
Lightweight Stochastic Optimization
for Minimizing Finite Sums with Infinite Data

Shuai Zheng 1 James T. Kwok 1

Abstract
Variance reduction has been commonly used in
stochastic optimization. It relies crucially on the
assumption that the data set is finite. However,
when the data are imputed with random noise as
in data augmentation, the perturbed data set be-
comes essentially infinite. Recently, the stochas-
tic MISO (S-MISO) algorithm is introduced to
address this expected risk minimization problem.
Though it converges faster than SGD, a signifi-
cant amount of memory is required. In this pa-
per, we propose two SGD-like algorithms for ex-
pected risk minimization with random perturba-
tion, namely, stochastic sample average gradient
(SSAG) and stochastic SAGA (S-SAGA). The
memory cost of SSAG does not depend on the
sample size, while that of S-SAGA is the same
as those of variance reduction methods on un-
perturbed data. Theoretical analysis and exper-
imental results on logistic regression and AUC
maximization show that SSAG has faster conver-
gence rate than SGD with comparable space re-
quirement, while S-SAGA outperforms S-MISO
in terms of both iteration complexity and storage.

1. Introduction
Machine learning tasks are often cast as optimization prob-
lems with some data distributions. In regularized risk min-
imization with n training samples, one minimizes:

min
θ

1

n

n∑
i=1

`i(θ) + g(x), (1)

where θ is the model parameter, `i is the loss due to sam-
ple i, and g is a regularizer. In this paper, we assume that

1Department of Computer Science and Engineering, Hong
Kong University of Science and Technology, Clear Water
Bay, Hong Kong. Correspondence to: Shuai Zheng <szhen-
gac@cse.ust.hk>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

`i and g are smooth and convex. Stochastic gradient de-
scent (SGD) (Robbins & Monro, 1951) and its variants
(Nemirovski et al., 2009; Xiao, 2010; Duchi et al., 2011;
Bottou et al., 2016) are flexible, scalable, and widely used
for this problem. However, SGD suffers from large vari-
ance due to sampling noise. To alleviate this problem, the
stepsize has to be decreasing, which slows convergence.

By exploiting the finite-sum structure in (1), a class of
variance-reduced stochastic optimization methods have
been proposed recently (Le Roux et al., 2012; Johnson
& Zhang, 2013; Shalev-Shwartz & Zhang, 2013; Mairal,
2013; Defazio et al., 2014a;b). Based on the use of control
variates (Fishman, 1996), they construct different approx-
imations to the true gradient so that its variance decreases
as the optimal solution is approached.

In order to capture more variations in the data distribution,
it is effective to obtain more training data by injecting ran-
dom noise to the data samples (Decoste & Schölkopf, 2002;
van der Maaten et al., 2013; Paulin et al., 2014). Theoreti-
cally, it has been shown that random noise improves gener-
alization (Wager et al., 2014). In addition, artificially cor-
rupting the training data has a wide range of applications
in machine learning. For example, additive Gaussian noise
can be used in image denoising (Vincent et al., 2010) and
provides a form of `2-type regularization (Bishop, 1995);
dropout noise serves as adaptive regularization that is use-
ful in stabilizing predictions (van der Maaten et al., 2013)
and selecting discriminative but rare features (Wager et al.,
2013); and Poisson noise is of interest to count features as
in document classification (van der Maaten et al., 2013).

With the addition of noise perturbations, (1) becomes the
following expected risk minimization problem:

min
θ

1

n

n∑
i=1

Eξi [`i(θ; ξi)] + g(x), (2)

where ξi is the random noise injected to function `i, and Eξ
denotes expectation w.r.t. ξi. Because of the expectation,
the perturbed data can be considered as infinite, and the
finite data set assumption in variance reduction methods is
violated. In this case, each function in problem (2) can only
be accessed via a stochastic first-order oracle, and the main
optimization tool is SGD.

Lightweight Stochastic Optimization for Minimizing Finite Sums with Infinite Data

Despite its importance, expected risk minimization has re-
ceived very little attention. One very recent work for
this is the stochastic MISO (S-MISO) (Bietti & Mairal,
2017). While it converges faster than SGD, S-MISO re-
quires O(nd) space, where d is the feature dimensionality.
This significantly limits its applicability to big data prob-
lems. The N-SAGA algorithm (Hofmann et al., 2015) can
also be used on problems with infinite data. However, its
asymptotic error is nonzero.

In this paper, we focus on the linear model. By exploit-
ing the linear structure, we propose two SGD-like variants
with low memory costs: stochastic sample average gradi-
ent (SSAG) and stochastic SAGA (S-SAGA). In particular,
the memory cost of SSAG does not depend on the sample
size n, while S-SAGA has a memory requirement of O(n),
which matches the stochastic variance reduction methods
on unperturbed data (Le Roux et al., 2012; Shalev-Shwartz
& Zhang, 2013; Defazio et al., 2014a;b). Similar to S-
MISO, the proposed algorithms have faster convergence
than SGD. Moreover, the convergence rate of S-SAGA de-
pends on a constant that is typically smaller than that of
S-MISO. Experimental results on logistic regression and
AUC maximization with dropout noise demonstrate the ef-
ficiency of the proposed algorithms.

