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Abstract

Covariate shift is an unconventional learning
scenario in which training and testing data
have different distributions. A general princi-
ple to solve the problem is to make the train-
ing data distribution similar to that of the
test domain, such that classifiers computed
on the former generalize well to the latter.
Current approaches typically target on sam-
ple distributions in the input space, however,
for kernel-based learning methods, the algo-
rithm performance depends directly on the
geometry of the kernel-induced feature space.
Motivated by this, we propose to match data
distributions in the Hilbert space, which, giv-
en a pre-defined empirical kernel map, can be
formulated as aligning kernel matrices across
domains. In particular, to evaluate similarity
of kernel matrices defined on arbitrarily dif-
ferent samples, the novel concept of surrogate
kernel is introduced based on the Mercer’s
theorem. Our approach caters the model
adaptation specifically to kernel-based learn-
ing mechanism, and demonstrates promising
results on several real-world applications.

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

1. Introduction

In standard supervised learning, it is commonly as-
sumed that the training and test data are drawn from
the same distribution, such that a classifier learned
on the former generalizes well to the latter. However,
this assumption can be violated in practical situations.
For example, the training and test data may be col-
lected under different situations as in applications in
bioinformatics or sensor networks. On the other hand,
if the training procedure is expensive or labels in the
new domain are limited, one might want to apply the
knowledge learned from one domain to a different but
related domain. In these cases, the traditional learn-
ing framework is no longer suited, and how to handle
the discrepancy of data distributions across domains
becomes a crucial problem.

In this paper, we consider the situation when the train-
ing and test data are from different distributions, i.e.,
Ptr(x) ̸= Pte(x), but are supposed to share some iden-
tical or similar conditional distributions Ptr(y|x) =
Pte(y|x). This setting is commonly known as the co-
variate shift or sample selection bias.

There have been a number of attempts to solve
this problem. For example, in (Bickel et al., 2007),
a discriminative model (MAP classifier) is proposed
that directly characterizes the divergence between the
training and test distributions. Daumé III & Marcu
(2006) investigated how to train a general model with



Covariate Shift in Hilbert Space: A Solution via Surrogate Kernels

data from both the source domain and target domain
for domain adaptation in natural language processing
tasks. Mansour et al. (2009) presented theoretical re-
sults on a distribution-weighted combining rule that
has a loss of at most a pre-defined value w.r.t. any
target mixture of source distributions.

Recently, several work (Shimodaira, 2000; Zadrozny,
2004; Huang et al., 2007; Sugiyama et al., 2008) has
converged to the direction of estimating a pointwise
re-weighting on the training data to minimize the gen-
eralization error in testing. For example, Huang et al.
(2007) applied the kernel mean matching (KMM) to
account for the distribution difference, such that the
means of the training and test samples in a reproduc-
ing kernel Hilbert space (RKHS) are close. A theo-
retical analysis was given by (Yu & Szepesvári, 2012).
Sugiyama et al. (2008) proposed a framework to es-
timate the importance ratio with simultaneous model
selection, which finds an estimate of the density ra-
tio such that the Kullback-Leibler divergence from the
true test input density to its estimate is minimized.
In (Bickel et al., 2009), the density ratio estimation is
extended to a discriminative setting.

Instead of learning a re-weighting scheme, Pan et al.
(2011) proposed to learn the transfer components in
the form of pre-parameterized empirical kernel maps,
such that the kernel mean of Ψ(Xtr) is close to that of
Ψ(Xte). For other recent methods on the more general
problem of transfer learning, see (Pan & Yang, 2010).

