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Abstract
Deep networks are highly nonlinear and difficult
to optimize. During training, the parameter iter-
ate may move from one local basin to another,
or the data distribution may even change. In-
spired by the close connection between stochas-
tic optimization and online learning, we pro-
pose a variant of the follow the regularized
leader (FTRL) algorithm called follow the mov-
ing leader (FTML). Unlike the FTRL family
of algorithms, the recent samples are weighted
more heavily in each iteration and so FTML can
adapt more quickly to changes. We show that
FTML enjoys the nice properties of RMSprop
and Adam, while avoiding their pitfalls. Ex-
perimental results on a number of deep learning
models and tasks demonstrate that FTML con-
verges quickly, and outperforms other state-of-
the-art optimizers.

1. Introduction
Recently, deep learning has emerged as a powerful and
popular class of machine learning algorithms. Well-known
examples include the convolutional neural network (Le-
Cun et al., 1998), long short term memory (Hochreiter
& Schmidhuber, 1997), memory network (Weston et al.,
2014), and deep Q-network (Mnih et al., 2015). These
models have achieved remarkable performance on various
difficult tasks such as image classification (He et al., 2016),
speech recognition (Graves et al., 2013), natural language
understanding (Bahdanau et al., 2015; Sukhbaatar et al.,
2015), and game playing (Silver et al., 2016).

Deep network is a highly nonlinear model with typically
millions of parameters (Hinton et al., 2006). Thus, it is
imperative to design scalable and effective solvers. How-
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ever, training deep networks is difficult as the optimiza-
tion can suffer from pathological curvature and get stuck
in local minima (Martens, 2010). Moreover, every criti-
cal point that is not a global minimum is a saddle point
(Kawaguchi, 2016), which can significantly slow down
training. Second-order information is useful in that it re-
flects local curvature of the error surface. However, a di-
rect computation of the Hessian is computationally infeasi-
ble. Martens (2010) introduced Hessian-free optimization,
a variant of truncated-Newton methods that relies on us-
ing the linear conjugate gradient to avoid computing the
Hessian. Dauphin et al. (2014) proposed to use the abso-
lute Hessian to escape from saddle points. However, these
methods still require higher computational costs.

Recent advances in deep learning optimization focus
mainly on stochastic gradient descent (SGD) (Bottou,
1998) and its variants (Sutskever et al., 2013). However,
SGD requires careful stepsize tuning, which is difficult as
different weights have vastly different gradients (in terms
of both magnitude and direction). On the other hand, on-
line learning (Zinkevich, 2003), which is closely related
to stochastic optimization, has been extensively studied in
the past decade. Well-known algorithms include follow the
regularized leader (FTRL) (Kalai & Vempala, 2005), fol-
low the proximally-regularized leader (FTPRL) (McMahan
& Streeter, 2010) and their variants (Duchi & Singer, 2009;
Duchi et al., 2011; Shalev-Shwartz, 2012; Xiao, 2010).
In particular, adaptive gradient descent (Adagrad) (Duchi
et al., 2011) uses an adaptive per-coordinate stepsize. On
convex problems, it has been shown both theoretically and
empirically that Adagrad is especially efficient on high-
dimensional data (Duchi et al., 2011; McMahan et al.,
2013). When used on deep networks, Adagrad also demon-
strates significantly better performance than SGD (Dean
et al., 2012). However, in Adagrad, the variance estimate
underlying the adaptive stepsize is based on accumulating
all past (squared) gradients. This becomes infinitesimally
small as training proceeds. In more recent algorithms,
such as RMSprop (Tieleman & Hinton, 2012) and Adam
(Kingma & Ba, 2015), the variance is estimated by an ex-
ponentially decaying average of the squared gradients.

Another problem with the FTRL family of algorithms is
that in each round, the learner has to solve an optimization
problem that considers the sum of all previous gradients.
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For highly nonconvex models such as the deep network,
the parameter iterate may move from one local basin to an-
other. Gradients that are due to samples in the distant past
are less informative than those from the recent ones. In
applications where the data distribution is changing (as in
deep reinforcement learning), this may impede parameter
adaptation to the environment.