Notations. For a vector x, ‖x‖ =
√∑

i x
2
i is its `2-norm.

For two vectors x and y, xT y denotes its dot product.

2. Related Work
In this paper, we consider the linear model. Given sam-
ples {x1, . . . , xn}, with each xi ∈ Rd, the regularized risk
minimization problem in (1) can be written as:

min
θ

1

n

n∑
i=1

φi(x
T
i θ) + g(θ), (3)

where ŷi ≡ xTi θ is the prediction on sample i, and φi
is a loss. For example, logistic regression corresponds to
φi(ŷi) = log(1 + exp(−yiŷi)), where {y1, . . . , yn} are
the training labels; and linear regression corresponds to
φi(ŷi) = (yi − ŷi)2.

2.1. Learning with Injected Noise

To make the predictor robust, one can inject i.i.d. random
noise ξi to each sample xi (van der Maaten et al., 2013).
Let the perturbed sample be x̂i ≡ ψ(xi, ξi). The follow-
ing types of noise have been popularly used: (i) additive
noise (Bishop, 1995; Wager et al., 2013): x̂ = x+ξ, where
ξ comes from a zero-mean distribution such as the normal
or Poisson distribution; and (ii) dropout noise (Srivastava
et al., 2014): x̂ = ξ ◦ x, where ◦ denotes the element-
wise product, ξ ∈ {0, 1/(1 − p)}d, p is the dropout prob-
ability, and each component of ξ is an independent draw

from a scaled Bernoulli(1− p) random variable. With ran-
dom perturbations, (3) becomes the following expected risk
minimization problem:

min
θ
F (θ) ≡ 1

n

n∑
i=1

Eξi [φi(x̂
T
i θ)] + g(θ). (4)

As the objective contains an expectation, computing the
gradient is infeasible as infinite samples are needed. As an
approximation, SGD uses the gradient from a single sam-
ple. However, this has large variance.

In this paper, we make the following assumption on
fi(θ; ξi) ≡ φi(x̂

T
i θ) + g(θ) in (4). Note that this implies

φi(x̂
T
i θ) and F are also L-smooth.

Assumption 1. Each fi(θ; ξi) is L-smooth w.r.t. θ,
i.e., there exists constant L such that ‖∇fi(θ; ξi) −
∇fi(θ′; ξi)‖ ≤ L‖θ − θ′‖,∀θ, θ′.

2.2. Variance Reduction

In stochastic optimization, control variates have been com-
monly used to reduce the variance of stochastic gradi-
ents (Fishman, 1996). In general, given a random vari-
able X and another highly correlated random variable Y ,
a variance-reduced estimate of EX can be obtained as

X − Y + EY. (5)

In stochastic optimization on problem (3), the gradient
φ′i(x

T
i θ)xi of the loss evaluated on sample xi is taken as

X . When the training set is finite, various algorithms have
been recently proposed so that Y is strongly correlated with
φ′i(x

T
i θ)xi and EY can be easily evaluated. Examples in-

clude stochastic average gradient (SAG) (Le Roux et al.,
2012), MISO (Mairal, 2013), stochastic variance reduced
gradient (SVRG) (Johnson & Zhang, 2013), Finito (De-
fazio et al., 2014b), SAGA (Defazio et al., 2014a), and
stochastic dual coordinate ascent (SDCA) (Shalev-Shwartz
& Zhang, 2013).

However, with the expectation in (4), the full gradient (i.e.,
EY in (5)) cannot be evaluated, and variance reduction can
no longer be used. Very recently, the stochastic MISO (S-
MISO) algorithm (Bietti & Mairal, 2017) is proposed for
solving (4). Its convergence rate outperforms that of SGD
by having a smaller multiplicative constant. However, S-
MISO requires an additional O(nd) space, which prevents
its use on large data sets.

3. Sample Average Gradient
Let the iterate at iteration t be θt−1. To approximate
the gradient ∇F (θt−1) in (4), SGD uses the gradient
gt = φ′it(x̂

T
it
θt−1)x̂it + ∇g(θt−1) evaluated on a single

sample x̂it , where it is sampled uniformly from [n] ≡

Lightweight Stochastic Optimization for Minimizing Finite Sums with Infinite Data

{1, 2, . . . , n}. The variance of gt is usually assumed to be
bounded by a constant, as

E‖gt −∇F (θt−1)‖2 ≤ σ2
s , (6)

where the expectation is taken w.r.t. both the random index
it and perturbation ξt at iteration t. Note that the gradient
of regularizer g does not contribute to the variance.

3.1. Exploiting the Model Structure

3.1.1. STOCHASTIC SAMPLE-AVERAGE GRADIENT
(SSAG)

At iteration t, the stochastic gradient of the loss φi(x̂Ti θ)
for sample x̂it is φ′(x̂Titθ)x̂it . Thus, the gradient direc-
tion is determined by x̂it , while parameter θ only affects
its scale. With this observation, we consider using atx̂it
as a control variate for φ′(x̂Titθ)x̂it , where at may depend
on past information but not on x̂it . Note that the gradient
component∇g(θ) is deterministic, and does not contribute
to the construction of control variate. Using (5), the resul-
tant gradient estimator is:

zt = (φ′it(x̂
T
itθt−1)− at)x̂it + atx̃t +∇g(θt−1), (7)

where x̃t is an estimate of E[x̂it]. For example, x̃t can be
defined as

x̃t =

(
1− 1

t

)
x̃t−1 +

1

t
x̂it , (8)

so that x̃t can be incrementally updated as x̂it ’s are sam-
pled. As x̂it ’s are i.i.d., by the law of large number, the
sample average x̃t converges to the expected value E[x̂it].