Most of the current methods study how to make the
training and testing data have similar distribution-
s in the input space (Shimodaira, 2000; Zadrozny,
2004; Sugiyama et al., 2008). In (Huang et al., 2007)
and (Pan et al., 2011), although the objective function
considered is the difference between the sample mean
in the feature space, it is used as an indicator of the
distance between two distributions in the input space.
Therefore, minimizing such an objective is ultimately
used to control the difference of distributions in the in-
put space. While one may consider data distribution
in the input space for non-kernel-based methods, the
behavior of kernel methods are determined in a more
complex mechanism due to the interplay between the
kernel function and the data distribution. In partic-
ular, kernel methods work by applying a linear algo-
rithm in the kernel-induced feature space, where the
algorithm performance depends directly on the data
distribution in the Hilbert space.

Motivated by this observation, we propose to make
the training and testing data have similar distribu-
tions in the Hilbert space, which we believe is a more
direct way in tackling the covariate shift problem for

kernel-based learning algorithms. In particular, con-
sidering that the feature space geometry is determined
uniquely by the kernel matrix, this can be reformu-
lated as requiring the kernel matrix to be similar for
the two domains under certain conditions1. One big
technical difficulty, however, is that the kernel matri-
ces are data-dependent, and how to evaluate similarity
between kernel matrices across domains remains un-
clear. To bridge this gap, we introduce the concept
of surrogate kernels based on the Mercer’s theorem,
the fundamental theorem underlying the reproducing
kernel Hilbert space (RKHS). It provides a convenien-
t interface for kernel matrices to compare with each
other. By using the surrogate kernel, we can apply an
explicit (linear) transform on the kernel matrix of the
training data, forcing it to properly “approach” that of
the test data, such that the kernel machine learned on
the training data generalizes well to the test domain.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the concept of surrogate kernel. In
Section 3, we propose a symmetric transform to align
kernel matrices across domains. Section 4 provides ex-
perimental results, and the last section concludes the
paper.

2. Surrogate Kernel

Handling the distribution of data in the Hilbert s-
pace is difficult, since the kernel-induced feature map
usually cannot be explicitly represented. In particu-
lar, not all operations involved can be reduced to in-
ner products as required by the kernel trick. There-
fore, in order for two samples (e.g., the training and
testing samples) to have similar feature-space distri-
butions, we instead require them to have similar k-
ernel matrices. The latter can be somehow viewed
as a sufficient condition of the former given a pre-
defined empirical kernel map. To see this, note that
given a kernel matrix K = (KK−

1
2 )(K−

1
2K), the cor-

responding empirical kernel map can be written as
Ψemp = K

1
2 (Schölkopf et al., 1998; Pan et al., 2011).

Therefore, if two kernel matrices are the same, i.e.,
KZ = KX , then their corresponding (empirical) fea-
ture maps will also be the same, i.e., Ψ(Z) = Ψ(X ),
and as a result the empirical distributions of the data
in the kernel-induced feature space will be the same,
i.e., p[Ψ(Z)] = p[Ψ(X )]. In other words, matching
two data distributions in the feature space can be con-
veniently cast as aligning two kernel matrices, which
avoids the difficulty of handling the feature vectors
Ψ(x)’s.

1See detailed justification at the beginning of Section 2.
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Inspired by this simple observation, we propose to
transform the kernel matrix in the source domain such
that it is more similar to that in the target domain.
By doing this, the feature map (RKHS) embodied via
the kernel matrices will be similar for the two domain-
s, allowing models trained in one domain to general-
ize well to the other. However, the kernel matrix is
data-dependent. Given kernel matrices defined on two
different data sets, it is difficult even to evaluate the
closeness between them, since they may be of different
dimensions and their rows/columns do not correspond,
not to mention aligning one to the other.

To solve this problem, we propose the concept of sur-
rogate kernel. More specifically, suppose that we have
a kernel matrix KX defined on the data set X . On the
other hand, we are given a new data set Z. Here, we
want to generate a surrogate kernel of KX by some-
how “projecting” it from X to Z, denotedKZ←X . The
surrogate kernel KZ←X should inherit key structures
of KX but, instead of being defined on X , KZ←X is
defined on Z. Therefore, KZ←X can be used in re-
placement of KX when we want to compare KX with
any kernel matrix defined on Z.

