
Convex Multitask Learning with Flexible Task Clusters

Leon Wenliang Zhong WZHONG@CSE.UST.HK
James T. Kwok JAMESK@CSE.UST.HK

Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong

Abstract
Traditionally, multitask learning (MTL) assumes
that all the tasks are related. This can lead to neg-
ative transfer when tasks are indeed incoheren-
t. Recently, a number of approaches have been
proposed that alleviate this problem by discover-
ing the underlying task clusters or relationship-
s. However, they are limited to modeling these
relationships at the task level, which may be re-
strictive in some applications. In this paper, we
propose a novel MTL formulation that captures
task relationships at the feature-level. Depending
on the interactions among tasks and features, the
proposed method construct different task cluster-
s for different features, without even the need of
pre-specifying the number of clusters. Compu-
tationally, the proposed formulation is strongly
convex, and can be efficiently solved by accel-
erated proximal methods. Experiments are per-
formed on a number of synthetic and real-world
data sets. Under various degrees of task rela-
tionships, the accuracy of the proposed method
is consistently among the best. Moreover, the
feature-specific task clusters obtained agree with
the known/plausible task structures of the data.

1. Introduction
Many real-world problems involve the learning of a number
of tasks. Instead of learning them individually, it is now
well-known that better generalization performance can be
obtained by harnessing the intrinsic task relationships and
allowing tasks to borrow strength from each other. In recent
years, a number of techniques have been developed under
this multitask learning (MTL) framework.

Traditional MTL methods assume that all the tasks are re-
lated (Evgeniou & Pontil, 2004; Evgeniou et al., 2005).

Appearing in Proceedings of the 29 th International Conference
on Machine Learning, Edinburgh, Scotland, UK, 2012. Copyright
2012 by the author(s)/owner(s).

However, when this assumption does not hold, the perfor-
mance can be even worse than single-task learning. If it
is known that the tasks are clustered, a simple remedy is
to constrain task sharing to be just within the same clus-
ter (Argyriou et al., 2008; Evgeniou et al., 2005). This can
be further extended to the case where task relationships are
represented in the form of a network (Kato et al., 2007).
However, in practice, such an explicit knowledge of task
clusters/network is rarely available.

Recently, by adopting different modeling assumptions, a
number of approaches have been proposed that identify
task relationships simultaneously with parameter learning.
For example, some assume that the task parameters share a
common prior in a Bayesian model (Yu et al., 2005; Zhang
& Schneider, 2010; Zhang & Yeung, 2010); that the data
follows a dirty model (Jalali et al., 2010); that most of the
tasks lie in a low-dimensional subspace (Ando & Zhang,
2005; Chen et al., 2010), or that outlier tasks are present
(Chen et al., 2011a). In this paper, we will mainly be in-
terested in techniques that assume the tasks are clustered
(Argyriou et al., 2008; Evgeniou et al., 2005), and then in-
fer the clustering structure automatically during learning
(Jacob et al., 2008; Kang et al., 2011). Interestingly, it is
recently shown that this clustered MTL approach is equiv-
alent to alternating structure optimization (Ando & Zhang,
2005) that assumes the tasks share a low-dimensional struc-
ture (Zhou et al., 2011).

However, all the existing methods model the task relation-
ships at the task level, and the features are assumed to al-
ways observe the same set of task clusters or covariance
structure (Figure 1(a)). This may be restrictive in some
real-world applications. For example, in recommender
systems, each customer corresponds to a task and each
feature a movie attribute. Suppose that we have a rela-
tively coherent group of customers, such as Jackie Chan
fans who are interested in action comedy movies (Fig-
ure 1(b)). On the “language” attribute, however, some of
them may prefer English, some prefer standard Chinese
(Putonghua/Mandarin), some prefer Cantonese or even a
combination of these. Hence, the clustering structure as
seen by this feature is very different from those of the oth-



Convex Multitask Learning with Flexible Task Clusters

ers. Another example is when the features are obtained by
some feature extraction algorithm (such as PCA) and so
have different discrimination abilities. While the less dis-
criminating features may be used in a similar manner by
all the tasks, highly discriminating features may be very
class-specific and are used differently by different tasks
(Figure 1(c)). Hence, again, these features may observe
different task relationships. This phenomenon will also be
demonstrated in the experiments in Section 3.

(a) uniform structure.

(b) movie recommendation. (c) features with differen-
t discriminating power.

Figure 1. Example task clustering structures of the weight matrix.
Each row is a feature, each column is a task, and each color de-
notes a cluster (colors on different rows are not related). Figure (a)
shows an uniform clustering structure shared by all features; while
(b) and (c) show examples of non-uniform clustering structures.

In this paper, we extend clustered MTL such that the task
cluster structure can vary from feature to feature. This is
thus more fine-grained than existing MTL methods that on-
ly capture task-level (but not feature-level) relationships.
Moreover, a key difference with (Jacob et al., 2008) is that
we do not require the number of clusters to be pre-specified.
Indeed, depending on the complexity of the tasks and use-
fulness of each feature, different numbers of clusters can
be formed for different features.

