
from the partial output kernel on the training set.

The rest of this paper is organized as follows. Sec-
tions 2 presents a basic Bayesian hierarchical model for
the kernel matrix learning problem. In Section 3, we
devise a general Tanner-Wong data augmentation al-
gorithm for making inference on the basic model. Sec-
tion 4 gives a simplified Bayesian hierarchical model
and the corresponding Tanner-Wong algorithm. We
also present an efficient method for choosing the base
kernel matrices. Section 5 presents the experimental
results and the last section gives some concluding re-
marks.

2. Basic Bayesian Hierarchical Model

We consider the kernel matrix learning problem for
classification in a transductive setting. Let the train-
ing set and test set be T = {(x1, y1), . . . , (xn1

, yn1
)}

and T̃ = {(xn1+1, yn1+1), . . . , (xn1+n2
, yn1+n2

)}, re-
spectively, where xi ∈ R

q for i = 1, . . . , n1 + n2,
yi ∈ {1, 2, . . . , c} for i = 1, . . . , n1 and yi’s are un-
known for i = n1+1, . . . , n1 +n2. Letting n = n1 +n2,
we refer to X = {x1, . . . ,xn1

,xn1+1, . . . ,xn} and Y =
{y1, . . . , yn1

, yn1+1, . . . , yn} as the input set and out-
put set, respectively. We define a kernel matrix K on
(T ∪ T̃ ) × (T ∪ T̃ ) and partition it as

K =

[

K11 K12

K21 K22

]

, (1)

where n1×n1 and n2×n2 matrices K11 and K22 are
defined on the training and test sets, respectively, and
n2×n1 matrix K21 (= K′

12) characterizes the similar-
ity between the training and test data.

In general, definition of the kernel matrix K depends
on the problem considered and the prior knowledge
available. Let kI : X ×X → R and kO : Y×Y → R de-
note the input kernel and output kernel, respectively.
We define A as the input kernel matrix for X using
input kernel kI and B as the output kernel matrix



for Y using output kernel kO. Augmenting any in-
put vector x with the corresponding output y to form
a vector z = (x, y), we define a kernel matrix K on
(X × Y) × (X × Y) in this paper. Specifically, in our
experiments to be presented later, we define the ker-
nel matrix K = (A + B)/2 as the discriminant kernel
(Zhang, 2003), where A =

[

exp(−‖xi − xj‖2/β)
]

n×n
is the standard Gaussian kernel and B is the ideal ker-
nel (Cristianini et al., 2002) based on the training set,
i.e.,

[B]ij =

{

1 yi = yj

0 yi 6= yj .

Following the generative model formulation of the ker-
nel matrix in (Zhang et al., 2003a), we now assume
that the kernel matrix K is distributed according to
a Wishart distribution Wn(r,Σ) (Gupta & Nagar,
2000), as

p(K | Σ, r) =

1

C(n, r)
|Σ|−r/2 |K|(r−n−1)/2 exp

[

−
1

2
tr(Σ−1K)

]

.

Here Σ Â 0 is an n×n positive definite parameter
matrix,1 r ≥ n is the degree of freedom, and C(n, r) =
2rn/2πn(n−1)/4

∏n
j=1 Γ( r+1−j

2 ) is a normalization term
where Γ(·) is the Gamma function.

The parameter matrix Σ is left completely unspecified
in the model. However, its uncertainty is influenced by
a higher-level prior distribution. In particular, we use
a conjugate prior on Σ, i.e., Σ is distributed accord-
ing to the inverted Wishart distribution IW n(η,Θ)
(Gupta & Nagar, 2000), as

p(Σ | Θ, η) =

1

C(n, η)
|Θ|η/2 |Σ|−(η+n+1)/2 exp

[

−
1

2
tr(ΘΣ−1)

]

,

where Θ Â 0 is an n×n hyperparameter matrix. It
also follows that D = Σ−1 is distributed according to
Wn(η,Θ−1). Moreover, the conditional distribution
of D on K is Wn(r + η, (K + Θ)−1) (Gupta & Nagar,
2000).