In order to define the structure of the kernel matrix
and how to faithfully preserve it across domains, we
will resort to the following theorem.

Theorem 1. (Mercer) Let K(x,y) be a continuous
symmetric non-negative function which is positive def-
inite and square integrable w.r.t. the distribution p(·),
then

K(x,y) =
∞∑
i=1

λiϕi(x)ϕi(y). (1)

Here, the non-negative eigenvalues λi’s and the or-
thonormal eigenfunctions ϕi’s are the solutions of the
following integral equation∫

K(x,y)p(y)ϕi(y)dy = λiϕi(y). (2)

The Mercer’s theorem (Schölkopf & Smola, 2001) is
the fundamental theorem underlying reproducing ker-
nel Hilbert space. It states that any psd kernel can
be reconstructed by the kernel eigenfunctions (1). In
particular, given a data set X with distribution p(·)
and corresponding kernel matrix KX , if we can com-
pute the kernel’s eigenspectrum λi’s and continuous
eigenfunctions ϕi(·)’s in (2), we will then be able to
evaluate the kernel (1) on arbitrary pairs of points. If
the evaluation is performed on a new data set Z, a
regenerated kernel matrix on Z will be obtained. In
other words, the Mercer’s theorem provides an explicit
way to generate a kernel matrix on any sample. This

regenerated kernel matrix builds entirely on the eigen-
system of the kernel matrix KX . Therefore, we believe
that it preserves key structures ofKX , and can be used
as its surrogate on the new sample Z.

2.1. Estimating Kernel Eigenfunctions

Next comes the problem of estimating the eigen-
spectrum and continuous eigenfunctions, i.e., the
solution of the integral equation (2). Thanks
to (Shawe-Taylor et al., 2005), it can be approxi-
mated asymptotically by a finite-sample eigenvalue-
decomposition on the empirical kernel matrix KX .
In the following, we derive a concrete approxima-
tion (Williams & Seeger, 2001). Suppose sample X =
{xi}ni=1 is drawn from p(·). Then we can approximate
the integral in (2) by the empirical average:

1

n

n∑
j=1

k(x,xj)ϕi(xj) ≃ λiϕi(x). (3)

Choosing x in (3) from X leads to a standard eigenval-
ue decomposition KXΦX = ΦXΛX , where KX (i, j) =
k(xi,xj), ΦX ∈ Rn×n has orthonormal columns and
ΛX ∈ Rn×n is a diagonal matrix. The eigenfunctions
ϕi(·)’s and eigenvalues λi’s in (2) can be approximated
respectively by the columns of Φ and the diagonal en-
tries of Λ, up to a scaling constant. According to (3),
the eigenfunction ϕi(x) at any point x can be extrap-
olated by ϕi(x) = 1

λin

∑n
j=1 k(x,xj)ϕi(xj). There-

fore, if we want to evaluate the eigenfunctions ϕi(·)’s
(i = 1, ..., n) on the new set Z, we can write them in
matrix form as

ΦZ = KZXΦXΛ
−1
X , (4)

where KZX is the cross-similarity matrix between Z
and X , evaluated using kernel k.

We illustrate the idea in Figure 1. Let X be drawn
from a normal distribution. In Figure 1(a), we com-
pute the RBF kernel matrix KX , and plot one of its
eigenvectors. In Figure 1(b), we estimate the continu-
ous eigenfunction underlying this eigenvector (4) and
plot it with solid curve. In Figure 1(c), we project
the eigen-structure of KX from X to a new sample set
Z by evaluating this continuous eigenfunction on Z,
which gives a reconstructed eigenvector on Z. As can
be seen, in the process of projecting the eigenvector of
KX from X to Z, we proceed from a discrete eigenvec-
tor (on X ) to a continuous eigenfunction (on the whole
real domain), and again to a discrete eigenvector (on
Z). Here, sample X is the source of information, and
sample Z only passively receives information from X .
In other words, Z is only a sample on which we choose
to reflect and rebuild the kernel matrix KX .
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(a) Step1: Compute one eigenvector
of KX on sample X .
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(b) Step2: Estimate the eigenfunc-
tion underlying the eigenvector.
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(c) Step3: Evaluate the eigenfunc-
tion on a new sample Z.