Computationally, the optimization problem is often chal-
lenging in clustered MTL algorithms. For example, in
(Kang et al., 2011), it leads to a mixed integer program,
which has to be relaxed as a nonlinear optimization prob-
lem and then solved by gradient descent. This suffers
from the local minimum problem and potentially slow con-
vergence. On the other hand, the proposed approach di-
rectly leads to a (strongly) convex optimization problem,
which can then be efficiently solved by accelerated proxi-
mal methods (Nesterov, 2007) after some transformations.

Notation: Vector/matrix transpose is denoted by the super-
script ′, ‖A‖F =

√
trace(A′A) is the Frobenius norm of

matrix A, Ai· is its ith row and A·j its jth column.

2. The Model
Suppose that there are T tasks. The tth task has nt training
samples {(x(t)

1 , y
(t)
1 ), . . . , (x

(t)
nt , y

(t)
nt )}, with input x

(t)
i ∈

RD and output y(t)
i ∈ R. We stack the inputs and out-

puts together to form matrices X(t) = [x
(t)
1 , . . . ,x

(t)
nt ]′ and

y(t) = [y
(t)
1 , . . . , y

(t)
nt ]′, respectively. A linear model is used

to learn each task. Let the weight associated with task t be
wt. The predictions on the nt samples are stored in the
vector X(t)wt.

2.1. Simultaneous Clustering of Task Parameters

We decompose each wt into ut+vt, where ut tries to cap-
ture the shared clustering structure among task parameters,
and vt captures variations specific to each task. Learning
of wt’s is performed jointly with the clustering of ut’s via
the following regularized risk minimization problem:

minU,V

T∑
t=1

‖y(t) −X(t)(ut + vt)‖2 + λ1‖U‖clus

+λ2‖U‖2F + λ3‖V‖2F , (1)

where U = [u1, . . . ,uT ] and V = [v1, . . . ,vT ], and
λ1, λ2, λ3 are regularization parameters. The first term in
(1) is the empirical (squared) loss on the training data, and
‖U‖clus is the sum of pairwise differences for elements in
each row of U,

‖U‖clus =

D∑
d=1

∑
i<j

|Udi − Udj |. (2)

For each feature d and each (ui,uj) pair, the pairwise
penalty in ‖U‖clus encourages Udi, Udj to be close togeth-
er, leading to feature-specific task clusters. It can also be
shown that ‖U‖clus is a convex relaxation of k-means clus-
tering on each feature. Note that this is different from the
fused lasso regularizer (Tibshirani et al., 2005), which is
used for clustering features in single-task learning while
‖U‖clus is for clustering tasks in MTL. It is also different
from the graph-guided fused lasso (GFlasso) (Chen et al.,
2011b), which does not decompose wt as ut + vt, and
subsequently cannot cluster the tasks due to the use of s-
moothing. The regularizer ‖V‖2F =

∑T
t=1 ‖vt‖2 penal-

izes the deviations of each wt from ut, and ‖U‖2F is the
usual ridge regularizer penalizing U’s complexity. Since
‖U‖2F , ‖V‖2F are strongly convex and the other terms in
(1) are convex, (1) is a strongly convex optimization prob-
lem.

Some MTL papers also decompose wt as ut + vt, but the
formulations and goals are different from ours. In (Evge-
niou et al., 2005), ut is the (single) cluster center of all the
tasks; in (Ando & Zhang, 2005; Chen et al., 2010; 2011a),



Convex Multitask Learning with Flexible Task Clusters

ut comes from a low-dimensional linear subspace, which is
extended to a nonlinear manifold in (Agarwal et al., 2010);
in (Jalali et al., 2010), ut is the component that uses fea-
tures shared by other tasks.

Moreover, model (1) encompasses a number of interesting
special cases: (i) λ1 → ∞:1 For each d, all Udt’s become
the same. Thus, wt reduces to ū + vt for some “mean
weight” ū, and (1) reduces to the model in (Evgeniou et al.,
2005). (ii) λ1 = 0: The following Proposition shows that
(1) reduces to independent ridge regression on each task.
Proposition 1. When λ1 = 0, model (1) reduces to
minwt ‖y(t) −X(t)wt‖2 + λ2λ3

λ2+λ3
‖wt‖2, t = 1, . . . , T .

(iii) λ2 6= 0, λ3 = 0: Since ut is penalized while vt is
not, ut will become zero at optimality, irrespective of the
value of λ1. Thus, (1) reduces to independent least squares
regression on each task: minwt ‖y(t) − X(t)wt‖2. Obvi-
ously, this is the same as setting λ1 = λ2 = λ3 = 0.

2.2. Properties

Denote the optimal solution in (1) by (U∗,V∗), and let
W∗ ≡ U∗ + V∗. The following Proposition shows that
if tasks i and j have similar weights on feature d, the cor-
responding U∗ entries are clustered together. On the other
hand, for an outlier task t, its ut component is separated
from the main group.
Proposition 2. If |W ∗di −W ∗dj | <

λ1

λ3
, then U∗di = U∗dj . If

|W ∗di −W ∗dj | > (T − 1)λ1

λ3
, then U∗di 6= U∗dj .

