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Abstract

The grouping of features is highly beneficial
in learning with high-dimensional data. It re-
duces the variance in the estimation and im-
proves the stability of feature selection, lead-
ing to improved generalization. Moreover,
it can also help in data understanding and
interpretation. OSCAR is a recent sparse
modeling tool that achieves this by using a
`1-regularizer and a pairwise `∞-regularizer.
However, its optimization is computationally
expensive. In this paper, we propose an ef-
ficient solver based on the accelerated gradi-
ent methods. We show that its key projection
step can be solved by a simple iterative group
merging algorithm. It is highly efficient and
reduces the empirical time complexity from
O(d3 ∼ d5) for the existing solvers to just
O(d), where d is the number of features.
Experimental results on toy and real-world
data sets demonstrate that OSCAR is a com-
petitive sparse modeling approach with the
added ability of automatic feature grouping.

1. Introduction

Many real-world data sets are high-dimensional and
contain spurious features. Sparse modeling, which se-
lects a relevant subset of features while learning the
model, is thus often indispensable. It has been used
in diverse application areas such as computer vision,
signal processing, and bioinformatics.

Lasso (Tibshirani, 1996) is the most popular sparse
modeling algorithm. However, in the presence of
highly correlated features, it tends to select only one of
them. Consequently, estimation can be unstable and
the resultant model is difficult to interpret.
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Another deficiency with lasso is that it cannot find fea-
ture groups. In general, feature grouping can reduce
the variance of the estimator (Shen & Huang, 2010)
and improve the stability of feature selection (Jörnsten
& Yu, 2003). It also helps to gain additional insight
on the underlying data generation process, such as in
the finding of co-regulated genes in microarray analysis
(Dettling & Bühlmann, 2004). Note that this is dif-
ferent from the group lasso (Yuan & Lin, 2006), which
requires the feature groups to be known in advance.

A simple approach to find feature groups is by first
performing unsupervised clustering on the data, and
then feed the cluster centers as new features to a su-
pervised learning method (Hastie et al., 2001). A more
desirable approach is to integrate these two steps. Det-
tling & Bühlmann (2004) used a heuristic strategy that
grows and prunes the feature groups incrementally.
Jörnsten & Yu (2003) combined feature clustering and
classification into a single MDL code, and then use a
search procedure to find the best model.

The explicit search for feature groups is a combina-
torial optimization problem. Instead, one can use an
appropriate regularizer to encourage its formation. A
well-known approach is the elastic net (Zou & Hastie,
2005). In situations where the features are ordered
in some meaningful way, the fused lasso (Tibshirani
et al., 2005) directly encourages the successive feature
coefficients to be similar. However, oftentimes such
an ordering does not exist naturally, and needs to be
estimated before the fused lasso can be used.

Recently, two approaches, namely the grouping pur-
suit (Shen & Huang, 2010) and OSCAR (Octago-
nal Shrinkage and Clustering Algorithm for Regres-
sion) (Bondell & Reich, 2008), are proposed for the
more challenging feature grouping problem when fea-
tures are not ordered. Similar to the fused lasso,
they try to pull two feature coefficients βi and βj to-
gether. Specifically, grouping pursuit uses the regular-
izer

∑
j<j′ G(βj − βj′), where G(z) = λ (a regulariza-

tion parameter) if |z| > λ; and |z| otherwise. How-
ever, since G(·) is nonconvex, this leads to a sequence
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of computationally expensive difference convex (DC)
programs. Moreover, it cannot obtain sparse solutions.

In this paper, we will focus on the OSCAR. With
a novel pairwise `∞ norm, it encourages both spar-
sity and equality of coefficients for correlated features.
Feature groups are automatically discovered simulta-
neously with regression shrinkage, without the need to
pre-specify the grouping structures as in group lasso.
Moreover, since the coefficients for the grouped fea-
tures are tied, the resultant model has a reduced model
complexity and is less prone to over-fitting.