Figure 1. Projecting one eigenvector of the kernel matrix KX from sample X to a new sample Z.

2.2. Definition of Surrogate Kernels

The projected eigenvector on Z can be used to recon-
struct a new kernel matrix on Z. In practice, KX
has multiple eigenvectors, each weighted by the corre-
sponding eigenvalue. Therefore, a natural solution to
project the eigen-structure of the kernel matrix from
X to Z is to project each of the eigenvectors of KX
from X to Z as shown in Figure 1, and combine them
using the eigenvalues of KX , i.e.,

KZ←X = ΦZΛXΦ
′
Z

=
(
KZXΦXΛ

−1
X

)
ΛX

(
KZXΦXΛ

−1
X

)′
= KZXK

−1
X KXZ .

Definition 1. Given two samples X and Z, and a
kernel function k(·, ·). Let KX ∈ R|X|×|X| and KZ ∈
R|Z|×|Z| be the kernel matrices defined on X and Z,
respectively, and KXZ ∈ R|X |×|Z| be the kernel matrix
defined among X and Z. The surrogate kernel of KX
on sample Z, denoted by KZ←X , is defined as

KZ←X = KZXK
−1
X KXZ . (5)

In case KX is positive semi-definite, a pseudo-inverse
or a small jittering factor (added to KX ) can be used.

Comments 1. The kernel matrix KX and its surro-
gate kernel KZ←X share the same generating mecha-
nism: they are constructed using the same set of eigen-
functions and eigenvalues, but on different samples.

3. Aligning Kernel Matrices via the
Surrogate Kernel

The notion of surrogate kernel allows us to “project”
a given kernel matrix from one sample to an arbi-
trary sample while preserving the key eigen-structures.
This then serves as a bridge that allows us to compare
(henceforth transform among) different kernel matri-
ces. In the following, we propose a parametric trans-

form to rectify the kernel matrix from the training do-
main, such that it becomes more aligned to the kernel
matrix in the test domain.

Suppose that X comes from the test domain, Z comes
from the training domain, and the two domains have
different data distributions. Here we want to adapt
the kernel matrix KZ from the training domain using
a symmetric transformation matrix T ∈ R|Z|×|Z|, as

K̃Z = T ′KZT. (6)

The goal is that the transformed kernel matrix will be
more similar to that in the test domain X . The linear
transform on KZ (6) implicitly enforces a nonlinear
transform on Z, i.e., Z̃ = µ(Z), such that

⟨Ψ(Z̃),Ψ(Z̃)⟩ = ⟨Ψ(Z)T,Ψ(Z)T ⟩, (7)

where Ψ(·) is the kernel map underlying the kernel
function. From (7), we can see that the transfor-
m µ underlying (6) is indeed a linear transformation
Ψ(Z̃) = Ψ(Z)T in the feature space.

The transformed kernel matrix K̃Z is of size |Z| ×
|Z|, while the test-domain kernel matrix KX is |X | ×
|X |. Therefore, in order to align these two matrices,
we will replace KX with its surrogate kernel on Z,
as KZ←X = KZXK

−1
X KXZ (5). Then, we enforce

the closeness between K̃Z and KZ←X by using the
following optimization problem

min
T∈R|Z|×|Z|

∥T ′KZT −KZ←X ∥
2
F + γ∥T∥2F . (8)

Here, the term ∥T∥2F controls the complexity of the
transformation T , and γ controls the balance between
enforcing an exact fit and the model complexity. Fig-
ure 2 gives an illustration of kernel matrix alignment
via surrogate kernels.