For simplicity, all T tasks are assumed to have the same
number of training instances n. Assume that the data for
task t is generated as y(t) = X(t)w̆t + ε, where ε ∼
N (0, σ2I) is the i.i.d. Gaussian noise, and ‖X(t)

·i ‖ ≤
√

2n.
The following Theorem shows that, with high probabili-
ty, W∗ is close to the ground truth W̆ = [w̆1, . . . , w̆T ]
w.r.t. the elementwise `∞-error ‖W̆ − W∗‖∞,∞ =

maxd=1,...,D maxt=1,...,T |W̆dt − Wdt|. Moreover, when
all the tasks are identical, the shared clustering component
U∗ is close to W̆; and V∗, the deviation from the cluster
center, goes to zero.

Theorem 1. 1. ‖W̆ − W∗‖∞,∞ ≤ c1

√
Λ̃maxσ2

n + C

holds with probability at least 1−2 exp(−c2 log(DT )) for
any c1 >

√
(1 + c2) log(DT ) and c2 > 0. Here, Λ̃max =

maxt Λ̃
(t)
max with Λ̃

(t)
max being an upper bound on the eigen-

value of Σ(t) =
(

1
nX(t)′X(t) + λ2λ3

2n(λ2+λ3)I
)−1

, and C =

maxt

(
λ2λ3

2n(λ2+λ3)

∥∥∥Σ(t)W̆·t

∥∥∥
∞

+ (T−1)λ1λ3

2n(λ2+λ3)

∥∥Σ(t)
∥∥
∞,1

)
.

If n → ∞, 1
nX(t)′X(t) → C(t) where C(t) is a posi-

tive definite matrix, and λ1, λ2, λ3 = O(
√
n), then

1Indeed, λ1 is only required to be sufficiently large. The pre-
cise statement is in Proposition 2.

Σ(t) → [C(t)]−1 and ‖W∗ − W̆‖∞,∞ ≤ O
(

1√
n

)
with

arbitrary high probability.

2. When all tasks are identical (i.e., w̆1 = · · · = w̆T

and C(1) = · · · = C(T )), λ3

λ2
→ ∞ and λ1 →

∞, we have ‖W∗ − W̆‖∞,∞ ≤ ĉ1

√
Λ̂maxσ2

nT + Ĉ

and ‖V‖∞,∞ → 0 hold with probability at least 1 −
2 exp(−ĉ2 logD) for any ĉ1 >

√
2(1 + ĉ2) log(D) and

ĉ2 > 0. Here, Λ̂max is an upper bound on the eigen-

value of Σ̂ =

 1
nT

X(1)

...
X(T )


′ X(1)

...
X(T )

+ λ2

2nI


−1

, and

Ĉ = λ2

2n

∥∥∥Σ̂W̆·1

∥∥∥
∞

+ o(1). If n → ∞, λ1, λ3 = O(n2)

and λ2 = O(
√
n), then ‖W∗−W̆‖∞,∞ ≤ O

(
1√
nT

)
with

arbitrary high probability.

Moreover, the following Corollary shows that the underly-
ing clustering structure can be exactly recovered when n is
sufficiently large.

Corollary 1. Suppose that for any feature d, W̆di =
W̆dj if i, j are in the same cluster; and |W̆di −
W̆dj | ≥ ρ otherwise. Assume that 1

2

∥∥∥Σ(t)W̆·t

∥∥∥
∞
≤

C1 and T−1
2

∥∥Σ(t)
∥∥
∞,1 ≤ C2. Then for n ≥[

2T
ρ

(
c1
√

Λ̃maxσ2 + k2k3C1

k2+k3
+ k1k3C2

k2+k3

)]2
, where λ1 =

k1
√
n, λ2 = k2

√
n, λ3 = k3

√
n and k1

k3
= ρ

T , we
have U∗di = U∗dj if i, j are in the same cluster; and
U∗di 6= U∗dj otherwise, with probability at least 1 −
2 exp(−c2 log(DT )) for any c1 >

√
(1 + c2) log(DT )

and c2 > 0.

2.3. Optimization via Accelerated Proximal Method

In recent years, accelerated proximal methods (Nesterov,
2007) have been popularly used by the machine learning
community (Bach et al., 2011) for convex problems of the
form minθ f(θ)+r(θ), where f(θ) is convex and smooth,
and r(θ) is convex but nonsmooth. The convergence rate is
optimal for the class of first-order methods. Together with
their algorithmic and implementation simplicities, they can
be used on large smooth/nonsmooth convex problems.

In this paper, we use the well-known method of FISTA
(Fast Iterative Shrinkage-Thresholding Algorithm) (Beck
& Teboulle, 2009). Extending to other accelerated proxi-
mal methods is straightforward. Each FISTA iteration per-
forms the following proximal step

min
θ

f(θ̃k) + (θ − θ̃k)′∇f(θ̃k) +
Lk
2
‖θ − θ̃k‖2F + r(θ),

(3)
where θ̃k is the current iterate, and Lk is a scalar often



Convex Multitask Learning with Flexible Task Clusters

determined by line search. Since (3) is required in every
FISTA iteration, it needs to be solved very efficiently.