Despite these advantages, the optimization problem of
OSCAR, though still convex, is much more challeng-
ing. Bondell and Reich (2008) proposed two solvers.
The first one involves a huge quadratic program (QP)
with O(d2) variables and O(d2) constraints, where d
is the number of features. The second approach in-
volves a sequence of (potentially smaller) QP’s with
an increasing number of constraints, which however
can go up to O(d!) in the worst case. Hence, both
solvers are not scalable and the experiments in (Bon-
dell & Reich, 2008) are limited to small feature sets.
Alternatively, as OSCAR’s pairwise `∞ norm is simply
the sum of `∞ norms over groups of two variables, one
can use the network flow algorithm recently proposed
in (Mairal et al., 2010a). However, this algorithm is
designed for general overlapping groups but not tai-
lored for OSCAR. Because of the O(d2) number of
groups in OSCAR, each iteration will involve solving
a maxflow problem on a canonical graph G = (V,E)
with |V | = |E| = O(d2), and results in a complexity
of O(|V |2|E| 12 ) = O(d5) (Mairal et al., 2010b).

In this paper, we propose an accelerated gradient al-
gorithm (Beck & Teboulle, 2009) that is tailored for
OSCAR’s optimization problem. By using a simple
group merging algorithm, the key projection step can
be solved exactly and efficiently in O(d log(d)) time.
Hence, the proposed algorithm is particularly efficient
on high-dimensional data sets.

The rest of this paper is organized as follows. In Sec-
tion 2, we first give a brief review on OSCAR and ac-
celerated gradient methods. Section 3 then describes
the proposed solver. Experimental results are pre-
sented in Section 4, and the last section gives some
concluding remarks.

2. Related Work

2.1. OSCAR

Let X ∈ Rn×d be the input data matrix (with each
row being an instance) and y ∈ Rn be the correspond-

ing output. We assume that y is centered, and each
column of X is standardized. OSCAR is formulated
as the following optimization problem:

min
β
‖y−Xβ‖2 +λ1‖β‖1 +λ2

∑
i<j

max{|βi|, |βj |}, (1)

where λ1, λ2 are regularization parameters. The
OSCAR regularizer consists of two parts: An `1-
regularizer which encourages sparsity as in lasso, and
a pairwise `∞-regularizer which encourages every co-
efficient pairs |βi|, |βj | to be equal (Figure 1).

(a) Lasso. (b) OSCAR.

Figure 1. Constraint regions for lasso and OSCAR.

Bondell and Reich (2008) proposed two solvers for (1).
Unfortunately, both of them are computationally ex-
pensive. The first solver involves a huge QP with
(d2 +3d)/2 variables and d2 + d+1 linear constraints.
The second one (described in the web appendix B of
(Bondell & Reich, 2008)) uses a sequential QP algo-
rithm in which constraints are gradually added, but
the total number of constraints can be O(d!).

2.2. Accelerated Gradient Methods

Gradient methods are well-known for their simplic-
ity and scalability. However, a major drawback is
that they have slow convergence. In the past decades,
attempts were made to accelerate gradient methods.
Nesterov (1983) pioneered the “optimal method” for
smooth optimization, which achieves the optimal con-
vergence rate for a black-box model. Subsequent
works (Beck & Teboulle, 2009; Nesterov, 2007) ex-
tended this to composite optimization problems of the
form minβ f(β) + r(β), where f(β) is convex with
L-Lipschitz continuous gradient, and r(β) is convex
but nonsmooth. While gradient methods perform de-
scent by simply using the (sub)gradient, accelerated
methods first solve the following optimization problem
(often called the projection or proximal step)

arg min
β

Q(β; β̂
t
) ≡ (β − β̂

t
)T∇f(β̂

t
)

+
L

2
‖β − β̂

t
‖2 + r(β), (2)

where β̂
t

is the current estimate at iteration t. Note
that Q(β; β̂

t
) is a quadratic approximation on the
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smooth component f(β), while leaving the nonsmooth
component r(β) intact. Problem (2) is also a com-
mon construct in the proximal methods (Bach et al.,
2011) and many recent stochastic subgradient meth-
ods (Duchi & Singer, 2009).