To alleviate this problem, we propose a FTPRL variant that
reweighs the learning subproblems in each iteration. The
proposed algorithm, which will be called follow the mov-
ing leader (FTML), shows strong connections with popu-
lar deep learning optimizers such as RMSprop and Adam.
Experiments on various deep learning models demonstrate
that FTML outperforms or at least has comparable conver-
gence performance with state-of-the-art solvers.

The rest of this paper is organized as follows. Section 2 first
gives a brief review on FTRL and other solvers for deep
learning. Section 3 presents the proposed FTML. Experi-
mental results are shown in Section 4, and the last section
gives some concluding remarks.

Notation. For a vector x ∈ Rd, ‖x‖ =
√∑d

i=1 x
2
i ,

diag(x) is a diagonal matrix with x on its diagonal,
√
x

is the element-wise square root of x, x2 denotes the
Hadamard (elementwise) product x � x, and ‖x‖2Q =

xTQx, whereQ is a symmetric matrix. For any two vectors
x and y, x/y, and 〈x, y〉 denote the elementwise division
and dot product, respectively. For a matrix X , X2 = XX ,
and diag(X) is a vector with the diagonal of X as its el-
ements. For t vectors {x1, . . . , xt}, x1:t =

∑t
i=1 xi, and

x2
1:t =

∑t
i=1 x

2
i . For t matrices {X1, . . . , Xt}, X1:t =∑t

i=1Xi.

2. Related Work
2.1. Follow the Regularized Leader and its Variants

In online learning, the learner observes a sequence of func-
tions fi’s, which can be deterministic, stochastic, or even
adversarially chosen. Let Θ ⊆ Rd be a convex compact
set. At round t, the learner picks a predictor θt−1 ∈ Θ,
and the adversary picks a loss ft. The learner then suffers
a loss ft(θt−1). The goal of the learner is to minimize the
cumulative loss suffered over the course of T rounds. In
online convex learning, ft is assumed to be convex.

Two popular online learning algorithms are the fol-
low the regularized leader (FTRL) (Kalai & Vempala,
2005; Shalev-Shwartz, 2012), and its variant follow
the proximally-regularized leader (FTPRL) (McMahan &
Streeter, 2010). Both achieve the optimal O(

√
T ) regret,

where T is the number of rounds (Shalev-Shwartz, 2012).
Other FTRL-like algorithms include regularized dual aver-

aging (RDA) (Xiao, 2010) as well as its adaptive variant
presented in (Duchi et al., 2011). Gradient descent style al-
gorithms like online forward and backward splitting (FO-
BOS) (Duchi & Singer, 2009) and adaptive gradient de-
scent (Adagrad) (Duchi et al., 2011) can also be expressed
as special cases of the FTRL family (McMahan, 2011).

At round t, FTRL generates the next iterate θt by solving
the optimization problem:

θt = arg min
θ∈Θ

t∑
i=1

(
〈gi, θ〉+

αt
2
‖θ‖2

)
,

where gt is a subgradient of ft at θt−1 (usually, θ0 = 0),
and αt is the regularization parameter at round t. Note that
the regularization is centered at the origin. McMahan &
Streeter (2010) generalizes this to FTPRL by centering reg-
ularization at each iterate θi−1 as in online gradient descent
and online mirror descent (Cesa-Bianchi & Lugosi, 2006),

θt = arg min
θ∈Θ

t∑
i=1

(
〈gi, θ〉+

1

2
‖θ − θi−1‖2Qi

)
, (1)

where Qi is a full or diagonal positive semidefinite matrix,
and ‖θ − θi−1‖Qi is the corresponding Mahalanobis dis-
tance between θ and θi−1. When Qi is diagonal, each of
its entries controls the learning rate in the corresponding
dimension. When Θ = Rd, θt can be obtained in closed-
form (McMahan, 2011):

θt = θt−1 −Q−1
1:t gt. (2)

When

Qt =
1

η
diag

(√
g2

1:t −
√
g2

1:t−1

)
, (3)

where η > 0 is the stepsize, (2) becomes the update rule of
Adagrad (Duchi et al., 2011)

θt = θt−1 − diag

(
η√

g2
1:t + ε1

)
gt. (4)

Here, ε > 0 (usually a very small number) is used to avoid
division by zero, and 1 is the vector of all 1’s.