For problem (1), let Θ = [U′,V′]′. Define

f(Θ) =

T∑
t=1

‖y(t) −X(t)(ut + vt)‖2, (4)

r(Θ) = λ1‖U‖clus + λ2‖U‖2F + λ3‖V‖2F .

Step (3) can be rewritten as minΘ ‖Θ − Θ̂‖2F + 2
Lk
r(Θ),

where Θ̂ = [Û′, V̂′]′ = Θ̃k − 1
Lk
∇f(Θ̃k) (Chen et al.,

2011a). Expressing back in terms of U and V, (3) becomes

minU,V ‖U− Û‖2F + λ̂1‖U‖clus + λ̂2‖U‖2F
+‖V − V̂‖2F + λ̂3‖V‖2F , (5)

where λ̂i = 2λi

Lk
(i = 1, 2, 3) and

Û = Ũk−
1

Lk
∂Uf(Θ̃k), V̂ = Ṽk−

1

Lk
∂Vf(Θ̃k). (6)

As f(Θ) in (4) is simply the squared loss, the tth column-
s of both ∂Uf(Θ̃k) and ∂Vf(Θ̃k) can be easily obtained
as 2(X(t))′(X(t)[Θ̃k]·t − y(t)). Since f in the proximal
step is only required to be convex and smooth, many other
commonly used loss functions can be used in (1) instead.

As U and V are now decoupled, they can be optimized
independently as will be shown in the sequel. The whole
algorithm for solving (1) is shown in Algorithm 1.

Algorithm 1 Algorithm for solving (1).

1: Initialize: Ũ1, Ṽ1, τ1 ← 1.
2: for k = 1, 2, . . . , N − 1 do
3: Compute Û and V̂ in (6).
4: Uk ← arg minU ‖U − Û‖2F + λ̂1‖U‖clus +

λ̂2‖U‖2F using the algorithm in (Zhong & Kwok,
2011).

5: Vk ←
[
v̂ij

1+λ̂3

]
.

6: τk+1 ←
1+
√

1+4τ2
k

2 .

7:

[
Ũk+1

Ṽk+1

]
←
[
Uk

Vk

]
+ τk−1

τk+1

([
Uk

Vk

]
−
[
Uk−1

Vk−1

])
.

8: end for
9: Output UN .

2.3.1. COMPUTING V

For fixed U, the subproblem in (5) related to V is
minV ‖V − V̂‖2F + λ̂3‖V‖2F . On setting the gradient of

the objective w.r.t. V to zero, we obtain V =
[
v̂ij

1+λ̂3

]
.

2.3.2. COMPUTING U

For fixed V, the subproblem in (5) related to U is
minU ‖U−Û‖2F + λ̂1‖U‖clus+ λ̂2‖U‖2F . Because of the

O(T 2) number of terms in ‖U‖2F , this is more challeng-
ing than the computing of V in Section 2.3.1. However, as
the rows of U are independent, U can be optimized row by
row. For the dth row, we have

min
u
‖u− û‖2 + λ̂1

∑
i<j

|ui − uj |+ λ̂2‖u‖2, (7)

where û = Ûd· = [û1, . . . , ûT ]′. It can be shown that (7)
can be rewritten as the optimization problem considered in
(Zhong & Kwok, 2011), and hence can be solved efficiently
using the algorithm proposed there.

2.3.3. TIME COMPLEXITY

Computing the gradients ∂Uf(Θ̃k) and ∂Vf(Θ̃k) takes
O(nDT ) time. Computing Vk takes O(DT ) time. Com-
puting one row of Uk using the algorithm in (Zhong & K-
wok, 2011) takes O(T log T ) time, and thus O(DT log T )
time for the whole Uk. Hence, the total complexity for Al-
gorithm 1 is onlyO(TDn+DT log T ). Moreover, FISTA
converges as O(1/N2) (Beck & Teboulle, 2009), where N
is the number of iterations. This is much faster than tra-
ditional gradient methods, which converges as O(1/

√
N).

It is also faster than GFlasso (Chen et al., 2011b), which
solves a similar problem as (1), but converges as O(1/N)
and has a per-iteration complexity of O(T 2).

Though (7) is similar to the optimization problems of the
pairwise fused lasso in (Petry et al., 2011; She, 2010), us-
ing the optimization procedures there are much more ex-
pensive. Specifically, the procedure in (Petry et al., 2011)
takes O(T 6) time, as it involves a QP with

(
T
2

)
additional

optimization variables; while (She, 2010) relies on anneal-
ing, which is even more complicated and expensive.

2.4. Adaptive Clustering

As in the adaptive lasso (Zou, 2006), weights can be added
to each term of ‖U‖clus as

∑D
d=1

∑
ĩ<j̃ αd,̃ij̃ |Udĩ − Udj̃ |,

where αd,̃ij̃ is the weight associated with the ith and jth
largest entries (Udĩ and Udj̃ , respectively) on the dth row
of U. To set the weights αd,̃ij̃ , we first run model (1)
with the unweighted ‖U‖clus to obtain W, and then set
αd,̃ij̃ = 1

|Wdĩ−Wdj̃ |
. Hence, when Wdĩ,Wdj̃ are similar,

Udĩ, Udj̃ will be strongly encouraged to be clustered togeth-
er, and vice verse. Moreover, the optimization procedure in
Algorithm 1 can still be used.