The subsequent update step depends on the specific
accelerated algorithm. In this paper, we will adopt
the FISTA (Fast Iterative Shrinkage-Thresholding Al-
gorithm) (Beck & Teboulle, 2009), which is shown in
Algorithm 1. While traditional gradient methods have
a slow convergence rate of O(1/

√
N), where N is the

number of iterations, FISTA converges as O(1/N2).
However, this requires that the crucial projection step
in (2) can be solved efficiently and exactly.

Algorithm 1 FISTA (Beck & Teboulle, 2009).

1: Initialize: β̂
1
← β0 ∈ Rn, τ1 ← 1.

2: for t = 1, 2, . . . , N do
3: βt ← arg minβ Q(β; β̂

t
). {projection step}

4: τt+1 ←
1+
√

1+4τ2
t

2 .

5: β̂
t+1
← βt +

(
τt−1
τt+1

)
(βt − βt−1).

6: end for
7: Output βN .

2.3. Structured Sparse Models

The OSCAR regularizer is an example of structured
sparsity-inducing norm (Bach et al., 2011; Jenatton
et al., 2009). Recently, Mairal et. al. (2010a) consid-
ered structured norms of the form∑

g∈G
ηg‖βg‖∞, (3)

where G is an arbitrary set of overlapping groups of in-
dices in {1, 2, . . . , d}, βg is the subvector of β indexed
by group g, and ηg the corresponding weight. They de-
veloped an efficient algorithm (called ProxFlow) which
is based on accelerated gradient methods. As discussed
in Section 2.2, its success thus relies on the efficient
computation of the projection step. It is shown that
the dual of this step can be reformulated as a quadratic
min-cost flow algorithm on a canonical graph G(V,E),
where |V | = |G|+ d and |E| = |G|+

∑
g∈G |g|+ d. The

worst-case complexity for solving this maxflow prob-
lem is O(|V |2|E| 12 ) (Mairal et al., 2010b), though em-
pirically it can be much faster.

Obviously, (3) admits the OSCAR regularizer in (1) as
a special case, and thus ProxFlow can be readily used
for its optimization. However, because of the O(d2)
number of groups in OSCAR’s pairwise `∞-regularizer,
the canonical graph in ProxFlow’s maxflow problem

has |V | = |E| = O(d2). Consequently, each projection
step takes O(d5) time. As will be shown in Section 4,
empirically this is as slow as the solvers in (Bondell &
Reich, 2008).

Recently, Bach (2010) proposed an interesting connec-
tion between structured sparsity-inducing norms (in-
cluding that of OSCAR) and submodular functions.
The projection step can then be cast as submodular
function minimization, in which standard algorithms
can be used. However, these algorithms either have
high complexity (e.g., O(d6)) or no complexity bound
at all (e.g., the minimum-norm-point algorithm) (Fu-
jishige, 2005). Moreover, as these solvers are generic,
they can be rather inefficient for a specific model.

3. Efficient Projection Step for OSCAR

In this section, we will show that an efficient algorithm
can be tailor-made for the projection step of OSCAR.
First, we decompose the OSCAR objective in (1) as

f(β) = ‖y −Xβ‖2,
r(β) = λ1‖β‖1 + λ2

∑
i<j

max{|βi|, |βj |},

where f(β) is smooth and r(β) is nonsmooth. The
objective Q(β; β̂

t
) in (2) can then be written as

min
β

d∑
i=1

β2
i −

2[(Lβ̂t
i −∇f t

i )βi]
L

+
2
L

r(β), (4)

where f t
i = [f(β̂

t
)]i. Note that the only term that de-

pends on the sign of βi is (Lβ̂t
i −∇f t

i )βi. To minimize
(4), one has to choose the sign of βi such that

(Lβ̂t
i −∇f t

i )βi ≥ 0. (5)