In general, all these algorithms satisfy (McMahan &
Streeter, 2010):

Q1:t = diag
(

1

η

(√
g2

1:t + ε1

))
. (5)

It can be shown that this setting is optimal within a fac-
tor of

√
2 of the best possible regret bound for any non-

increasing per-coordinate learning rate schedule (McMa-
han & Streeter, 2010).
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2.2. Adaptive Learning Rate in Deep Learning

In training deep networks, different weights may have
vastly different gradients (in terms of both magnitude and
direction). Hence, using a per-coordinate learning rate as in
Adagrad can significantly improve performance over stan-
dard SGD (Dean et al., 2012). However, a caveat is that
Adagrad suffers from diminishing stepsize. As optimiza-
tion proceeds, the accumulated squared gradient g2

1:t in (5)
becomes larger and larger, making training difficult.

To alleviate this problem, a number of algorithms have
been proposed (Zeiler, 2012; Tieleman & Hinton, 2012;
Kingma & Ba, 2015). Typically, they employ an average of
the past squared gradients (i.e., vt =

∑t
i=1 αi,tg

2
i , where

αi,t ∈ [0, 1]), which is exponentially decaying. For exam-
ple, RMSprop (Tieleman & Hinton, 2012) uses

vi = βvi−1 + (1− β)g2
i , (6)

where β is close to 1, and the corresponding αi,t is (1 −
β)βt−i. This vt can then be used to replace g2

1:t, and the
update in (4) becomes

θt = θt−1 − diag
(

η
√
vt + ε1

)
gt. (7)

Zeiler (2012) further argues that the parameter and update
should have the same unit, and modifies (7) to the Adadelta
update rule:

θt = θt−1 − diag
(√

ut−1 + ε1
√
vt + ε1

)
gt,

where ut−1 =
∑t−1
i=0 αi,t−1(4θi)2, and 4θt = θt − θt−1

with4θ0 = 0.

As v0 in (6) is often initialized to 0, the bias has to be
corrected. Adam (Kingma & Ba, 2015) uses the vari-
ance estimate vt/(1 − βt) (which corresponds to αi,t =
(1− β)βt−i/(1− βt)).

Another recent proposal is the equilibrated stochastic gra-
dient descent (Dauphin et al., 2015). It uses the variance
estimate vt = vt−1 +(Htζt)

2, whereHt is the Hessian and
ζt ∼ N (0, 1). It is shown that (Htζt)

2 is an unbiased es-
timator of

√
diag(H2

t ), which serves as the Jacobi precon-
ditioner of the absolute Hessian. Computation of the Hes-
sian can be avoided by using the R-operator (Schraudolph,
2002), though it still costs roughly twice that of standard
backpropagation.

3. Follow the Moving Leader
Recall that at round t, FTRL generates the next iterate θt as

θt = arg min
θ∈Θ

t∑
i=1

Pi(θ), (8)

where Pi(θ) = 〈gi, θ〉 + 1
2‖θ − θi−1‖2Qi . Note that all

Pi’s have the same weight. However, for highly nonconvex
models such as the deep network, the parameter iterate may
move from one local basin to another. Pi’s that are due to
samples in the distant past are less informative than those
from the recent ones.