3. Experiments
In this section, we perform experiments on a number of
synthetic and real-world data sets. All the data sets are s-
tandardized such that the features have zero mean and unit
variance for each task. The output of each task is also stan-
dardized to have mean zero.



Convex Multitask Learning with Flexible Task Clusters

Table 1. NMSE on the six synthetic data sets (number in square brackets indicates the rank). Methods with the best and comparable
performance (paired t-tests at 95% significance level) are bolded.

C1 C2 C3 C4 C5 C6
ridge 0.754±0.055 [2] 0.696±0.042 [10] 0.613±0.052 [9] 0.644±0.032 [9] 0.421±0.080 [9] 0.611±0.070 [10]

pooling 1.001±0.015 [10] 0.418±0.043 [4] 0.681±0.072 [10] 0.683±0.070 [10] 0.581±0.060 [10] 0.437±0.095 [8]
regularized MTL 0.757±0.058 [4] 0.415±0.042 [2] 0.516±0.061 [4] 0.530±0.035 [7] 0.325±0.064 [3] 0.400±0.086 [3]
dirty model MTL 0.819±0.052 [9] 0.599±0.047 [9] 0.573±0.060 [8] 0.606±0.040 [8] 0.373±0.080 [8] 0.496±0.086 [9]

robust MTL 0.763±0.055 [7] 0.459±0.044 [7] 0.559±0.060 [7] 0.466±0.044 [2] 0.340±0.065 [5] 0.413±0.080 [5]
sparse-lowrank MTL 0.790±0.053 [8] 0.457±0.047 [6] 0.475±0.057 [3] 0.468±0.044 [3] 0.334±0.060 [4] 0.411±0.079 [4]

clustered MTL 0.758±0.057 [6] 0.461±0.046 [8] 0.553±0.060 [6] 0.470±0.046 [5] 0.340±0.065 [6] 0.414±0.079 [6]
MTRL 0.752±0.050 [1] 0.432±0.044 [5] 0.552±0.059 [5] 0.469±0.047 [4] 0.342±0.064 [7] 0.421±0.080 [7]

FlexTClus 0.756±0.055 [3] 0.414±0.042 [1] 0.445±0.057 [2] 0.475±0.034 [6] 0.285±0.056 [2] 0.369±0.079 [2]
adaptive FlexTClus 0.758±0.058 [5] 0.415±0.043 [3] 0.417±0.056 [1] 0.462±0.041 [1] 0.276±0.059 [1] 0.357±0.078 [1]

3.1. Synthetic Data Sets

In this experiment, the input has dimensionality D = 30
and is generated from the multivariate normal distribution
x ∼ N (0, I). We use T = 10 tasks, with the output of the
tth task generated as yt ∼ x′w̆t + N (0, 400). All tasks
have 30 training samples and 100 test samples. The task
parameters are designed in the following manner to mimic
various real-world scenarios:

(C1) All tasks are independent: w̆t ∼ N (0, 25I) for all t.

(C2) All tasks are from the same cluster: w̆t = wm +
N (0, I) for all t.

(C3) All tasks are from the same cluster as in C2, but
with corrupted features as are often encountered in
real-world data sets. We first generate w̆t ∼ wm +
N (0, I) for all t. Then, for each feature, we random-
ly pick one task and replace its weight by a random
number from 10 +N (0, 100).

(C4) A main task cluster plus a few outlier tasks:

w̆t ∼
{

wm +N (0, I) t = 1, 2, 3, 4, 5, 6, 7, 8,
10 · 1 +N (0, 100I) t = 9, 10.

(C5) Tasks in overlapping groups: We have two groups
with weights w(1),w(2). For each feature d, several
tasks (1-9) are randomly assigned to group 1, and the
rest to group 2. Suppose that task t belongs to group
g, we then generate [w̆t]i ∼ [w(g)]i +N (0, 1).

(C6) This is used to simulate the recommender systems
example in Section 1. All but the last two features
are generated from a common cluster, as [w̆t]i ∼
[wm]i +N (0, 1). For the last two features, we gen-
erate [w̆t]i ∼ 10 +N (0, 100) for each task t.

The proposed model will be called FlexTClus (Flexible
Task-Clustered MTL). It is compared with a variety of
single-task and state-of-the-art MTL algorithms, includ-
ing: 1) Independent ridge regression on each task; 2) Pool-
ing all the training data together to learn a single model:

This assumes that all the tasks are identical; 3) Regular-
ized MTL: This assumes that all the tasks come from a s-
ingle cluster (Evgeniou & Pontil, 2004); 4) The dirty mod-
el in (Jalali et al., 2010); 5) Low-rank-based robust MTL
(Chen et al., 2011a); 6) Sparse-LowRank MTL (Chen et al.,
2010), which learns sparse and low-rank patterns from the
tasks; 7) Clustered MTL (Jacob et al., 2008)2 and 8) Multi-
task relationship learning (MTRL) (Zhang & Yeung, 2010).