Thus (4) can be rewritten more compactly as

min
z≥0

F (z) ≡ (z− a)T z + r̂(z), (6)

where

zi = |βi|, ai = 2
|Lβ̂t

i −∇f t
i |

L
, r̂(z) =

2
L

r(z). (7)

Next, we permute ai’s (and zi’s accordingly) such that

a1 ≥ · · · ≥ ad ≥ 0. (8)

3.1. Properties of the Optimal Solution of (6)

3.1.1. z∗i ’s are Non-increasing

With the ai’s sorted in decreasing order as in (8), the
following proposition shows that the optimal z∗i ’s will
also be arranged in the same order. (Proofs are omit-
ted due to lack of space.)
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Proposition 1. For the optimal solution in (6),

z∗1 ≥ z∗2 ≥ . . . ≥ z∗d ≥ 0. (9)

Moreover, if ai = aj, then z∗i = z∗j

By sorting the |βi|’s in (1) to form |β(i)|’s such that
|β(1)| ≥ |β(2)| ≥ · · · ≥ |β(d)|, the OSCAR regularizer
can be written as λ1‖β‖1 + λ2

∑d
i=1(d − i)|β(i)|. In

other words, z∗i , the ith largest value among the z∗i s,
has a weight of wi = 2

L [λ1 + λ2(d− i)] associated with
z∗i . We can then replace the constraint z ≥ 0 in (6)
by the more explicit ordering constraint in (9):

minz F (z) =
d∑

i=1

F̄i(zi) (10)

s.t. z1 ≥ z2 ≥ · · · ≥ zd ≥ 0,

where F̄i(zi) = (zi − ai)zi + wizi.

3.1.2. Groups in z∗

Since the OSCAR regularizer encourages |βi| = |βj |,
we expect that some of {z1, . . . , zd} will be lumped
into groups. The following gives a formal definition.
Definition 1. Given {z1, . . . , zd}, the set of indices
Is:t = {i ∈ Z : s ≤ i ≤ t}, where s, t ∈ Z, is called a
group (denoted Gs:t) if

1. zi = zj for all i, j ∈ Is:t;

2. zs−1 6= zs if s 6= 1;

3. zt 6= zt+1 if t 6= d.

If we consider a particular group Gs:t in isolation,
the corresponding minimum value of the sub-sum∑

i∈Gs:t
F̄i(zi) can be obtained from the following

lemma.
Lemma 1. Given a group Gs:t,

∑
i∈Gs:t

F̄i(zi) re-
duces to the univariate convex quadratic function∑

i∈Gs:t
F̄i(z), which is minimized by the group value

z = zs = . . . = zt = max{vs:t, 0}, (11)

where vs:t ≡
P

i∈Gs:t
(ai−wi)

2(t−s+1) .

Obviously, at the optimal solution z∗, Gs:t cannot be
considered in isolation but needs to be determined to-
gether with the other zi’s so that Proposition 1 is sat-
isfied. Interestingly, the following proposition shows
that the common value for each zi ∈ Gs:t is still given
by the group value in (11).
Proposition 2. For a group Gs:t in the optimal so-
lution z∗ of (10), the common value for each entry in
Gs:t is given by the group value in (11).

Moreover, we will show in Proposition 3 that the
groups in the optimal z∗ must be coherent in the fol-
lowing sense.
Definition 2. A group Gs:t is coherent if there is no
integer u ∈ {s, s+1, . . . , t−1} such that vs:u > vu+1:t.
Proposition 3. For any group Gs:t in the optimal z∗,
if its group value vs:t ≥ 0, then Gs:t is coherent.

Now we are ready to give the sufficient and necessary
conditions for the optimal z∗.
Proposition 4. z∗ is an optimal solution of (10) if
and only if it satisfies Propositions 1, 2 and 3.