As for Σ, we could again define Θ as a random ma-
trix and then incorporate another higher-level prior.
However, for simplicity, Θ is held fixed in this paper.
In particular, we use the Gaussian kernel on the in-
put set X to define Θ. In general, other kernels, such
as the commonly used polynomial kernel, Laplacian
kernel and linear kernel (defined on X ), may also be
used. Another possibility is to define Θ as a weighted

1In this paper, A Â 0 means that A is positive definite
and A º 0 means that it is positive semi-definite.

combination of different kernel matrices. Moreover,
for simplicity, r and η are also held fixed in this paper.
Our model is thus a hierarchical model with three lev-
els. The first level corresponds to a random Wishart
matrix, the second level corresponds to the parame-
ter matrix of the Wishart matrix, and the third level
corresponds to the hyperparameter matrix of the pa-
rameter matrix.

The observed data set provides a particular realiza-
tion of K. With an abuse of notation, we will denote
this realization again by K. Note that K represents
the partially observed kernel matrix, since only the
K11 part of K in (1) is available from the observed
data, while both K21 (and hence K12) and K22 are
missing. In other words, if we consider this as a miss-
ing data problem, then the incomplete (observable)
data is K11, the complete data is (K11,K21,K22), and
the goal is to infer the missing data (K21 and K22)
and the unknown model parameters (Σ, or equiva-
lently D = Σ−1). Consider that K Â 0 if and only
if K11 Â 0 and K22·1 Â 0 (Horn & Johnson, 1985),
where K22·1 = K22 − K21K

−1
11 K12 is the Schur com-

plement of K11. We take {K11,K21,K22·1} instead as
the complete data to ensure that K is always positive
definite. Thus, the likelihood function of the complete
data is

p (K11,K21,K22·1 | D) =

p(K11 | D) p(K22·1 | D) p(K21 | K11,D).

While Zhang et al. (2003a) proposed an EM algo-
rithm to solve this missing data problem, we propose
using the Tanner-Wong data augmentation algorithm
(Tanner & Wong, 1987) as an alternative method for
solving the same problem.

3. Tanner-Wong Algorithm for Kernel

Matrix Learning

In general, for the complete data Y = (Yobs, Ymis) with
unknown parameter θ, the Tanner-Wong data aug-
mentation starts from an initial parameter estimate
θ(0) and then repeats the following two steps in an
alternating manner:

I-step (Imputation): Given the current θ(t),
sample a value of the missing data Ymis from its
conditional distribution,

Y
(t+1)
mis ∼ p(Ymis | Yobs, θ

(t)). (2)

P-step (Posterior): Conditioning on Y
(t+1)
mis ,

sample a new value of the unknown parameter



θ from its complete-data posterior distribution,

θ(t+1)
∼ p(θ | Yobs, Y

(t+1)
mis ). (3)

It can be shown that this iterative procedure yields a

stochastic sequence {(θ(t), Y
(t)
mis) : t = 1, 2, . . .} with

stationary distribution p(θ, Ymis | Yobs). Further-
more, the stationary distributions of the subsequences

{θ(t) : t = 1, 2, . . .} and {Y
(t)
mis : t = 1, 2, . . .} are

p(θ | Yobs) and p(Ymis | Yobs), respectively. Obviously,
data augmentation is a special case of Gibbs sampling
with (Ymis, θ) partitioned into Ymis and θ. It is also
closely related to the EM algorithm, where the I-step
corresponds to the E-step and the P-step corresponds
to the M-step.

For our hierarchical model defined in the previous sec-
tion, we have Y = K with Yobs = K11 and Ymis =
(K21,K22·1), and θ = D. Thus, Bayesian inference is
based on the joint density of all variables, i.e.,

p(K11,K21,K22·1,D) = (4)

p(K11 | D) p(K22·1 | D) p(K21 | K11,D) p(D).