Regularization parameters for all the methods are tuned by
a validation set of size 100. To reduce statistical variabil-
ity, results are averaged over 10 repetitions. In each rep-
etition, wm is generated from N (0, 25I); whereas in C5,
w(1) ∼ N (0, 25I) and w(2) ∼ N (0, 100I). The normal-
ized mean squared error (NMSE), which is defined as the
MSE divided by the variance of the ground truth, is used
for performance evaluation.

Results are shown in Table 1. We have the following ob-
servations.

• C1: Since the tasks are independent, so as expected,
ridge gives good result, while pooling is the worst.
Recall that FlexTClus can be reduced to ridge regres-
sion with a suitable choice of regularization parame-
ters. Hence, both versions of FlexTClus are as good as
ridge. Similarly, regularized MTL can also be reduced
to ridge regression by using a very strong regularizer
on the task mean parameter. As for clustered MTL,
since the true number of clusters is given (which is e-
qual to the number of tasks in this case), it reduces to
ridge regression and so the result is also good. On the
other hand, the remaining MTL methods suffer from
negative transfer.

• In C2, all tasks are from the same group, and hence
regularized MTL and FlexTClus (which can be re-
duced to regularized MTL) perform best. This is
followed by pooling, while the other MTL methods

2The clustered MTL algorithm of (Jacob et al., 2008) requires
the number of task clusters as input. This is set to be the ground
truth in the experiment. Hence, results obtained for this method
can be overly optimistic.



Convex Multitask Learning with Flexible Task Clusters

(a) C1. (b) C2. (c) C3. (d) C4. (e) C5. (f) C6.

Figure 2. Feature-specific clustering structure of the task param-
eters. Each row is a feature and each column a task. For each
row, entries with the same color belong to the same cluster (col-
ors on different rows are not related). Top: Ground truth; Bottom:
adaptive FlexTClus.

lag further behind and suffer from negative transfer.
When noisy features are added (C3), pooling suffers
tremendously, while FlexTClus still retains its superi-
or performance.

• C4 is a common MTL setup. As expected, almost all
MTL methods perform well.

• C5 and C6 are the most challenging. FlexTClus (and
its adaptive variant) is the only method that can cap-
ture the complicated feature-wise task relationships.

Figure 2 compares the ground truth clustering structures
of the task parameters with those obtained by adaptive
FlexTClus. As can be seen, FlexTClus can well capture
the underlying structure.

3.2. Examination Score Prediction

In this section, experiment is performed on the school data
set (Bakker & Heskes, 2003). As in (Chen et al., 2011a),
we use 10%, 20% and 30% of the data for training, another
45% for testing, and the remaining for validation. To re-
duce statistical variability, results are averaged over 5 rep-
etitions.

Results are shown in Table 2. Note that though the school
data has been popularly used as a MTL benchmark, it has
been pointed out previously that all the tasks are indeed
the same (Bakker & Heskes, 2003; Evgeniou et al., 2005).

Table 2. NMSE and rankings of the various methods on the school
data with different proportions of data for training.

10 % 20 % 30 %
ridge 1.047±0.023[10] 0.908±0.015[10] 0.867±0.023[10]

pooling 0.875±0.024[2] 0.790±0.021[4] 0.782±0.027[4]
regularized MTL 0.871±0.024[1] 0.784±0.019[3] 0.773±0.026[1]
dirty model MTL 0.965±0.026[9] 0.842±0.017[9] 0.811±0.025[9]

robust MTL 0.964±0.016[7] 0.820±0.008[5] 0.790±0.021[5]
sparse-lr MTL 0.965±0.016[8] 0.820±0.008[6] 0.790±0.021[6]
clustered MTL 0.950±0.011[5] 0.820±0.011[7] 0.792±0.019[7]

MTRL 0.955±0.013[6] 0.823±0.009[8] 0.793±0.015[8]
FlexTClus 0.875±0.021[4] 0.783±0.019[1] 0.774±0.026[2]

ada FlexTClus 0.875±0.021[3] 0.783±0.019[2] 0.775±0.027[3]

Hence, the trend in Table 2 is similar to that of C2 in Ta-
ble 1. As can be seen, both versions of FlexTClus are very
competitive in this single-cluster case, and are better than
the other MTL methods. Figure 3 shows the task cluster-
ing structure obtained by adaptive FlexTClus. Clearly, it
indicates that there is only one underlying task cluster.

(a) 10%. (b) 20%. (c) 30%.

Figure 3. Task clustering structures obtained by adaptive
FlexTClus on the school data with different proportions of data
for training. Each row is a feature and each column is a task.

3.3. Handwritten Digit Recognition

In this section, we perform experiments on two popu-
lar handwritten digits data sets, USPS and MNIST. As
in (Kang et al., 2011), PCA is used to reduce the feature
dimensionality to 64 for USPS and 87 for MNIST. For each
digit, we randomly choose 10, 30, 50 samples for training,
500 samples for validation and another 500 samples for
testing. The 10-class classification problem is decomposed
into 10 one-vs-rest binary problems, each of which is treat-
ed as a task.