3.2. The Algorithm

Initially, every index s ∈ {1, 2, . . . , d} forms a group
Gs:s = {s} of its own. The following proposition shows
that if we have two consecutive coherent groups Gs:u

and Gu+1,t such that the group values are not in de-
creasing order, then the merged group is also coherent.
Proposition 5. For two consecutive coherent groups
Gs:u and Gu+1,t. If vs:u ≤ vu+1:t, the merged group
Gs:t is also coherent.

Algorithm 2 shows how to obtain the optimal z∗. Ini-
tially, each index forms a group. Starting from the first
group, it examines the group values of two consecutive
groups. If they are not in decreasing order, the groups
are merged and pushed to the stack. Hence, when the
algorithm terminates, the groups are arranged in de-
creasing order, and thus satisfies Proposition 1. After
obtaining the group structure, the common value for
entries in each group of z∗ is simply the group value
given by (11), and thus Proposition 2 is also satis-
fied. Moreover, Proposition 5 ensures that the merged
group is coherent, thus satisfying Proposition 3.

Algorithm 2 Solving the projection step.
1: Compute a in (7).
2: Sort ai’s in decreasing order. Use the sorted in-

dices to form groups G1:1,G2:2, . . . ,Gd:d.
3: Set stack S = {G1:1} and let Gtop be the group at

the top of S.
4: for i = 2, 3, . . . , d do
5: Ḡ ← Gi:i.
6: while S is not empty and v(Ḡ) ≥ v(Gtop) do
7: Ḡ ← Ḡ ∪ Gtop. {merge}
8: pop Gtop from S.
9: end while

10: push Ḡ onto S.
11: end for

The optimal β∗ for the projection step can be obtained
from z∗ as follows. Its magnitude is recovered from (7)



Efficient Sparse Modeling with Automatic Feature Grouping

as |β∗i | = z∗i , while its sign is chosen such that (5) is
satisfied.

3.2.1. Time Complexity

Initially, there are d groups and each merge operation
reduces the number of groups by one. Hence, there
are at most d − 1 merge operations. As each merge
operation and other stack operations take O(1) time,
the complexity of Algorithm 2 is dominated by the ini-
tial sorting of ai’s, which takes O(d log d) time. This is
much faster than the QP-based and SQP-based solvers
discussed in Section 2.1, and the network flow algo-
rithms for general structured sparse models discussed
in Section 2.3.

The number of iterations for FISTA to obtain
an ε-optimal solution is O( 1√

ε
) (Beck & Teboulle,

2009). The time to compute the gradient of ‖y −
Xβ‖2 is usually O(nd). Hence, the total time is
O

(
1√
ε
(d(n + log d)

)
. Typically, n � log d, and the

time thus scales linearly w.r.t. d.

3.2.2. Remarks

As discussed in Section 2.2, the projection step is a
core component in many other proximal and acceler-
ated gradient methods. Hence, the proposed efficient
computation of the projection step can also be used
with these methods and is not limited to FISTA.

Moreover, since an (accelerated) gradient method only
requires the knowledge of the gradient, the proposed
algorithm can be used to extend OSCAR to other loss
functions (besides the square loss). Indeed, even when
the loss is non-smooth (such as the hinge loss), one
can still utilize the proposed algorithm with methods
like FOBOS (Duchi & Singer, 2009) in both the deter-
ministic and stochastic settings.

4. Experiments

In this section, we perform experiments on a number
of synthetic and real-world data sets. At discussed
in (Shen & Huang, 2010), encouraging coefficients to
be similar to each other will unwantedly over-penalize
large pairwise coefficient differences and thus impedes
performance. Instead of resorting to the use of a non-
convex regularizer as in (Shen & Huang, 2010), we
will alleviate this problem in OSCAR by taking a two-
step approach. First, we run OSCAR to obtain the
group structure. Features with zero coefficients are
discarded, while those in the same group G are merged
to form a new feature xG =

∑
i∈G sgn(βi)xi of weight

|G|. They are then used to train a weighted ridge re-

gression model. The rescaled version will be denoted
R-OSCAR. A similar two-stage approach is also im-
plemented for lasso and elastic net. However, they are
not as effective and so will not be reported here.