As for K in (1), Σ, D and Θ are similarly partitioned
as

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

,

D =

[

D11 D12

D21 D22

]

,

Θ =

[

Θ11 Θ12

Θ21 Θ22

]

.

From (Zhang et al., 2003a) or (Gupta & Nagar, 2000),
we have

K11 ∼ Wn1
(r,Σ11),

K22 ∼ Wn2
(r,Σ22),

K22·1 ∼ Wn2
(r − n1,Σ22·1),

K21 | K11 ∼ N (Σ21Σ
−1
11 K11,Σ22·1 ⊗ K11).

It is easy to see that D11 = Σ−1
11·2, D22 = Σ−1

22·1 and
D−1

22 D21 = −Σ21Σ
−1
11 . Then, given the current pa-

rameter estimate D(t), the I-step simulates K21 and
K22·1 by drawing from the following distributions:

K
(t)
21 | · · · ∼ N

`

− (D
(t)
22 )−1

D
(t)
21 K11, (D

(t)
22 )−1 ⊗ K11

´

,

K
(t)
22·1 | · · · ∼ Wn2

`

r − n1, (D
(t)
22 )−1´

, (5)

and the P-step draws the parameter D from the fol-
lowing distribution:

D(t+1) | · · · ∼ Wn

(

r + η,Q(t)
)

. (6)

Here Q(t) = (K(t) + Θ)−1 and it is partitioned into

Q =

[

Q11 Q12

Q21 Q22

]

as for K, and “| · · · ” means con-

ditioning on all other variables. The P-step in (6) can
also be expressed as the following equivalent form:

D
(t+1)
11·2 | · · · ∼ Wn1

`

r + η − n2,Q
(t)
11·2

´

,

D
(t+1)
22 | · · · ∼ Wn2

`

r + η,Q
(t)
22

´

,

D
(t+1)
21 | · · · ∼ N

`

D
(t+1)
22 (Q

(t)
22 )−1

Q
(t)
21 ,D

(t+1)
22 ⊗ Q

(t)
11·2

´

.

From the I-step in (5), we can see that only the values
of D−1

22 D21 and D−1
22 are required. Since our ultimate

goal is to estimate the missing data K21 and K22·1

but not D, this motivates us to directly draw D−1
22 D21

and D−1
22 , instead of D11·2, D21 and D22, in the P-

step. Note that D−1
22 D21 is a regression matrix. From

results on the distribution of the regression matrix (see
(Gupta & Nagar, 2000)), we can obtain an alternative
P-step as

(D−1
22 D21)

(t+1) | · · · ∼ T
`

s, (Q
(t)
22 )−1

Q
(t)
21 , (Q

(t)
22 )−1

,Q
(t)
11·2

´

,

(D−1
22 )(t+1) | · · · ∼ IW n2

`

r + η, (Q
(t)
22 )−1´

,

where s = r+η−n2 +1 and T ∼ T
(

m,M,X,Y
)

is a
p×q random matrix with matrix variate t-distribution
(Gupta & Nagar, 2000) as

p(T | m,M,X,Y) =

Γp[
1
2 (m + p + q − 1)]

π
1

2
pqΓp[

1
2 (m + p − 1)]

|X|−
1

2
q|Y|−

1

2
p ·

∣

∣I + X−1(T − M)Y−1(T − M)′
∣

∣

−
1

2
(m+p+q−1)

.

As Q
(t)
11·2 = (K11 + Θ11)

−1, (Q
(t)
22 )−1Q

(t)
21 =

−(K
(t)
21 + Θ21)(K11 + Θ11)

−1 and (Q
(t)
22 )−1 =

K
(t)
22·1 + K

(t)
21 K−1

11 (K
(t)
21 )′ + Θ22 − (K

(t)
21 + Θ21)(K11 +

Θ11)
−1(K

(t)
21 +Θ21)

′, our data augmentation algorithm
has a strong resemblance to the EM algorithm pre-
sented in (Zhang et al., 2003a).