The following shows that zt in (7) is a biased estimator of
the gradient ∇F (θt−1). As x̃t converges to E[x̂it], zt is
still asymptotically unbiased.
Proposition 1. E[zt] = ∇F (θt−1) + at

(
1− 1

t

)
(x̃t−1 −

E[x̂it]).

Note that E[x̂it] = 1
n

∑n
i=1 Eξi [x̂i], where Eξi denotes

the expectation w.r.t. ξi. We assume that each Eξi [x̂i] can
be easily computed. This is the case, for example, when
the noise is dropout noise or additive zero-mean noise, and
Eξi [x̂i] = xi (van der Maaten et al., 2013). This suggests
replacing x̃t in (7) by x̃ ≡ 1

n

∑n
i=1 Eξi [x̂i] (which is equal

to E[x̂it]), leading to the estimator:

vt = (φ′it(x̂
T
itθt−1)− at)x̂it + atx̃+∇g(θt−1). (9)

The following shows that vt is unbiased, and also provides
an upper bound of its variance.
Proposition 2. E[vt] = ∇F (θt−1), and E[‖vt −
∇F (θt−1)‖2] ≤ E[(φ′it(x̂

T
it
θt−1) − at)

2‖x̂it‖2]. The
bound is minimized when

at = a∗t ≡
E[φ′(x̂T θt−1)‖x̂‖2]

E[‖x̂‖2]
. (10)

For dropout noise and other additive noise with known vari-
ance, one can compute Eξi‖x̂i‖2 for each i ∈ [n], and then
average to obtain E[‖x̂‖2]. However, evaluating the expec-
tation in the numerator of (10) is infeasible.

Instead, we define at as

at = ãt/st (11)

for t ≥ 1, and approximate the expectations in the numera-
tor and denominator by moving averages:

ãt+1 = (1− βt)ãt + βtφ
′
it(x̂

T
itθt−1)‖x̂it‖2,

st+1 = (1− βt)st + βt‖x̂it‖2.

We initialize a1 = ã1 = s1 = 0, and set βt ∈ [0, 1).

The resulting algorithm, called stochastic sample-average
gradient (SSAG), is shown in Algorithm 1. Compared to S-
MISO (Bietti & Mairal, 2017), SSAG is more computation-
ally efficient. It does not require an extra O(nd) memory,
and only requires one single gradient evaluation (step 6) in
each iteration.

Algorithm 1 Stochastic sample-average gradient (SSAG).

1: Input: ηt > 0, βt ∈ [0, 1).
2: initialize θ0; x̃ ← 1

n

∑n
i=1 Eξi [x̂i]; a1 ← 0; ã1 ← 0;

s1 ← 0
3: for t = 1, 2, . . . do
4: draw sample index it and random perturbation ξt
5: x̂it ← ψ(xit , ξt)
6: dt ← φ′it(x̂

T
it
θt−1)

7: vt ← (dt − at)x̂it + atx̃+∇g(θt−1)
8: θt ← θt−1 − ηtvt
9: ãt+1 ← (1− βt)ãt + βtdt‖x̂it‖2

st+1 ← (1− βt)st + βt‖x̂it‖2
at+1 ← ãt+1/st+1

10: end for

The following Proposition shows that at in (11) is asymp-
totically optimal for appropriate choices of ηt and βt.
Proposition 3. If (i) E[φ′it(x̂

T
it
θt−1)2‖x̂it‖4] <

∞ and E[‖x̂it‖4] < ∞; (ii) ‖vt‖ < ∞; (iii)
ηt → 0,

∑
t ηt = ∞,

∑
t η

2
t < ∞; (iv)

βt → 0,
∑
t βt =∞,

∑
t β

2
t <∞; and (v) ηt/βt → 0,

then
at → a∗t w.p.1.

A simple choice is: ηt = O(1/tc1), βt = O(1/tc2), where
1/2 < c2 < c1 ≤ 1. The following Proposition quantifies
the convergence of stat to stat∗. In particular, when c1 = 1,
the asymptotic bound in (12) is minimized when c2 = 2/3.
Proposition 4. With assumptions (i)-(v) in Proposition 3,
ηt = O(1/tc1), and βt = O(1/tc2), we have

E[s2t (at − a∗t)2] ≤ O
(

max

{
1

tc2
,

1

t2(c1−c2)

})
. (12)

Lightweight Stochastic Optimization for Minimizing Finite Sums with Infinite Data

3.1.2. STOCHASTIC SAGA (S-SAGA)

Recall that in (9), φ′it(x̂
T
it
θt−1)x̂it plays the role of X in

(5), and atx̂it plays the role of Y . However, the corre-
sponding X and Y in (5) can be negatively correlated in
some iterations. This is partly because at in (9) does not
depend on x̂it , though atx̂it serves as a control variate for
φ′it(x̂

T
it
θt−1)x̂it . Thus, it is better for each sample x̂i to

have its own scaling factor, leading to the estimator:

vt = (φ′it(x̂
T
itθt−1)− ait)x̂it +mt−1 +∇g(θt−1), (13)

where mt−1 = E[ait x̂it] = 1
n

∑n
i=1 aiEξi [x̂i]. Note that

mt can be updated sequentially as:

mt = mt−1 +
1

n
(φ′it(x̂

T
itθt−1)− ait)Eξt [x̂it].