4.1. Efficiency of the Proposed Solver

We compare the proposed solver with (1) the QP and
sequential QP (SQP) algorithms1 in (Bondell & Re-
ich, 2008); and (2) ProxFlow2 (Mairal et al., 2010b).
Following (Bondell & Reich, 2008), the data is gener-
ated from the model y = Xβ + ε, with ε ∼ N(0, σ2)
and σ = 15. We use the two most difficult synthetic
problems (examples 4 and 5 in their Section 4), with
varying input dimensionality d:

1. β = [0, . . . , 0︸ ︷︷ ︸
0.3d

, 2, . . . , 2︸ ︷︷ ︸
0.2d

, 0, . . . , 0︸ ︷︷ ︸
0.3d

, 2, . . . , 2︸ ︷︷ ︸
0.2d

]T , and

X ∼ N (0,C), where the covariance matrix C is
given by cij = 0.5 for i 6= j and cii = 1.

2. β = [3 . . . 3︸ ︷︷ ︸
0.3d

, 0 . . . 0︸ ︷︷ ︸
0.7d

]T , and inputs are generated as

xi = Z1 + εi, Z1 ∼ N (0, 1) i = 1, . . . , 0.1d,
xi = Z2 + εi, Z2 ∼ N (0, 1) i = 0.1d + 1, . . . , 0.2d,
xi = Z3 + εi, Z3 ∼ N (0, 1) i = 0.2d + 1, . . . , 0.3d,
xi ∼ N (0, 1) i = 0.3d + 1, . . . , d,

and εi ∼ N (0, 0.16).

We use 1000 samples for training. Experiments are
performed on a PC with a quad-core AMD 3.0GHz
CPU and 8GB memory.

On all the runs, the four solvers return almost identical
solutions3, and so only the time is reported in Figure 2.
As expected, the proposed solver is much faster than
the others when d is large (e.g., d > 32). Empirically,
the running time of the proposed solver scales as O(d)
(which agrees with our analysis in Section 3.2.1), while
the QP-based solver scales as O(d4.6), SQP scales as
O(d3.8), and ProxFlow as O(d3.2).

4.2. Comparison with Other Sparse Methods

4.2.1. Synthetic Data

We perform experiments on five synthetic problems
that have been commonly used in the sparse learning
literature (Bondell & Reich, 2008; Tibshirani, 1996;
Zou & Hastie, 2005). The regression model is y =
Xβ∗ + ε, with ε ∼ N(0, σ2) and

1http://www4.stat.ncsu.edu/∼bondell/software.
html

2http://www.di.ens.fr/∼mairal/software.php
3The relative differences in the obtained objective val-

ues and ‖β‖ are typically smaller than 10−5.
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(a) Data set 1.

(b) Data set 2.
Figure 2. Running time for various OSCAR solvers. Note
that both axes are in log scale.

1. d = 8,β∗ = [3, 2, 1.5, 0, 0, 0, 0, 0]T , σ = 3, and
cov(xi,xj) = 0.7|i−j|;

2. Same as data set 1 except that β∗ =
[3, 0, 0, 1.5, 0, 0, 0, 2]T ;

3. Same as data set 1 except that β∗ =
[0.85, 0.85, . . . , 0.85]T ;

4. Same as data set 1 in Section 4.1, with d = 40.
5. Same as data set 2 in Section 4.1, except that d =

40 and the groups of nonzero and zero coefficients
have sizes 15 and 25, respectively.

Figure 3 shows the feature coefficients obtained by the
various methods in a typical run. For lack of space,
only results for data set 5 are shown. Feature ordering
for the fused lasso is obtained by hierarchical cluster-
ing, as suggested in (Tibshirani et al., 2005). Parame-
ters in all the models are tuned using an independent
validation set. As can be seen, only R-OSCAR and
fused lasso can perform feature grouping, and the R-
OSCAR solution is closer to the ground truth.