4. A Simplified Bayesian Model for

Kernel Matrix Learning

A major practical problem with the method presented
in the previous section is its high computational re-
quirements, since the Tanner-Wong algorithm has to
work on matrix variate distributions. Moreover, to
the best of our knowledge, it is intractable to draw a
matrix from a matrix-variate normal distribution or a
matrix-variate t-distribution, although it is tractable
to draw a matrix from a Wishart distribution. There-
fore, it is necessary to seek an effective and tractable



implementation of the data augmentation algorithm.
In this section, we propose a simplified Bayesian model
that makes it possible to develop an efficient imple-
mentation.

In the kernel matrix learning literature (Crammer
et al., 2003; Cristianini et al., 2002; Lanckriet et al.,
2002; Tsuda et al., 2003), it is common to constrain
the target kernel to a weighted combination of some
available base kernels so that the learning problem is
simplified to the estimation of the weighting coeffi-
cients. In particular, the target kernel matrix G is
expressed as G =

∑n
i=1 λiµiµ

′

i with λi > 0. Let
U′ = [µ1,µ2, . . . ,µn] and L = diag(λ1, λ2, . . . , λn).
Then G = U′LU. We refer to U and µiµ

′

i’s as the
base matrix and the base kernel matrices, respectively.
Now, given U, we want to estimate λi’s and hence G to
approximate some desired kernel H, such as the ideal
kernel (Cristianini et al., 2002), based on some crite-
rion like the kernel alignment or the KL divergence
between G and H. This motivates us to devise a sim-
plified Bayesian hierarchical model and then an effi-
cient implementation of the Tanner-Wong algorithm.

4.1. A Simplified Bayesian Hierarchical Model

We know that if X ∼ Wn(r,Y) and there exists a non-
singular matrix C such that C′YC = ∆ where ∆ is
diagonal, then C′XC ∼ Wn(r,∆) (Gupta & Nagar,
2000). We apply this property to our basic model pre-
sented in Section 2. Assume that we are given a non-
singular matrix C such that C′ΣC is diagonal and we
define W = C′KC, then W is distributed according
to the Wishart distribution with a diagonal parameter
matrix ∆ = diag(δ1, . . . , δn) Â 0. In particular, we
give a model as

W ∼ Wn(r,∆). (7)

Note that a Wishart matrix with a diagonal parameter
matrix is not diagonal. So our simplified model is fea-
sible and the kernel matrix learning problem becomes
estimating the matrices W21 and W22.

In a Bayesian hierarchical framework, ∆ can have its
own prior distribution. Here, we assume that the
δj ’s are a priori conditionally independent given some
hyperparameters. In particular, we use the inverted
Gamma distribution

δj ∼ IG
(

η, λ−1
)

(8)

as a conjugate prior for the δj ’s. Thus, δ−1
j ∼ G (η, λ),

i.e., it follows a Gamma distribution. In this paper,
we fix the hyperparameter η and use

λ ∼ G(ζ, τ) (9)

as the prior for λ.

Our goal is to estimate both the missing data W21 and
W22 and the unknown parameter ∆. In order to en-
sure that W Â 0, we treat (W11,W21,W22·1) instead
of (W11,W21,W22) as the complete data. Our prob-
lem then becomes estimating the missing data W21

and W22·1 and the parameter ∆ from the observed
data W11. Bayesian inference is based on the joint
density of all variables, i.e.,

p(W11,W21,W22·1, δ
−1
1 , . . . , δ−1

n , λ) =

p(W11 | ∆) p(W21,W22·1 | ∆,W11) ·

p(λ)
n
∏

i=1

p(δ−1
i | λ). (10)

The following theorem (Gupta & Nagar, 2000) will be
very useful in the sequel.

Theorem 1 Suppose W ∼ Wn(r,∆) with W,∆ Â 0
partitioned as

[

W11 W12

W21 W22

]

,

[

∆1 0
0 ∆2

]

,

where W11 and ∆1 are both of size n1×n1. Then

(i) W11 ∼ Wn1
(r,∆1) and W22 ∼ Wn2

(r,∆2);

(ii) W21|W11 ∼ N (0,∆2 ⊗ W11); and

(iii) W22·1 ∼ Wn2
(r − n1,∆2) and is independent of

W21 and W11.