By setting derivative of (8) w.r.t. T to zero,

T = K
− 1

2

Z

(
KZ←X − 1

2
γK−1Z

) 1
2

. (9)
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Generally, if γ is too large, solution could be complex.
This can be avoided by removing negative eigenvec-
tors if it happens (very rare though) as we did in our
experiments. Empirically, we simply fix γ at a small
value and it is observed that the performance of our
algorithm is quite insensitive to the choice of γ.

Once T is obtained, we can compute the transformed
kernel T ′KZT , which corresponds to the inner product
of the transformed training data Z̃.

3.1. Cross-Domain Similarity

In order to use the transformed training data Z̃ in
kernel-based learning algorithms, we will need to com-
pute the composite kernel matrix defined on Z̃ ∪ X :

G =

[
⟨Ψ(Z̃),Ψ(Z̃)⟩ ⟨Ψ(Z̃),Ψ(X )⟩
⟨Ψ(X ),Ψ(Z̃)⟩ ⟨Ψ(X ),Ψ(X )⟩

]
.

By design, we have

⟨Ψ(Z̃),Ψ(Z̃)⟩ = T ′KZT,

⟨Ψ(X ),Ψ(X )⟩ = KX .

We also need to compute the inner product between
the transformed training data Ψ(Z̃) and the original
test data Ψ(X ), both of which could lie in an infinite-
dimensional feature space. By using (7), we have
Ψ(Z̃) = Ψ(Z)T, and so

⟨Ψ(Z̃),Ψ(X )⟩ = T ′Ψ(Z)′Ψ(X ) = T ′KZX .

So we have the following composite kernel which can
be used in any kernel-based learning algorithm:

G =

[
T ′KZT T ′KZX
KXZT KX

]
. (10)

The kernel matrix G is always positive semi-definite
since it is the inner product of [Φ(Z̃)⊤Φ(X )⊤]⊤.

3.2. Complexity

Let |Z| = n1, and |X | = n2. The space complexity of
our approach is O((n1 + n2)

2). Computing (9) takes
O(n1n2+n3

1) time; computing (10) takes O((n1+n2)
2)

time. Hence, the time complexity of our approach is
O(n3

1 + (n1 + n2)
2). This can be reduced by low-rank

approximation, and will be studied in the future.

3.3. Prediction

Let GZ be the sub-kernel matrix on the training sam-
ple Z, and GXZ be the sub-block of G corresponding
to X and Z. The learned kernel matrix G in (10) can
be used in various kernel-based learning algorithms.

For example, in kernel ridge regression, we predict the
labels for the test data X as

yX = GXZ(GZ + ηI)−1yZ .

For SVM, after using (G̃Z ,yZ) to train a classifier, we
can predict the labels of the test data by

yX = GXZ(α⊙ yZ) + b,

where α is the Lagrange multipliers and b is the bias.

4. Experiments

In this section, we perform extensive empirical evalu-
ation on a number of real-world data sets, including
text mining (classification) and WiFi-localization (re-
gression). The following methods will be compared:

1. support vector machine (SVM) for classification
tasks;

2. kernel ridge regression (KRR) for regression tasks;

3. kernel mean matching (KMM) (Huang et al.,
2007);

4. Kullback-Leibler importance estimation proce-
dure (KLIEP) (Sugiyama et al., 2008);

5. transductive SVM (TSVM) (Joachims, 1999);

6. Laplacian-regularized least squares (LAP-RLS)
(Belkin et al., 2006);

7. transfer component analysis (TCA) (Pan et al.,
2011); and

8. the proposed method.

For SVM and KRR, we apply them on the training
data Z to obtain the model, and then use the learned
model for prediction on the test domain X . For K-
MM and KLIEP, a set of re-weighting coefficients are
learned from the training data Z. These are then ap-
plied either on a SVM or KRR to obtain a predictive
model (using the LIBSVM package), which is used for
prediction on the test data X . For the TSVM and
LAP-RLS, we combine the data from the training and
testing domains together, and use the data from the
training domain as labeled data, and the data from the
test domain as unlabeled data. For TCA and the pro-
posed method, a kernel matrix G is learned from the
training and testing data X ∪ Z; then the sub-kernel
matrix GZ is used in SVM/KRR to obtain the model,
and prediction is performed on the test data using this
learned model together with GXZ .
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Figure 2. Aligning the kernel matrices across domains using the surrogate kernel.