3.1. Weighting the Components

To alleviate this problem, one may consider only Pi’s in
a recent window. However, a large memory is needed for
its implementation. A simpler alternative is by using an
exponential moving average of the Pi’s: Si = β1Si−1 +
(1 − β1)Pi, where β1 ∈ [0, 1) and S0 = 0. This can be
easily rewritten as St = (1− β1)

∑t
i=1 β

t−i
1 Pi. Instead of

minimizing (8), we have

θt = arg min
θ∈Θ

t∑
i=1

wi,tPi(θ), (9)

where the weights

wi,t =
(1− β1)βt−i1

1− βt1
(10)

are normalized to sum to 1. The denominator 1− βt1 plays
a similar role as bias correction in Adam. When β1 = 0,
wi,t = 0 for i < t, and wt,t = 1. Thus, (9) reduces
to minθ∈Θ Pt(θ). When β1 → 1, the following Lemma
shows that all Pi’s are weighted equally, and (8) is recov-
ered.
Lemma 1. limβ1→1 wi,t = 1/t.

Note that the Hessian of the objective in (8) is Q1:t. This
becomes

∑t
i=1 wi,tQi in (9). Recall that Q1:t depends on

the accumulated past gradients in (5), which is then refined
by an exponential moving average in (6). As in Adam, we
define vi = β2vi−1 + (1 − β2)g2

i , where β2 ∈ [0, 1) and
v0 = 0, and then correct its bias by dividing by 1 − βt2.
Thus, (5) is changed to

t∑
i=1

wi,tQi = diag
(

1

ηt

(√
vt

1− βt2
+ εt1

))
, (11)

where ηt and εt are the stepsize and ε value at time t, re-
spectively. When β2 = 0, (11) reduces to

∑t
i=1 wi,tQi =

diag
(

1
ηt

(
√
g2
t + εt1)

)
. When β2 → 1, all g2

i ’s are

weighted equally and (11) reduces to
∑t
i=1 wi,tQi =

diag
(

1
ηt

(√
g21:t
t + εt1

))
. Using ηt = η/

√
t and εt =

ε/
√
t, this is further reduced to (5). The following shows

that Qt in (11) has a closed-form expression.

Proposition 1. Define dt =
1−βt1
ηt

(√
vt

1−βt2
+ εt1

)
. Then,

Qt = diag
(
dt − β1dt−1

1− β1

)
. (12)
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Algorithm 1 Follow the Moving Leader (FTML).

1: Input: ηt > 0, β1, β2 ∈ [0, 1), εt > 0.
2: initialize θ0 ∈ Θ; d0 ← 0; v0 ← 0; z0 ← 0;
3: for t = 1, 2, . . . , T do
4: fetch function ft;
5: gt ← ∂θft(θt−1);
6: vt ← β2vt−1 + (1− β2)g2

t ;

7: dt ← 1−βt1
ηt

(√
vt

1−βt2
+ εt1

)
;

8: σt ← dt − β1dt−1;
9: zt ← β1zt−1 + (1− β1)gt − σtθt−1;

10: θt ← Π
diag(dt/(1−βt1))
Θ (−zt/dt);

11: end for
12: Output: θT .

Substituting this back into (9), θt is then equal to

arg min
θ∈Θ

t∑
i=1

wi,t

(
〈gi, θ〉+

1

2
‖θ − θi−1‖2diag

(
σi

1−β1

)) , (13)

where σi ≡ di − β1di−1. Note that some entries of σi may
be negative, and ‖θ− θi−1‖2diag(σi/(1−β1)) is then not a reg-
ularizer in the usual sense. Instead, the negative entries of
σi encourage the corresponding entries of θ to move away
from those of θi−1. Nevertheless, from the definitions of
dt, σt and (11), we have

∑t
i=1 wi,tdiag(σi/(1 − β1)) =∑t

i=1 wi,tQi = diag(dt/(1−βt1)), and thus the following:

Lemma 2.
∑t
i=1 wi,tdiag(σi/(1− β1)) � 0.

Hence, the objective in (13) is still strongly convex. More-
over, the following Proposition shows that θt in (13) has a
simple closed-form solution.