Besides, (13) reduces to the SAGA estimator (Defazio
et al., 2014a) when the random noise is removed. The
whole procedure, which will be called stochastic SAGA (S-
SAGA), is shown in Algorithm 2.

Algorithm 2 Stochastic SAGA (S-SAGA).

1: Input: ηt > 0.
2: initialize θ0; x̄i ← Eξi [x̂i] and ai ← φ′i(x̂

T
i , θ0) for

all i ∈ [n]; m0 = 1
n

∑n
i=1 aix̄i

3: for t = 1, 2, . . . do
4: draw sample index it and random perturbation ξt
5: x̂it ← ψ(xit , ξt)
6: dt ← φ′it(x̂

T
it
θt−1)

7: vt ← (dt − ait)x̂it +mt−1 +∇g(θt−1)
8: θt ← θt−1 − ηtvt
9: mt ← mt−1 + 1

n (dt − ait)x̄it
10: ait ← dt
11: end for

S-SAGA needs an additionalO(nd) space for {a1, . . . , an}
and {Eξ1 [x̂1], . . . , {Eξn [x̂n]}. However, as discussed in
Section 3.1.1, Eξi [x̂i] = xi for many types of noise.
Hence, Eξi [x̂i]’s do not need to be explicitly stored, and
the additional space is reduced to O(n). This is signifi-
cantly smaller than that of S-MISO, which always requires
O(nd) additional space.

3.2. Convergence Analysis

In this section, we provide convergence results for SSAG
and S-SAGA on problem (4).

3.2.1. SSAG

For SSAG, we make the following additional assumptions.
Assumption 2. F is µ-strongly convex, i.e., F (θ′) ≥
F (θ) + 〈∇F (θ), θ′ − θ〉+ µ

2 ‖θ
′ − θ‖2,∀θ, θ′.

Assumption 3. E[(φ′it(x̂
T
it
θt−1) − at)2‖x̂it‖2] ≤ σ2

a for
all t.

Let the minimizer of (4) be θ∗. The following Theorem
shows that SSAG has O(1/t) convergence rate, which is
similar to SGD (Bottou et al., 2016).
Theorem 1. Assume that ηt = c/(γ+ t) for some c > 1/µ
and γ > 0 such that η1 ≤ 1/L. For the {θt} sequence
generated from SSAG, we have

E[F (θt)]− F (θ∗) ≤
ν1

γ + t+ 1
, (14)

where ν1 ≡ max
{

c2Lσ2
a

2(cµ−1) , (γ + 1)C1

}
, and C1 =

F (θ0)− F (θ∗).

Note that this ηt also satisfies the conditions in Proposi-
tion 3. The condition c > 1/µ is crucial to obtaining the
O(1/t) rate. It has been observed that underestimating c
can make convergence extremely slow (Nemirovski et al.,
2009). When the model is `2-regularized, µ can be esti-
mated by the corresponding regularization parameter.
Corollary 1. To ensure that E[F (θt)]− F (θ∗) ≤ ε, SSAG
has a time complexity of O(n + κC1/ε + σ2

aκ
2/ε), where

κ ≡ L/µ is the condition number.

The O(n) term is due to initialization of m0 and amortized
over multiple data passes. In contrast, the time complexity
for SGD is O(κC1/ε+σ2

sκ
2/ε), where σ2

s is defined in (6)
(Bottou et al., 2016). To compare σ2

s with σ2
a, we assume

that the perturbed samples have finite variance σ2
x:

E[‖x̂−E[x̂]‖2] = σ2
x.

The variance of the SGD estimator gt can be bounded as

E[‖gt −∇F (θt−1)‖2

= E[‖φ′it(x̂
T
itθt−1)x̂it −E[φ′it(x̂

T
itθt−1)x̂it]‖2]

≤ 3E[‖φ′it(x̂
T
itθt−1)x̂it − atx̂it‖2]

+3E[‖atx̂it − atE[x̂it]‖2

+3E[‖atE[x̂it]−E[φ′it(x̂
T
itθt−1)x̂it]‖2]

/ 3σ2
a + 3a2tσ

2
x.

Thus, the gradient variance of SGD has two terms, one
involving σ2

a and the other involving atσ2
x. In particular,

if the derivative φ′it(x̂
T
it
θt−1) is constant, then σ2

a = 0,
and only the perturbed sample variance σ2

x contributes to
the gradient variance of SGD. For a large class of func-
tions including the logistic loss and smoothed hinge loss,
φ′it(x̂

T
it
θt−1) is nearly constant in some regions. In this

case, we have a2tσ
2
x ≈ σ2

s .