Table 1 compares the various methods in terms of the
(1) mean-squared error (MSE) (β−β∗)XT X(β−β∗);
(2) degree of freedom (dof), which is the number of
unique nonzero coefficients obtained. For OSCAR
and R-OSCAR, it is the number of groups discovered
(Bondell & Reich, 2008); (3) number of nonzero coef-
ficients that are estimated as zero (#(NZ → Z)); and
(4) number of zero coefficients that are estimated as
nonzero (#(Z → NZ)). As can be seen, R-OSCAR

(a) ground truth. (b) R-OSCAR. (c) fused lasso.

(d) lasso. (e) elastic net.
Figure 3. Feature coefficients obtained on data set 5.

reduces the bias associated with OSCAR and has bet-
ter MSE. Overall, R-OSCAR outperforms the others
on all four criteria. Because of its ability to automat-
ically group features, R-OSCAR reduces the dof and
thus model complexity, making it less prone to over-
fitting.

4.2.2. 20-Newsgroups

In this experiment, we use 5 pairs of newsgroups from
the 20-newsgroups data set. The first 3 pairs are neigh-
boring newsgroups in the hierarchy, while the last 2
pairs are distant newsgroups. We remove words that
appear in fewer than 3 documents. 20% and 40% of
samples are then used for training and validation, re-
spectively, and the rest are for testing. All features
are centered and scaled to unit variance. To make the
data set more challenging, we first run ridge regression,
and then duplicate the 30 most important features 100
times (with added noise generated from N (0, 0.16)) to
form 30 additional groups.

Results are shown in Table 2. As can be seen, while
the elastic net has the best accuracy, its dof is much
larger. In contrary, lasso and fused lasso often have
small dofs, but their accuracies are inferior. On the
other hand, the accuracy of R-OSCAR is comparable
with the elastic net, and yet enjoys a small dof. Fig-
ure 4 compares the coefficients obtained by the elastic
net and R-OSCAR on the 30 additional groups of the
“motorcycles vs. autos” task. Though the elastic net
has some grouping effect, it fails to tie the features
in the same group (which are generated as duplicates
of each other) together. In contrast, the R-OSCAR
solution shows much clearer feature grouping.

4.2.3. Breast Cancer

The finding of co-regulated gene groups is very useful
in bioinformatics. Here, we experiment with the breast
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Table 1. Results on the synthetic data. The numbers in brackets are the standard errors (of the median) estimated by
using the bootstrap with B = 500 as in (Zou & Hastie, 2005).

lasso fused lasso elastic net OSCAR R-OSCAR
data set 1 MSE 2.59(0.53) 1.60(0.29) 0.84(0.24) 2.50(0.51) 1.07(0.36)
#train=20 dof 4.87(0.32) 3.42(0.47) 4.20(0.37) 4.93(0.24) 2.98(0.12)
#test=200 #(Z → NZ) 2.09(0.40) 2.29(0.72) 1.28(0.43) 2.84(0.46) 0.02(0.13)

#(NZ → Z) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
data set 2 MSE 2.31(0.32) 1.96(0.18) 1.58(0.23) 1.94(0.23) 1.50(0.29)
#train=20 dof 5.00(0.38) 4.27(0.42) 5.42(0.47) 4.83(0.36) 3.72(0.47)
#test=200 #(Z → NZ) 2.91(0.28) 3.52(0.48) 3.20(0.38) 3.93(0.40) 3.39(0.45)

#(NZ → Z) 0.98(0.10) 0.96(0.17) 1.00(0.00) 0.49(0.47) 0.97(0.17)
data set 3 MSE 2.87(0.43) 0.43(0.247) 1.45(0.21) 1.23(0.40) 0.08(0.11)
#train=20 dof 6.01(0.21) 1.02(0.12) 7.38(0.46) 3.47(0.47) 1.00(0.00)
#test=200 #(Z → NZ) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