Proposition 2. In (13),

θt = Π
diag(dt/(1−βt1))
Θ (−zt/dt),

where zt = β1zt−1 + (1 − β1)gt − σtθt−1, and ΠA
Θ(x) ≡

arg minu∈Θ
1
2‖u−x‖

2
A is the projection onto Θ for a given

positive semidefinite matrix A.

The proposed procedure, which will be called follow the
moving leader (FTML), is shown in Algorithm 1. Note
that though {P1, . . . , Pt} are considered in each round, the
update depends only the current gradient gt and parameter
θt−1. It can be easily seen that FTML is easy to implement,
memory-efficient and has low per-iteration complexity.

3.2. Relationships with Adagrad, RMSprop and Adam

3.2.1. RELATIONSHIP WITH ADAGRAD

The following Propositions show that we can recover Ada-
grad in two extreme cases: (i) β1 = 0 with decreasing step-
size; and (ii) β1 → 1 with increasing stepsize.

Proposition 3. With β1 = 0, β2 → 1, ηt = η/
√
t, and

εt = ε/
√
t, θt in (13) reduces to:

Π
diag((
√
g21:t+ε1)/η)

Θ

(
θt−1 − diag

(
η√

g2
1:t + ε1

)
gt

)
,

which recovers Adagrad in (4).
Proposition 4. With β1 → 1, β2 → 1, ηt = η

√
t, and

εt = ε/
√
t, we recover (1) with Qi in (3). If Θ = Rd, it

generates identical updates as Adagrad in (4).

3.2.2. RELATIONSHIP WITH RMSPROP

When Θ = Rd, McMahan (2011) showed that (1) and (2)
generate the same updates. The following Theorem shows
that FTML also has a similar gradient descent update.
Theorem 1. With Θ = Rd, FTML generates the same up-
dates as:

θt = θt−1 − diag

(
1− β1

1− βt1
ηt√

vt/(1− βt2) + εt1

)
gt. (14)

When β1 = 0 and bias correction for the variance is not
used, (14) reduces to RMSprop in (7). However, recall
from Section 3.1 that when β1 = 0, we have wi,t = 0
for i < t, and wt,t = 1. Hence, only the current loss
component Pt is taken into account, and this may be sen-
sitive to the noise in Pt. Moreover, as demonstrated in
Adam, bias correction of the variance can be very impor-
tant. When β2 → 1, the variance estimate of RMSprop,∑t
i=1(1−β2)βt−i2 g2

i , becomes zero and blows up the step-
size, leading to divergence. In contrast, FTML’s Qi in (12)
recovers that of Adagrad in this case (Proposition 4). In
practice, a smaller β2 has to be used for RMSprop. How-
ever, a larger β2 enables the algorithm to be more robust to
the gradient noise in general.

3.2.3. RELATIONSHIP WITH ADAM

At iteration t, instead of centering regularization at each
θi−1 in (13), consider centering all the proximal regular-
ization terms at the last iterate θt−1. θt then becomes:

arg min
θ∈Θ

t∑
i=1

wi,t

(
〈gi, θ〉+

1

2
‖θ − θt−1‖2diag

(
σi

1−β1

)) . (15)

Compared with (13), the regularization in (15) is more ag-
gressive as it encourages θt to be close only to the last iter-
ate θt−1. The following Proposition shows that (15) gener-
ates the same updates as Adam.
Proposition 5. In (15),

θt = ΠAt
Θ

(
θt−1 −A−1

t

t∑
i=1

wi,tgi

)
, (16)

where At = diag((
√
vt/(1− βt2) + εt1)/ηt).
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As in Adam,
∑t
i=1 wi,tgi in (16) can be obtained as

mt/(1−βt1), wheremt is computed as an exponential mov-
ing average of gt’s: mt = β1mt−1 + (1− β1)gt.