3.2.2. S-SAGA

Besides Assumption 1, we assume the following:
Assumption 4. Each fi(θ; ξi) is µ-strongly convex, i.e.,
fi(θ

′; ξi) ≥ fi(θ; ξi) + 〈∇fi(θ; ξi), θ′ − θ〉 + µ
2 ‖θ
′ −

θ‖2,∀θ, θ′.

Lightweight Stochastic Optimization for Minimizing Finite Sums with Infinite Data

Assumption 5. For all t, 1
n

∑n
i=1Eξi,ξ′i [(φ

′
i(x̂
′T
i θt−1)−

φ′i(x̂
T
i θt−1))2‖x̂i‖2] ≤ σ2

c , where x̂i = ψ(xi, ξi), x̂′i =
ψ(xi, ξ

′
i), and ξ′i is another randomly sampled noise for xi.

Theorem 2. Assume that ηt = c/(γ+ t) for some c > 1/µ
and γ > 0 such that η1 ≤ 1/(3(µn + L)). For the {θt}
sequence generated from S-SAGA, we have

E[‖θt − θ∗‖2] ≤ ν2
γ + t+ 1

, (15)

where ν2 ≡ max
(

4c2σ2
c

cµ−1 , (γ + 1)C2

)
, and C2 ≡ ‖θ0 −

θ∗‖2 + 2n
3(µn+L) [F (θ0)− F (θ∗)].

Thus, S-SAGA has a convergence rate of O(σ2
cκ

2/t). In
comparison, the convergence rate of SGD is O(σ2

sκ
2/t).

Note that σ2
s in (6) includes variance due to data sampling,

while σ2
c above only considers that due to noise. Since data

sampling induces a much larger variation than that from
perturbing the same sample, typically we have σ2

c � σ2
s ,

and thus S-SAGA has faster convergence.

S-MISO considers the variance of the difference in gradi-
ents due to noise:

1

n

n∑
i=1

Eξ,ξ′ [‖φ′i(x̂′Ti θt−1)x̂′i − φ′i(x̂Ti θt−1)x̂i‖2] ≤ σ2
m,

and its convergence rate isO(σ2
mκ

2/t). The bounds for σ2
m

and σ2
c are similar in form. However, σ2

c can be small when
the difference φ′(x̂Ti θ) − φ′(x̂′Ti θ) is small, while it is not
the case for σ2

m. In particular, when φ′(x̂T θ) is a constant
regardless of random perturbations, σ2

c = 0.

The following Corollary considers the time complexity of
S-SAGA.

Corollary 2. To ensure that E[F (θt)] − F (θ∗) ≤ ε, S-
SAGA has a time complexity of O((n+κ)C2/ε+σ2

cκ
2/ε).

Remark 1. In (Bietti & Mairal, 2017), additional speedup
can be achieved by first running the algorithm with a con-
stant stepsize for a few epochs, and then applying the de-
creasing stepsize. This trick is not used here. If incorpo-
rated, it can be shown that the C2/ε term will be improved
to log(C2/ε̄).

A summary of the convergence results is shown in Table 1.
As can be seen, by exploiting the linear model structure,
SSAG has a smaller variance constant than SGD (σ2

a vs
σ2
s) while having comparable space requirement. S-SAGA

improves over S-MISO and achieves gains both in terms of
iteration complexity and storage.

3.3. Acceleration By Iterate Averaging

The complexity bounds in Corollaries 1 and 2 depend
quadratically on the condition number κ. This may be

Table 1. Iteration complexity and extra storage of different meth-
ods for solving optimization problem (4). For simplicity of com-
parison, we drop the constant C.

iteration complexity space
SGD O(κ/ε+ σ2

sκ
2/ε) O(d)

S-MISO O((n+ κ)/ε+ σ2
mκ

2/ε) O(nd)
SSAG O(n+ κ/ε+ σ2

aκ
2/ε) O(d)

S-SAGA O((n+ κ)/ε+ σ2
cκ

2/ε) O(n)

problematic on ill-conditioned problems. To alleviate this
problem, one can use iterate averaging (Bietti & Mairal,
2017), which outputs

θ̄T ≡
2

T (2γ + T − 1)

T−1∑
t=0

(γ + t)θt, (16)

where T is the total number of iterations. It can be easily
seen that (16) can be efficiently implemented in an online
fashion without the need for storing θt’s:

θ̄t = (1− ρt)θ̄t−1 + ρtθt−1,

where ρt = 2(γ+t−1)
t(2γ+t−1) and θ̄0 = 0. As in (Bietti & Mairal,

2017), the following shows that the κ2 dependence in both
SSAG and S-SAGA (Corollaries 1 and 2) can be reduced
to κ.

Theorem 3. Assume that ηt = 2/(µ(γ + t)) and γ > 0
such that η1 ≤ 1/(2L). For the {θt} sequence generated
from SSAG, we have

E[F (θ̄T)]− F (θ∗)

≤ µγ(γ − 1)

T (2γ + T − 1)
‖θ0 − θ∗‖2 +

4σ2
a

µ(2γ + T − 1)
.