#(NZ → Z) 1.99(0.20) 0.00(0.00) 0.59(0.47) 0.00(0.00) 0.00(0.00)
data set 4 MSE 47.30(2.71) 24.49(1.42) 34.61(1.60) 24.44(1.23) 20.48(0.71)

#train=100 dof 19.66(0.60) 2.75(0.48) 23.93(0.38) 10.28(1.21) 15.32(3.57)
#test=400 #(Z → NZ) 7.00(0.62) 19.68(0.57) 9.15(0.39) 19.97(0.14) 19.27(0.42)

#(NZ → Z) 7.03(0.63) 0.00(0.04) 4.90(0.30) 0.00(0.00) 0.00(0.03)
data set 5 MSE 61.71(4.67) 36.38(5.78) 33.25(3.09) 50.48(3.50) 16.02(1.95)
#train=50 dof 13.73(0.76) 8.63(0.55) 16.72(0.68) 16.92(0.86) 5.03(0.26)
#test=400 #(Z → NZ) 4.87(0.39) 5.44(0.58) 3.49(0.69) 10.80(1.21) 0.53(0.47)

#(NZ → Z) 6.39(0.47) 0.01(0.07) 1.62(0.46) 0.63(0.52) 0.40(0.46)

Table 2. Results on the 20-newsgroups subset. Numbers in brackets under each data set name are the dimensionality,
number of training samples, number of validation samples, and number of test samples.

lasso fused lasso elastic net OSCAR R-OSCAR
baseball vs. hockey test accuracy 84.71 85.46 87.09 84.46 86.22
(7579/396/794/798) dof 234 278 1807 206 381

guns vs. mideast test accuracy 92.09 91.04 93.02 91.96 92.09
(9247/364/726/759) dof 117 206 1738 178 238

autos vs. motorcycles test accuracy 83.04 84.30 88.19 84.67 86.06
(8573/394/790/796) dof 104 360 5637 308 246
windows.x vs. misc test accuracy 86.23 87.40 89.61 86.11 88.68
(7351/250/502/857) dof 500 213 3013 373 304
atheism vs. graphics test accuracy 93.70 93.70 94.81 93.83 94.57
(7195/320/638/810) dof 486 273 1872 451 293

(a) elastic net. (b) R-OSCAR.

Figure 4. Coefficients for weights in the 30 additional
groups of “autos vs. motorcycles”. The vertical lines are
used to delineate the groups.

cancer data4, which contains 8141 genes in 295 tumors
(78 metastatic and 217 non-metastatic). As in (Jacob
et al., 2009), we use the 300 genes that are most cor-
related to the output, and reduce the class imbalance
by duplicating the positive samples twice. 50%, 30%
and 20% of the data set are then randomly chosen for
training, validation, and testing, respectively.

Table 3 shows the results averaged over 5 repetitions.
As can be seen, both fused lasso and R-OSCAR can
select more features than lasso for more accurate clas-
sification, while being able to group them and obtain
much smaller dofs than the elastic net. Moreover, R-
OSCAR is the most accurate among the four methods.

4http://cbio.ensmp.fr/∼ljacob/
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Table 3. Results on the breast cancer data.
fused elastic

lasso lasso net R-OSCAR
test acc 65.93 72.41 71.83 74.08

dof 40.00 17.00 147.00 34.60
#nonzero feat. 40.00 217.2 147.00 103.80

5. Conclusion

In this paper, we used the accelerated gradient method
to solve the optimization problem of the structured
sparse OSCAR model. For the core projection step,
we first studied the properties of its optimal solution
and then showed that it can be solved by an itera-
tive group merging algorithm. It is simple, easy to
implement, and much more efficient than (1) the QP-
based and SQP-based OSCAR solvers designed for OS-
CAR; and (2) the generic network flow algorithms for
structured sparse models. Moreover, by rescaling the
OSCAR solution with ridge regression, the unwanted
over-penalty of large pairwise coefficient differences is
alleviated. Experimental results show that it is a com-
petitive regularizer for both regression and classifica-
tion, but with the added ability of automatic feature
grouping.
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