Note that the θt updates of Adagrad (4), RMSprop (7), and
FTML (14) depend only on the current gradient gt. On the
other hand, the Adam update in (16) involves

∑t
i=1 wi,tgi,

which contains all the past gradients (evaluated at past pa-
rameter estimates θi−1’s). This is similar to the use of mo-
mentum, which is sometimes helpful in escaping from local
minimum. However, when the data distribution is changing
(as in deep reinforcement learning), the past gradients may
not be very informative, and can even impede parameter
adaptation to the environment. Recently, it is also reported
that the use of momentum can make training unstable when
the loss is nonstationary (Arjovsky et al., 2017). Indeed,
Theorem 4.1 in (Kingma & Ba, 2015) shows that Adam
has low regret only when β1 is decreasing w.r.t. t. When
β1 → 0,

∑t
i=1 wi,tgi → gt and so only the current gradient

is used.

Remark 1. (Summary) RMSprop and Adam are improve-
ments over Adagrad in training deep networks. However,
RMSprop uses β1 = 0 (and thus relies only on the current
sample), does not correct the bias of the variance estimate,
but centers the regularization at the current iterates θi−1’s.
On the other hand, Adam uses β1 > 0, bias-corrected vari-
ance, but centers all regularization terms at the last iterate
θt−1. The proposed FTML combines the nice properties of
the two.

4. Experiments
In this section, experiments are performed on a num-
ber of deep learning models, including convolutional neu-
ral networks (Section 4.1), deep residual networks (Sec-
tion 4.2), memory networks (Section 4.3), neural conversa-
tional model (Section 4.4), deep Q-network (Section 4.5),
and long short-term memory (LSTM) (Section 4.6). A
summary of the empirical performance of the various deep
learning optimizers is presented in Section 4.7.

The following state-of-the-art optimizers for deep learn-
ing models will be compared: (i) Adam (Kingma &
Ba, 2015); (ii) RMSprop (Tieleman & Hinton, 2012);
(iii) Adadelta (Zeiler, 2012); and (iv) Nesterov accel-
erated gradient (NAG) (Sutskever et al., 2013). For
FTML, we set β1 = 0.6, β2 = 0.999, and a con-
stant εt = ε = 10−8 for all t. For FTML, Adam,
RMSprop, and NAG, η is selected by monitoring per-
formance on the training set (note that Adadelta does
not need to set η). The learning rate is chosen from
{0.5, 0.25, 0.1, . . . , 0.00005, 0.000025, 0.00001}. Signif-
icantly underperforming learning rates are removed after
running the model for 5− 20 epochs. We then pick the rate
that leads to the smallest final training loss.

4.1. Convolutional Neural Networks

In the section, we perform experiments with the convolu-
tional neural network (CNN) (LeCun et al., 1998). We use
the example models on the MNIST and CIFAR-10 data sets
from the Keras library1. For MNIST, the CNN has two al-
ternating stages of 3 × 3 convolution filters (using ReLU
activation), followed by a 2 × 2 max-pooling layer and a
dropout layer (with a dropout rate of 0.25). Finally, there is
a fully-connected layer with ReLU activation and a dropout
rate of 0.5. For CIFAR-10, the CNN has four alternating
stages of 3× 3 convolution filters (using ReLU activation).
Every two convolutional layers is followed by a 2×2 max-
pooling layer and a dropout layer (with a dropout rate of
0.25). The last stage has a fully-connected layer with ReLU
activation and a dropout rate of 0.5. Features in both data
sets are normalized to [0, 1]. Minibatches of sizes 128 and
32 are used for MNIST and CIFAR-10, respectively.

As the iteration complexities of the various algorithms are
comparable and the total cost is dominated by backpropa-
gation, we report convergence of the training cross entropy
loss versus the number of epochs. This setup is also used
in (Zeiler, 2012; Kingma & Ba, 2015).

Figure 1 shows the convergence results. As can be seen,
FTML performs best on both data sets. Adam has com-
parable performance with FTML on MNIST, but does not
perform as well on CIFAR-10. The other methods are much
inferior. In particular, RMSprop is slow on both MNIST and
CIFAR-10, and Adadelta tends to diverge on CIFAR-10.