The stepsize ηt = 2/(µ(γ + t)) and condition η1 ≤ 1/2L
together implies that γ = O(κ). Thus, when T � γ, the
first term, which depends on ‖θ0 − θ∗‖2, decays as 1/T ,
which is no better than (14). On the other hand, if T � γ,
the first term decays at a faster κ/T 2 rate.

Corollary 3. When T � γ, to ensure that E[F (θ̄T)] −
F (θ∗) ≤ ε, SSAG with iterate averaging has a time com-
plexity of O(n+

√
κC3/

√
ε+ σ2

aκ/ε), where C3 = ‖θ0 −
θ∗‖2.

Similarly, we have the following for S-SAGA.

Theorem 4. Assume that ηt = c/(γ+ t) for some c > 1/µ
and γ > 0 such that η1 ≤ 1/(7(µn + L)). For the {θt}
sequence generated from S-SAGA, we have

E[F (θ̄T)− F (θ∗)]

≤ µγ(γ − 1)

2T (2γ + T − 1)
C4 +

32σ2
c

µ(2γ + T − 1)
, (17)

where C4 ≡ 3‖θ0 − θ∗‖2 + 4n
7(µn+L) [F (θ0)− F (θ∗)].

Lightweight Stochastic Optimization for Minimizing Finite Sums with Infinite Data

epochs
0 5 10 15 20 25 30

ob
je

ct
iv

e

0.3197

0.3198

0.3199

0.32

0.3201

0.3202

0.3203

0.3204

0.3205

(a) avazu-app (λ = 10−6).
epochs

0 5 10 15 20 25 30

ob
je

ct
iv

e

0.315

0.3155

0.316

0.3165

0.317

0.3175

0.318

0.3185

0.319

(b) avazu-app (λ = 10−7).
epochs

0 5 10 15 20 25 30

ob
je

ct
iv

e

0.3135

0.314

0.3145

0.315

0.3155

0.316

0.3165

0.317

0.3175

0.318

(c) avazu-app (λ = 10−8).

epochs
0 5 10 15 20 25 30

ob
je

ct
iv

e

0.288

0.289

0.29

0.291

0.292

0.293

0.294

0.295

0.296

(d) kddb (λ = 10−6).
epochs

0 5 10 15 20 25 30

ob
je

ct
iv

e

0.23

0.24

0.25

0.26

0.27

0.28

0.29

(e) kddb (λ = 10−7).
epochs

0 5 10 15 20 25 30

ob
je

ct
iv

e

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

(f) kddb (λ = 10−8).

Figure 1. Convergence with the number of epochs (logistic regression with dropout). The regularization parameter λ of `2 regularizer is
varied from 10−6 to 10−8. The dropout rate is fixed to 0.3.

The condition η1 ≤ 1/(7(µn + L)) is satisfied when
γ = O(n + κ). Thus, the second term in C4 is scaled
by 4n/(7(µn + L)) = O(n/(µγ)). These implies that
the first term in (17) decays as n/T when T � γ. On
the other hand, when T � γ, the first term decays as
n(n + κ)/T 2. Thus, iterate averaging does not provide
S-SAGA with much acceleration as compared to SSAG.

The following Corollary considers the case where n =
O(κ) (Johnson & Zhang, 2013).

Corollary 4. Assume that n = O(κ). When T � γ, to en-
sure that E[F (θ̄T)]−F (θ∗) ≤ ε, S-SAGA with iterate aver-
aging has a time complexity of O(n+

√
(n+ κ)C4/

√
ε+

σ2
cκ/ε).

4. Experiments
In this section, we perform experiments on logistic regres-
sion (Section 4.1) and AUC maximization (Section 4.2).

4.1. Logistic Regression with Dropout

Consider the `2-regularized logistic regression model with
dropout noise, with dropout probability p = 0.3. This can
be formulated as the following optimization problem:

min
θ

1

n

n∑
i=1

Eξ̂i [log(1 + exp(−yiẑTi θ))] +
λ

2
‖θ‖2, (18)

where ẑi = ψ(zi, ξi), zi is the feature vector of sample
i, and yi the corresponding class label. We vary λ ∈
{10−6, 10−7, 10−8}. The smaller the λ, the higher the con-
dition number. Experiments are performed on two high-
dimensional data sets from the LIBSVM archive (Table 2).

Table 2. Data sets used in the logistic regression experiment.

#training #testing dimensionality
avazu-app 12,642,186 1,953,951 1,000,000

kddb 19,264,097 748,401 29,890,095

4.1.1. COMPARISON WITH SGD AND S-MISO

The proposed SSAG and S-SAGA are compared with SGD
and S-MISO. From Proposition 4, we use a slightly larger
βt = t−0.75 for better non-asymptotic performance. As
mentioned in the theorems, the stepsize schedule is ηt =
c/(γ + t). We fix c = 2/λ for SGD, SSAG, S-SAGA,
and c = 2n for S-MISO as suggested in (Bietti & Mairal,
2017). We then select γ from a number of possible val-
ues (e.g., powers of tens and five times powers of tens) by
monitoring the training objective. To reduce statistical vari-
ability, results are averaged over five repetitions.