Using Theorem 1(iii), (10) can thus be rewritten as

p(W11,W21,W22·1, δ
−1
1 , . . . , δ−1

n , λ) =

p(W11 | ∆1) p(W21 | ∆2,W11) p(W22·1 | ∆2) ·

p(λ)

n
∏

i=1

p(δ−1
i | λ), (11)

leading to a simplified hierarchical model.

4.2. Tanner-Wong Algorithm for the
Simplified Model

In this subsection, we apply the Tanner-Wong algo-
rithm to carry out Bayesian inference on the simpli-
fied hierarchical model in (11). That is, we simulate
the missing data W21 and W22·1 and the parameter
∆ iteratively by (2) and (3). Given the current pa-

rameter estimate ∆(t) = diag(δ
(t)
1 , . . . , δ

(t)
n ), the I-step

simulates W21 and W22·1 by drawing from the follow-
ing distributions:

W
(t)
21 | · · · ∼ N (0,∆

(t)
2 ⊗ W11), (12)

W
(t)
22·1 | · · · ∼ Wn2

(r − n1,∆
(t)
2 ), (13)



and the P-step draws the parameters δj ’s and hyper-
parameter λ from the following distributions:

λ(t+1) | · · · ∼ G
(

nη + ζ, τ +

n
∑

i=1

(

δ−1
i

)(t)
)

,

(

δ−1
j

)(t+1)
| · · · ∼ G

(

η + r/2, λ(t+1) + w
(t)
j /2

)

.

Here w
(t)
j is the (j, j)th element of W(t). The I-

step can be easily obtained from Theorem 1(ii) and
(iii), and the derivation of the P-step is based on the
full condition. Let W′

21 = [b1,b2, . . . ,bn2
] where bj

is an n1-dimensional vector. Then the I-step (12)
is equivalent to one that separately simulates bj for
j = 1, . . . , n2, instead of W21, by

b
(t)
j | · · · ∼ N (0, δ

(t)
n1+jW11). (14)

Our revised Tanner-Wong data augmentation algo-
rithm is tractable because it involves only random
draws of the Gamma variable, the Gaussian vector,
and the Wishart matrix.

We can see that the computational cost of the cur-
rent algorithm is dominated by the I-step (13) for
W22·1. Here we give a further predigestion. In par-
ticular, we approximate W22·1 with a diagonal matrix
diag(β1, β2, . . . , βn2

). Then the I-step (13) reduces to

β
(t)
j | · · · ∼ G

(

(r − n1)/2,
(

δ−1
j+n1

)(t)
/2
)

, (15)

for j = 1, . . . , n2.

4.3. Generalized Eigenproblem for Choosing
the Base Kernel Matrices

Having formulated a simplified hierarchical model and
devised a tractable Tanner-Wong algorithm, we now
come to the question of how to choose the nonsingular
matrix C. Note that C plays the same role as the base
matrix U mentioned earlier in this section. In most ex-
isting kernel matrix learning methods, a widely used
approach is to set U to be the eigenvector matrix of
an empirical input kernel matrix. For our model, since
the hyperparameter matrix Θ is a priori specified, we
can use the matrix consisting of the eigenvectors of
Θ as a base matrix. In this subsection, by formu-
lating a symmetric-definite generalized eigenproblem,
we present an efficient approach to specifying the base
kernel matrices.

Like K, we partition the input kernel matrix A and
output kernel matrix B as

A =

[

A11 A12

A21 A22

]

,

B =

[

B11 B12

B21 B22

]

.

Obviously, A is known. For B, however, B11 is known
but B12 and B22 are both unknown. Therefore, our
problem is to estimate B12 and B22 from A and B11.