4.2. Deep Residual Networks

Recently, substantially deeper networks have been pop-
ularly used, particularly in computer vision. For exam-
ple, a 152-layer deep residual network (He et al., 2016)
achieves state-of-the-art performance on ImageNet classi-
fication, and won the first place on the ILSVRC 2015 clas-
sification task.

In this section, we perform experiments with a 110-layer
deep residual network on the CIFAR-10 and CIFAR-100
data sets. The code is based on its Torch implementa-
tion2. We leave the architecture and related settings intact,
and use the same learning rate schedule. The default opti-
mizer in the Torch code is NAG. Here, we also experiment
with Adadelta, RMSprop, Adam and the proposed FTML.
A minibatch size of 32 is used.

Convergence of the training cross entropy loss is shown
in Figure 2. As can been seen, all optimizers, except
Adadelta, are very competitive and have comparable per-

1https://github.com/fchollet/keras.
2https://github.com/facebook/fb.resnet.

torch.

https://github.com/fchollet/keras
https://github.com/facebook/fb.resnet.torch
https://github.com/facebook/fb.resnet.torch
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(a) MNIST.

(b) CIFAR-10.

Figure 1. Results on convolutional neural network.

formance on these two data sets. NAG shows slower initial
convergence, while FTML converges slightly faster than
the others on the CIFAR-10 data set.

4.3. Memory Networks

Recently, there has been a lot of attention on combining in-
ference, attention and memory for various machine learn-
ing tasks. In particular, the memory network (Weston et al.,
2014; Sukhbaatar et al., 2015) has been popularly used for
natural language understanding.

In this section, we use the example model of the end-to-
end memory network (with LSTM) from the Keras library.
We consider the question answering task (Sukhbaatar et al.,
2015; Weston et al., 2016), and perform experiments on the
“single supporting fact” task in the bAbI data set (Weston
et al., 2016). This task consists of questions in which a
previously given single sentence provides the answer. An

(a) CIFAR-10.

(b) CIFAR-100.

Figure 2. Results on deep residual network.

example is shown below. We use a single supporting mem-
ory, and a minibatch size of 32.

Single Supporting Fact:
Mary moved to the bathroom.
John went to the hallway.
Where is Mary? A: bathroom

Convergence of the training cross entropy loss is shown
in Figure 3. As can be seen, FTML and RMSprop per-
form best on this data set. Adam is slower, while NAG and
Adadelta perform poorly.

4.4. Neural Conversational Model

The neural conversational model (Vinyals & Le, 2015) is
a sequence-to-sequence model (Sutskever et al., 2014) that
is capable of predicting the next sequence given the last or
previous sequences in a conversation. A LSTM layer en-
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Figure 3. Results on memory network.

codes the input sentence to a thought vector, and a second
LSTM layer decodes the thought vector to the response. It
has been shown that this model can often produce fluent
and natural conversations.

In this experiment, we use the publicly available Torch im-
plementation3 with a constant stepsize, and its default data
set Cornell Movie-Dialogs Corpus (with 50, 000 samples)
(Danescu-Niculescu-Mizil & Lee, 2011). The number of
hidden units is set to 1000, and the minibatch size is 10.

Convergence of the training cross entropy loss is shown in
Figure 4. Adadelta is not reported here, since it performs
poorly (as in previous experiments). As can be seen, FTML
outperforms Adam and RMSprop. In particular, RMSprop
is much inferior. NAG is slower than FTML and Adam in
the first 21 epochs, but becomes faster towards the end of
training.

4.5. Deep Q-Network

In this section, we use the Deep Q-network (DQN) (Mnih
et al., 2015) for deep reinforcement learning. Experiments
are performed on two computer games on the Atari 2600
platform: Breakout and Asterix. We use the publicly avail-
able Torch implementation with the default network setup4,
and a minibatch size of 32. We only compare FTML
with RMSprop and Adam for optimization, as NAG and
Adadelta are rarely used in training the DQN. As in (Mnih
et al., 2015), we use ε = 10−2 for all methods, and perfor-
mance evaluation is based on the average score per episode.
The higher the score, the better the performance.