Results averaged over 5 repetitions are shown in Table 3.
We do not compare with pooling, which assumes that all
the tasks are identical and is clearly invalid in this one-vs-
rest setting. As can be seen, FlexTClus and its adaptive
version are consistently among the best, while many other
MTL methods suffer from negative transfer and are only
comparable or even worse than ridge regression. Fig. 4
shows the task clustering structures obtained. As expected,
many trailing PCA features are not useful for discrimina-
tion and the corresponding weights are zero. In contrast,



Convex Multitask Learning with Flexible Task Clusters

Table 3. Classification errors and rankings of the various methods on the USPS and MNIST data.
USPS10 USPS30 USPS50 MNIST10 MNIST30 MNIST50

ridge 0.358±0.027 [7] 0.193±0.022 [8] 0.169±0.019 [8] 0.446±0.027 [8] 0.283±0.004 [9] 0.228±0.015 [8]
regularized MTL 0.363±0.027 [9] 0.194±0.023 [9] 0.169±0.019 [9] 0.440±0.027 [5] 0.283±0.005 [8] 0.229±0.015 [9]
dirty model MTL 0.288±0.036 [1] 0.164±0.018 [2] 0.154±0.016 [3] 0.372±0.025 [3] 0.245±0.017 [4] 0.208±0.005 [3]

robust MTL 0.358±0.024 [8] 0.184±0.021 [6] 0.161±0.011 [6] 0.453±0.021 [9] 0.279±0.008 [6] 0.224±0.013 [6]
sparse-lowrank MTL 0.341±0.035 [4] 0.173±0.020 [4] 0.157±0.016 [4] 0.379±0.032 [4] 0.244±0.014 [3] 0.212±0.003 [4]

clustered MTL 0.354±0.023 [5] 0.182±0.018 [5] 0.157±0.013 [5] 0.446±0.025 [7] 0.278±0.009 [5] 0.228±0.009 [7]
MTRL 0.357±0.025 [6] 0.186±0.019 [7] 0.163±0.023 [7] 0.445±0.025 [6] 0.280±0.007 [7] 0.224±0.013 [5]

FlexTClus 0.292±0.024 [3] 0.165±0.014 [3] 0.147±0.017 [1] 0.366±0.031 [2] 0.233±0.002 [2] 0.202±0.005 [2]
adaptive FlexTClus 0.288±0.019 [2] 0.162±0.021 [1] 0.148±0.017 [2] 0.357±0.036 [1] 0.232±0.008 [1] 0.198±0.006 [1]

the leading PCA features are more discriminative and are
used by the different tasks in different manners, leading to
more varied cluster structures.

(a) 10. (b) 30. (c) 50. (d) 10. (e) 30. (f) 50.

Figure 4. Task clustering structures obtained by adaptive
FlexTClus with different numbers of training samples on USPS
(left) and MNIST (right). Each row corresponds to a PCA feature
(with leading ones shown at the top) and each column denotes a
task. The cluster of zero weight value is shown in black.

3.4. Rating of Products

In this section, we use the computer survey data in (Argyri-
ou et al., 2008). This contains the ratings of 201 students
on 20 different personal computers, each described by 13
attributes. After removing the invalid ratings and students
with more than 8 zero ratings, we are left with 172 students
(tasks). For each task, we randomly split the 20 instances
into training, validation and test sets of sizes 8,8, and 4,
respectively.

Table 4 shows the root mean squared error (RMSE) aver-
aged over 10 random splits. Again, FlexTClus and its adap-
tive variant outperform the other models. Figure 5 shows
the task clustering structure obtained in a typical run. Note
that the first 12 features are about the PC’s performance
(such as memory and CPU speed). As can be seen, there
is one main cluster, indicating that most students in this
survey have similar preference on these attributes. On the
other hand, the last feature is price, and the result indicates
that there are lots of varied opinions on this attribute.

4. Conclusion and Future Work
While existing MTL methods can only model task rela-
tionships at the task level, we introduced in this paper

Table 4. RMSE and rankings of the various methods on the com-
puter survey data.

RMSE RMSE
ridge 2.381±0.054 [10] pooling 2.068±0.057 [5]

reg MTL 2.017±0.052 [3] dirty model MTL 2.138±0.068 [9]
robust MTL 2.074±0.074 [7] sparse-lowrank MTL 2.052±0.063 [4]

clustered MTL 2.072±0.074 [6] MTRL 2.110±0.065 [8]
FlexTClus 1.940±0.050 [1] ada FlexTClus 1.960±0.044 [2]

Figure 5. Task cluster structure obtained by adaptive FlexTClus
on the ratings data. Each row is a feature (whose names are shown
on the left) and each column is a task.

a novel MTL formulation that captures task relationship-
s at the feature-level. Depending on the myriad relation-
ships among tasks and features, the proposed method can
cluster tasks in a flexible feature-by-feature manner, with-
out even the need of pre-specifying the number of cluster-
s. Moreover, the proposed formulation is (strongly) con-
vex, and can be solved by accelerated proximal method-
s with an efficient and scalable proximal step. Experi-
ments on a number of synthetic and real-world data sets
show that the proposed method is accurate. The obtained
feature-specific task clustering structure also agrees with
the known/plausible clustering structure of the tasks.