We tackle this problem by formulating a symmetric-
definite generalized eigenproblem (Golub & Loan,
1996). For the kernel matrices A ∈ R

n×n and B ∈
R

n×n, we consider a generalized eigenvalue system of
the form

| A − λB |= 0. (16)

Here and later, we assume that A Â 0 and B º 0.
With the generalized eigenproblem (Golub & Loan,
1996), we know that A and B can be simultaneously
diagonalized. More specifically, there exists a nonsin-
gular matrix Q such that

A = Q′Q, B = Q′ΛQ,

where Λ = diag(λ1, . . . , λn) is a diagonal matrix and
λ1 ≥ · · · ≥ λn ≥ 0 are the roots of (16). However, it
is intractable to determine such Q since some entries
of B are unknown. On the other hand, it is easy to
simultaneously diagonalize A11 and B11. Our point of
departure is to obtain an approximation of Q through
co-diagonalizing A11 and B11. The following theorem
provides a method for our purpose.

Theorem 2 Given A Â 0 and B º 0 partitioned as
in (1), there exists a nonsingular matrix

C =

[

C1 0
0 C2

] [

I A−1
11 A12

0 I

]

(17)

such that

A = C′C, A11 = C′

1C1, B11 = C′

1Λ1C1, (18)

where Λ1 is diagonal.

The proof of this theorem is given in Appendix A. This
theorem gives us a base matrix C and its proof proce-
dure provides a method to compute C. Denote the ith
column vector of C by ci, then cici’s constitute a set
of base kernel matrices. Recall that, unlike the usual
base matrix U, C is not orthonormal. Although or-
thonormality is unnecessary for our problem, one may
choose to orthonormalize C by using such methods as
the Gram-Schmidt method since C is nonsingular. It
is worthy to note that C is defined by using not only
information from the input kernel matrix A but also
information from the partial output kernel matrix B11.
Information from both input and output is expected
to be useful for classification and regression problems.

Let B = C′SC and K = C′WC. We partition S and

W into

[

S11 S12

S′

12 S22

]

and

[

W11 W12

W′

12 W22

]

, respec-

tively. By simple arithmetic calculations, it is obvious



that S11 = Λ1 is diagonal. However, it is not always
true that S12 = 0 and S22 is diagonal. As a result,
this implies that S is not necessarily diagonal. We
now work with W instead of K so that the original
transductive learning problem can be simplified. In
other words, we treat C as a base matrix and W as a
matrix to be estimated.

5. Experiments

To demonstrate the efficacy of our method, we apply
it to the classification problem on the ionosphere and
wine data sets from the UCI Machine Learning Repos-
itory and also the USPS handwritten digit data set
with 16×16 digit images. For simplicity, we only use
digits 1, 2, 3 and 4 corresponding to four classes with
1269, 929, 824 and 852 examples, respectively. As dis-
cussed in Section 2, we set the complete kernel matrix
as K = (A + B)/2. We then follow the procedure
described above to estimate the missing entries in K.
We first apply the method given in Section 4.3 to ob-
tain the base matrix C as defined in (17). Next, we let
W11 = (I+Λ1)/2 where Λ1 is defined in (18) and then
use the Tanner-Wong algorithm given in Section 4.2
to obtain W21 and W22. We run the algorithm for
2,000 iterations. The first 1,000 iterations are treated
as burn-in; inference is based only on the remaining
1,000 iterations. We use the following settings for the
hyperparameters: r = n + 1 in (7), η = 3.0 in (8),
ζ = 0.5 and τ = α n1/tr(W11) in (9) where α is a
constant in [0.9, 3.0] (here we set α = 1.2). In the last
step, we set K = C′WC to obtain the complete kernel
matrix K.