Convergence is shown in Figure 5. On Breakout, RM-

3https://github.com/macournoyer/
neuralconvo.

4https://github.com/Kaixhin/Atari.

Figure 4. Results on neural conversational model.

Sprop and FTML are comparable and yield higher scores
than Adam. On Asterix, FTML outperforms all the oth-
ers. In particular, the DQN trained with RMSprop fails to
learn the task, and its score begins to drop after about 100
epochs. A similar problem has also been observed in (Has-
selt et al., 2016). Experience replay (Mnih et al., 2015)
has been commonly used in deep reinforcement learning
to smooth over changes in the data distribution, and avoid
oscillations or divergence of the parameters. However, re-
sults here show that Adam still has inferior performance
because of its use of all past gradients, many of these are
not informative when the data distribution has changed.

4.6. Long Short-Term Memory (LSTM)

To illustrate the problem of Adam in Section 4.5 more
clearly, we perform the following timeseries prediction ex-
periment with the LSTM. We construct a synthetic time-
series of length 1000. This is divided into 20 segments,
each of length 50. At each time point, the sample is 10-
dimensional. In segment i, samples are generated from a
normal distribution with mean ([i, i, . . . , i] + ζi) ∈ R10

and identity covariance matrix, where the components of ζi
are independent standard normal random variables. Noise
from the standard normal distribution is added to corrupt
the data. The task is to predict the data sample at the next
time point t.

We use a one-layer LSTM implemented in (Léonard et al.,
2015). 100 hidden units are used. We truncate back-
propagation through time (BPTT) to 5 timesteps, and input
5 samples to the LSTM in each iteration. Thus, the data dis-
tribution changes every 10 iterations, as a different normal
distribution is then used for data generation. Performance
evaluation is based on the squared loss ft(θt−1) at time t.

Convergence of the loss is shown in Figure 6(a). As can be

https://github.com/macournoyer/neuralconvo
https://github.com/macournoyer/neuralconvo
https://github.com/Kaixhin/Atari
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(a) Breakout.

(b) Asterix.

Figure 5. Results on deep Q-network.

seen, Adam has difficulty in adapting to the data. In con-
trast, FTML and RMSprop can adapt more quickly, yield-
ing better and more stable performance.

As a baseline, we consider the case where the data distri-
bution does not change (the means of all the segments are
fixed to the vector of ones) Figure 6(b) shows the results.
As can be seen, Adam now performs comparably to FTML
and RMSprop.

4.7. Summary of Results

The main problem with RMSprop is that its performance
is not stable. Sometimes, it performs well, but sometimes
it can have significantly inferior performance (e.g., as can
be seen from Figures 1, 4 and 5(b)). The performance of
Adam is more stable, though it often lags behind the best
optimizer (e.g., Figures 1(b), 3, and 4). It is particularly
problematic when learning in a changing environment (Fig-

(a) Changing data distribution.

(b) Data distribution is stationary.

Figure 6. Results on timeseries data using LSTM.

ures 5 and 6(a)). In contrast, the proposed FTML shows
stable performance on various models and tasks. It con-
verges quickly, and is always the best (or at least among
the best) in all our experiments.

5. Conclusion
In this paper, we proposed a FTPRL variant called FTML,
in which the recent samples are weighted more heavily in
each iteration. Hence, it is able to adapt more quickly when
the parameter moves to another local basin, or when the
data distribution changes. FTML is closely related to RM-
Sprop and Adam. In particular, it enjoys their nice prop-
erties, but avoids their pitfalls. Experimental results on a
number of deep learning models and tasks demonstrate that
FTML converges quickly, and is always the best (or among
the best) of the various optimizers.
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