As all methods under comparison have the same iteration
complexities, Figure 1 shows convergence of the training
objective with the number of epochs. The expectation in
(18) is estimated from 5 perturbed samples. As can be seen,
S-SAGA significantly outperforms all the others. In par-

Lightweight Stochastic Optimization for Minimizing Finite Sums with Infinite Data

epochs
0 5 10 15 20 25 30

ob
je

ct
iv

e

0.3197

0.3198

0.3199

0.32

0.3201

0.3202

0.3203

0.3204

0.3205

(a) avazu-app (λ = 10−6).
epochs

0 5 10 15 20 25 30

ob
je

ct
iv

e

0.315

0.3155

0.316

0.3165

0.317

0.3175

0.318

0.3185

0.319

(b) avazu-app (λ = 10−7).
epochs

0 5 10 15 20 25 30

ob
je

ct
iv

e

0.313

0.314

0.315

0.316

0.317

0.318

0.319

0.32

(c) avazu-app (λ = 10−8).

epochs
0 5 10 15 20 25 30

ob
je

ct
iv

e

0.288

0.289

0.29

0.291

0.292

0.293

0.294

0.295

0.296

(d) kddb (λ = 10−6).
epochs

0 5 10 15 20 25 30

ob
je

ct
iv

e

0.23

0.24

0.25

0.26

0.27

0.28

0.29

(e) kddb (λ = 10−7).
epochs

0 5 10 15 20 25 30

ob
je

ct
iv

e

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

(f) kddb (λ = 10−8).

Figure 2. Convergence with the number of epochs (both methods with and without iterate averaging are included). The experiment is
performed on the same task as in Figure 1 but with more algorithms included.

epochs
0 5 10 15 20 25 30

ob
je

ct
iv

e

0.305

0.306

0.307

0.308

0.309

0.31

0.311

(a) avazu-app (p = 0.1).
epochs

0 5 10 15 20 25 30

ob
je

ct
iv

e

0.315

0.3155

0.316

0.3165

0.317

0.3175

0.318

0.3185

0.319

(b) avazu-app (p = 0.3).

epochs
0 5 10 15 20 25 30

ob
je

ct
iv

e

0.328

0.329

0.33

0.331

0.332

0.333

0.334

(c) avazu-app (p = 0.5).

Figure 3. Convergence with the number of epochs (logistic regression with dropout). The dropout probability is varied from 0.1 to 0.5.

ticular, it reaches a much lower objective value when the
condition number is large (λ = 10−8). SSAG and S-MISO
have similar convergence behavior and converge faster than
SGD. However, S-MISO requires much more memory than
SSAG. A comparison of the additional memory (relative to
SGD) used by each method is shown in Table 3.

Table 3. Additional memory (relative to SGD) required by the
various algorithms in the logistic regression experiment.

S-MISO SSAG S-SAGA
avazu-app 3.1GB 7.6MB 104.1MB

kddb 8.9GB 147 MB 375MB

To see how at differs from a∗t in (10), we perform an exper-
iment using a subset of covertype data from the LIBSVM
archive. The expectations in a∗t are again approximated by
randomly sampling 5 perturbations for each sample. Em-

pirically, maxt≥2 |at − a∗t |/|a∗t | is of the order 0.01, in-
dicating that at is a reasonable estimate even in the early
iterations.

4.1.2. USE OF ITERATE AVERAGING

Figure 2 adds the convergence results for iterate averaging
to Figure 1 (“IA” is prepended to the names of algorithms
using iterate averaging). As can be seen, iterate averaging
leads to significant improvements for SGD, S-MISO and
SSAG, but less prominent improvement for S-SAGA. This
agrees with the discussions in Section 3.3. Moreover, when
the condition number is high, SSAG has similar conver-
gence as IA-SGD on kddb. This demonstrates that SSAG
is more robust to large condition number.

Overall, when memory is not an issue, S-SAGA is pre-
ferred for problems with small or medium condition num-

Lightweight Stochastic Optimization for Minimizing Finite Sums with Infinite Data

epochs
0 5 10 15 20 25 30

R
O

C
 a

re
a

0.744

0.7445

0.745

0.7455

0.746

0.7465

0.747

0.7475

0.748

0.7485

0.749

(a) avazu-app (λ = 10−6).
epochs

0 5 10 15 20 25 30

R
O

C
 a

re
a

0.742

0.743

0.744

0.745

0.746

0.747

0.748

0.749

0.75

(b) avazu-app (λ = 10−7).
epochs

0 5 10 15 20 25 30

R
O

C
 a

re
a

0.742

0.743

0.744

0.745

0.746

0.747

0.748

0.749

0.75

(c) avazu-app (λ = 10−8).

epochs
0 5 10 15 20 25 30

R
O

C
 a

re
a

0.84

0.841

0.842

0.843

0.844

0.845

0.846

0.847

0.848

(d) kddb (λ = 10−5).
epochs

0 5 10 15 20 25 30

R
O

C
 a

re
a

0.834

0.836

0.838

0.84

0.842

0.844

0.846

0.848

0.85

(e) kddb (λ = 10−6).
epochs

0 5 10 15 20 25 30

R
O

C
 a

re
a

0.834

0.836

0.838

0.84

0.842

0.844

0.846

0.848

0.85

(f) kddb (λ = 10−7).