Acknowledgments
This research was supported in part by the Research Grants
Council of the Hong Kong Special Administrative Region
(Grant 614311).



Convex Multitask Learning with Flexible Task Clusters

References
Agarwal, A., Daumé III, H., and Gerber, S. Learning mul-

tiple tasks using manifold regularization. In Advances in
Neural Information Processing Systems 23, pp. 46–54.
2010.

Ando, R.K. and Zhang, T. A framework for learning pre-
dictive structures from multiple tasks and unlabeled data.
Journal of Machine Learning Research, 6:1817–1853,
2005.

Argyriou, A., Evgeniou, T., and Pontil, M. Convex multi-
task feature learning. Machine Learning, 73(3):243–
272, 2008.

Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. Con-
vex optimization with sparsity-inducing norms. In Opti-
mization for Machine Learning, pp. 19–53. MIT, 2011.

Bakker, B. and Heskes, T. Task clustering and gating for
Bayesian multitask learning. Journal of Machine Learn-
ing Research, 4:83–99, 2003.

Beck, A. and Teboulle, M. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

Chen, J., Liu, J., and Ye, J. Learning incoherent sparse and
low-rank patterns from multiple tasks. In Proceedings
of the 16th International Conference on Knowledge Dis-
covery and Data Mining, pp. 1179–1188, Washington
D.C., USA, 2010.

Chen, J., Zhou, J., and Ye, J. Integrating low-rank and
group-sparse structures for robust multi-task tearning.
In Proceedings of the 17th International Conference on
Knowledge Discovery and Data Mining, pp. 42–50, San
Diego, CA, USA, 2011a.

Chen, X., Lin, Q., Kim, S., Carbonell, J. G., and Xing,
E. P. Smoothing proximal gradient method for general
structured sparse learning. In Proceedings of the 27th
Conference on Uncertainty in Artificial Intelligence, pp.
105–114, Barcelona, Spain, 2011b.

Evgeniou, T. and Pontil, M. Regularized multi-task learn-
ing. In Proceedings of the 10th International Conference
on Knowledge Discovery and Data Mining, pp. 109–
117, Seattle, WA, USA, 2004.

Evgeniou, T., Micchelli, C. A., and Pontil, M. Learning
multiple tasks with kernel methods. Journal of Machine
Learning Research, 6:615–637, 2005.

Jacob, L., Bach, F., and Vert, J. Clustered multi-task learn-
ing: A convex formulation. In Advances in Neural Infor-
mation Processing Systems 21, pp. 745–752. 2008.

Jalali, A., Ravikumar, P., Sanghavi, S., and Ruan, C. A
dirty model for multi-task learning. In Advances in Neu-
ral Information Processing Systems 23, pp. 964–972.
Vancouver, 2010.

Kang, Z., Grauman, K., and Sha, K. Learning with whom
to share in multi-task feature learning. In Proceedings of
the 28th International Conference on Machine Learning,
pp. 521–528, Bellevue, WA, USA, June 2011.

Kato, T., Kashima, H., Sugiyama, M., and Asai, K. Multi-
task learning via conic programming. In Advances in
Neural Information Processing Systems 20, pp. 737–
744. 2007.

Nesterov, Y. Gradient methods for minimizing composite
objective function. Technical Report 76, Catholic Uni-
versity of Louvain, 2007.

Petry, S., Flexeder, C., and Tutz, G. Pairwise fused lasso.
Technical Report 102, Department of Statistics, Univer-
sity of Munich, 2011.

She, Y. Sparse regression with exact clustering. Electronic
Journal of Statistics, 4:1055–1096, 2010.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and
Knight, K. Sparsity and smoothness via the fused las-
so. Journal of the Royal Statistical Society: Series B, 67
(1):91–108, 2005.

Yu, K., Tresp, V., and Schwaighofer, A. Learning Gaus-
sian processes from multiple tasks. In Proceedings of
the 22nd International Conference on Machine Learn-
ing, Bonn, Germany, August 2005.

Zhang, Y. and Schneider, J. Learning multiple tasks with a
sparse matrix-normal penalty. In Advances in Neural In-
formation Processing Systems 23, pp. 2550–2558. 2010.

Zhang, Y. and Yeung, D.-Y. A convex formulation for
learning task relationships in multi-task learning. In Pro-
ceedings of the 24th Conference on Uncertainty in Ar-
tificial Intelligence, pp. 733–742, Catalina Island, CA,
USA, 2010.

Zhong, L. W. and Kwok, J. T. Efficient sparse modeling
with automatic feature grouping. In Proceedings of the
28th International Conference on Machine Learning, pp.
9–16, Bellevue, WA, USA, 2011.

Zhou, J., Chen, J., and Ye, J. Clustered multi-task learning
via alternating structure optimization. In Advances in
Neural Information Processing Systems 25. 2011.

Zou, H. The adaptive lasso and its oracle properties. Jour-
nal of the American Statistical Association, 101(476):
1418–1429, 2006.