After obtaining K, we implement the kernel nearest
mean (KNM) classifier using K. Details of its im-
plementation can be found in (Zhang et al., 2003a).
To compare it with some existing kernel classification
methods based on the input kernel A, we also im-
plement kernel Fisher discriminant analysis (KFDA),
support vector machine (SVM), and KNM. Moreover,
we also implement the KNM classifier described in
(Zhang et al., 2003a), which uses the EM algorithm to
complete K. For convenience, we denote it as KNM-
EM. Experiments on these classifiers are performed
with the following parameter settings. We set β = 2.5
for the ionosphere and wine data sets and set β to be the
average Euclidean distance for the training examples
in the USPS data set. For SVM, we set the regular-
ization parameter C = 300. The results are averaged
over 30 random splits of the data. For ionosphere and
wine, we use 60% of the data for training and the re-
maining 40% for testing, while for USPS we use 99%
for training and 1% for testing.

Table 1 shows the classification results. The standard
deviations over 30 random splits are also shown in-
side brackets. In the table, KNM-TW1 refers to our
method with the I-step for W22·1 based on (13), while
KNM-TW2 refers to the method when (15) is used
instead for the I-step. We can see that the two meth-
ods give very similar results. This shows that even
though the more efficient KNM-TW2 method only
makes use of the approximate I-step in (15), it is ef-
fective enough in delivering comparable performance.
Thus, for the much larger USPS data set, we use only
KNM-TW2 which is more efficient. Note that KNM-
EM also gives comparable classification accuracies as
KNM-TW’s, although KNM-EM works under a fully
Bayesian setting on the kernel matrix K. The classi-
fication accuracies of KFDA and SVM are also close,
though generally lower.

6. Conclusion

In this paper, we have proposed two Bayesian hier-
archical models for kernel matrix learning using the
Tanner-Wong data augmentation algorithm, which is a
variant of MCMC methods for missing data problems.
Moreover, by formulating a symmetric-definite gener-
alized eigenproblem, we present a method for choosing
the base kernel matrices. We have demonstrated the
flexibility and efficacy of our method under the clas-
sification setting. Although the formulation in this
paper is based on the classification problem, it can be
extended to the regression problem when the output
space is continuous rather than discrete. In our pre-
vious work (Zhang et al., 2003b), we showed that the
r parameter in the Wishart distribution is equal to
the dimensionality of the feature space induced by K
and it can be estimated using EM (Zhang et al., 2003a;
Zhang et al., 2003b). In principle, we may also define a
prior distribution for r, such as a Gamma distribution,
and then use the approach presented in this paper to
estimate it.
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A. Proof of Theorem 2

Since A Â 0 and B Â 0, it then follows from (Golub
& Loan, 1996) that A11 Â 0, A22·1 Â 0, and B11 Â 0.
Furthermore, from (Golub & Loan, 1996), there exist



Table 1. Test set accuracies obtained from the classification experiments (the highest values are shown in boldface).
KNM-TW1 KNM-TW2 KNM-EM KFDA SVM KNM

ionosphere 94.33 (±1.48) 94.60 (±1.14) 94.50 (±1.87) 92.14 (±2.05) 91.71 (±2.05) 68.05 (±4.74)
wine 97.93 (±1.47) 97.51 (±1.80) 98.12 (±1.45) 95.59 (±2.76) 96.85 (±1.51) 94.04 (±3.50)
USPS – 93.05 (±1.15) 92.28 (±1.18) 91.09 (±4.22) 90.27 (±1.78) 92.04 (±1.29)

nonsingular matrices C1 and C2 such that

A11 = C′

1C1, B11 = C′

1Λ1C1,

where Λ1 is diagonal and C′

2C2 = A22·1. Note that
»

I 0

−A21A
−1
11 I

– »

A11 A12

A21 A22

– »

I −A−1
11 A12

0 I

–

=

»

A11 0
0 A22·1

–

.

So we have
[

A11 A12

A21 A22

]

=

[

I 0
A21A

−1
11 I

] [

C′

1 0
0 C′

2

]

·

[

C1 0
0 C2

] [

I A−1
11 A12

0 I

]

.

Putting C =

[

C1 0
0 C2

] [

I A−1
11 A12

0 I

]

, we have

A = C′C.
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