In all the experiments, we randomly choose 60% of
the samples from the training and test domains. The
experiments is repeated 10 times, and the average per-
formance (together with the standard deviation) is re-
ported. Similar to (Pan et al., 2011), we randomly
select a very small subset of the test domain data to
tune parameters for all the methods.

4.1. Text Classification

In this experiment, evaluations are performed on
the 20-newsgroups data2, which has been frequent-
ly used to benchmark the performance of transfer
learning algorithms with the covariate shift assump-
tion (Pan & Yang, 2010). The data set is a collection
of approximately 20,000 newsgroup documents, parti-
tioned across 20 different newsgroups and organized in
a hierarchical structure. Data from different subcate-
gories under the same parent category are considered
to be from different but related domains. They typ-
ically have difference distributions and will be used
respectively as training and testing data to examine
the performance of transfer learning algorithms. The
task is to predict the labels of the parent categories.

Table 1 shows the five binary classification
tasks: rec-vs-talk, rec-vs-sci, sci-vs-talk,
comp-vs-sci, and comp-vs-talk. SVM with the
linear kernel is used. Accuracies, averaged over 10
randomly drawn subset from the two domains, are
reported in Table 2. As can be seen, our approach
attains the best performance on most of the tasks.

Table 1. 20-newsgroup data for text classification.

|Dtr| |Dte| d
comp-vs-sci 3930 4900 9893
comp-vs-talk 4482 3652 10625
rec-vs-sci 3961 3965 14975
rec-vs-talk 3669 3561 15254
sci-vs-talk 3374 3828 15328

2http://qwone.com/~jason/20Newsgroups/

4.2. WiFi Localization

In WiFi localization, we collected WiFi signals X =
{xi ∈ Rd} that record the strengths of signals received
from d access points, where i is the measurement in-
dex. The corresponding set of locations (labels) is de-
noted Y = {yi ∈ R}. Our WiFi data were collected
from the hallway area of an academic building, which
is around 64×50 squared meters. The hallway area is
discretized into a space of 119 grids, each grid is of 1.5
× 1.5 squared meters. The task is to learn the map-
ping from the signal space to the location space. This
is usually formulated as regression. Due to differences
of devices, environment, the training and testing da-
ta can have different distributions. Therefore, this is
a suitable task for evaluating transfer learning algo-
rithms. We used the RBF kernel in this experiment.

4.2.1. Transfer across Time Periods

Here, we collected WiFi data from 119 grids in three
different time periods in the same hallway. Figure 3
demonstrates that WiFi signals collected at differen-
t time periods can have different distributions. The
three times are indexed t1, t2, and t3. We use the
data from one time period for training, and the data
from another for testing. This gives rise to three tasks,
namely, t1-vs-t2, t1-vs-t3, and t2-vs-t3. In each
task, the first period provides the training data and
the second period provides the test data (Table 3).
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Figure 3. WiFi signals collected at different time periods.

For performance evaluation, we transform the regres-
sion error to localization accuracy as is common in
the wireless sensor networks literature. For each sig-
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Table 2. Accuracies (%) on the text classification data sets. The best and comparable results (according to the pairwise
t-test with 99.5% confidence) are highlighted.

SVM KMM KLIEP TSVM TCA ours
comp-vs-sci 63.96±1.69 60.96±6.03 64.00±1.66 63.38±5.81 65.50±6.75 65.05±3.19
comp-vs-talk 64.48±2.08 64.95±2.01 64.92±1.87 68.03±1.72 71.98±4.12 76.08±1.53
rec-vs-sci 57.91±3.35 54.75±2.03 58.43±3.52 62.03±2.39 56.31±4.62 62.10±2.32
rec-vs-talk 62.83±2.52 63.73±3.09 62.51±1.18 65.63±2.64 63.40±3.02 66.17±2.26
sci-vs-talk 60.43±2.35 60.15±2.82 59.83±1.63 61.80±1.52 56.51±1.64 66.00±2.15

Table 3. WiFi data sets over different time periods.

|Dtr| |Dte| d
t1-vs-t2 792 792 67
t1-vs-t3 792 792 67
t2-vs-t3 792 792 67

nal xi to be localized, the localization is accurate if
the predicted position is within 3 meters from the true
position. The accuracy averaged over all the signals is
shown in Table 4. As can be seen, our approach gives
the best performance on most of the tasks.

4.2.2. Transfer Across Devices

Here we performWiFi localization on different devices.
Different wireless devices usually have different signal
sensing capacities, and consequently the signals from
different devices will vary from each other. Figure 4 il-
lustrates this by showing the signals from two different
devices at the same location.

We collected WiFi data from two different devices at
3 straight-line hallways. The first hallway includes 18
grids, the second hallway include 22 grids, and the
third hallway includes 19 grids. We thus have 3 tasks,
namely, hallway1, hallway2, and hallway3. In each
task, the first device provides the labeled training da-
ta, and the second device provides the test data. In
pre-processing the data, we remove those dimensions
whose signal strengths are all zeros. Due to the differ-
ence of the hallways, the effective dimensions for the
three tasks are different. (Table 5).

Table 5. WiFi data sets for transfer across devices.
|Dtr| |Dte| d

hallway1 450 450 45
hallway2 550 550 53
hallway3 475 475 80

Similar to the performance evaluation in Section 4.2.1,
localization of each signal is considered accurate if the
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Figure 4. WiFi signals collected by different devices at the
same location.

predicted position is within 6 meters from the true po-
sition. Results are shown in Table 6. Again, proposed
approach yields best performance on all three tasks.

5. Conclusion and Future Work

We proposed a novel concept of surrogate kernel to
align kernel matrices across domains, so as to match
data distributions to compensate for the covariate shift
in the Hilbert space. In the future, we will study dif-
ferent types of transformation, as well as the use of la-
beled and unlabeled samples (Kulis et al., 2012). The
surrogate kernel has interesting connection with the
Nyström method (Williams & Seeger, 2001), the lat-
ter mainly used for low-rank approximation of kernel
matrices. An interesting topic is how to choose useful
landmark points to compute the surrogate kernel for
model adaptation, based on sampling or clustering like
in (Zhang et al., 2008)(Kumar et al., 2012).
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Table 4. Accuracies (%) for WiFi localization with transfer over time periods. The best and comparable results (according
to the pairwise t-test with 99.5% confidence) are highlighted.

KRR KMM KLIEP LAP-RLS TCA ours
t1-vs-t2 80.84±1.14 81.84±1.25 82.67±1.32 82.35±1.08 86.85±1.61 90.36±1.22
t1-vs-t3 76.44±2.66 76.42±2.64 75.54±1.15 94.96±1.04 80.48±2.73 94.97±1.29
t2-vs-t3 67.12±1.28 69.24±1.67 70.21±1.05 85.34±1.88 72.02±1.32 85.83±1.31

Table 6. Accuracies (%) for WiFi localization with transfer across devices The best and comparable results (according to
the pairwise t-test with 99.5% confidence) are highlighted.

KRR KMM KLIEP LAP-RLS TCA ours
hallway1 60.02±2.60 55.97±0.80 48.57±6.77 53.68±0.45 65.93±0.86 76.36±2.44
hallway2 49.38±2.30 42.25±1.16 41.71±4.09 56.18±0.59 62.44±1.25 64.69±0.77
Hallway3 48.42±1.32 47.36±0.19 44.84±3.44 51.53±1.04 59.18±0.56 65.73±1.57
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