Figure 4. Convergence of AUC with the number of epochs.

bers, while IA-S-SAGA can be better for problems with
large condition numbers. If memory is limited, IA-SSAG
is recommended.

4.1.3. VARYING THE DROPOUT PROBABILITY

In this section, we study how the strength of the dropout
noise affects convergence. We use the avazu-app data set,
and fix λ = 10−7. The dropout probability p is varied in
{0.1, 0.3, 0.5}. Note that a larger dropout probability leads
to larger noise variance. Figure 3 shows that S-SAGA is
very robust to different noise levels, while S-MISO per-
forms much worse when the dropout probability increases.
This demonstrates the theoretical result in Theorem 2 that
S-SAGA has a smaller variance constant, while SGD and
SSAG are not sensitive to p.

4.2. AUC Maximization with Dropout

In this section, we consider maximization of the AUC (i.e.,
area under the ROC curve). This is equivalent to rank-
ing the positive samples higher than the negative samples
(Sculley, 2009). It can be formulated as minimizing the
following objective with the squared hinge loss:

1

n+n−

∑
yi=1,yj=0

Eξi,ξj [max(0, 1− (ẑi − ẑj)T θ)2] +
λ

2
‖θ‖2,

where n+, n− are the numbers of samples belonging to the
positive and negative class, respectively. We again use the
data sets in Table 2, and inject dropout noise with dropout
probability p = 0.3.

Even without noise perturbation, AUC maximization is in-
feasible for existing variance reduction methods. Methods
such as SAG and SAGA need O(n+n−) space. SVRG
trades space with time, and takes O(n+n−) time. With
dropout noise injected, S-MISO requires even more space,
namely, O(n+n−d). S-SAGA requires O(n+n−) space,
and so is also impractical. Thus, in the following, we only
compare SGD, SSAG and their variants with iterate aver-
aging. As a further baseline, we also compare with ADA-
GRAD (Duchi et al., 2011), which performs SGD with an
adaptive learning rate.

Figure 4 shows the results. IA-SSAG is always the fastest,
and has the highest AUC on kddb. ADAGRAD and IA-
SGD have comparable AUC with IA-SSAG on avazu-app,
but not on kddb. ADAGRAD is faster than SGD and SSAG
on avazu-app, but slower than SSAG on kddb. On kddb,
SSAG has comparable performance with IA-SGD, and is
better when λ = 10−5.

5. Conclusion
In this paper, we proposed two SGD-like algorithms for
finite sums with infinite data when learning with the lin-
ear model. The key is to exploit the linear structure in
the construction of control variates. Convergence results
on strongly convex problems are provided. The proposed
methods require small memory cost. Experimental results
demonstrate that the proposed algorithms outperform the
state-of-the-art on large data sets.

Lightweight Stochastic Optimization for Minimizing Finite Sums with Infinite Data

References
Bietti, A. and Mairal, J. Stochastic optimization with vari-

ance reduction for infinite datasets with finite-sum struc-
ture. In Advances in Neural Information Processing Sys-
tems, pp. 1622–1632, 2017.

Bishop, C. M. Training with noise is equivalent to
tikhonov regularization. Neural computation, 7(1):108–
116, 1995.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimiza-
tion methods for large-scale machine learning. Preprint
arXiv:1606.04838, 2016.

Decoste, D. and Schölkopf, B. Training invariant support
vector machines. Machine learning, 46(1-3):161–190,
2002.

Defazio, A., Bach, F., and Lacoste-Julien, S. SAGA: A
fast incremental gradient method with support for non-
strongly convex composite objectives. In Advances in
Neural Information Processing Systems, pp. 2116–2124,
2014a.

Defazio, A., Domke, J., and Caetano, T. Finito: A faster,
permutable incremental gradient method for big data
problems. In Proceedings of the 31st International Con-
ference on Machine Learning, pp. 1125–1133, 2014b.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–
2159, 2011.

Fishman, G. S. Monte Carlo: Concepts, Algorithms and
Applications. Springer, 1996.

Hofmann, T., Lucchi, A., Lacoste-Julien, S., and
McWilliams, B. Variance reduced stochastic gradient
descent with neighbors. In Advances in Neural Informa-
tion Processing Systems, pp. 2305–2313, 2015.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. In Advances
in Neural Information Processing Systems, pp. 315–323,
2013.

Le Roux, N., Schmidt, M., and Bach, F. R. A stochastic
gradient method with an exponential convergence rate
for finite training sets. In Advances in Neural Informa-
tion Processing Systems, pp. 2663–2671, 2012.

Mairal, J. Optimization with first-order surrogate func-
tions. In Proceedings of the 30th International Confer-
ence on Machine Learning, 2013.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A.
Robust stochastic approximation approach to stochastic
programming. SIAM Journal on Optimization, 19(4):
1574–1609, 2009.

Paulin, M., Revaud, J., Harchaoui, Z., Perronnin, F., and
Schmid, C. Transformation pursuit for image classifica-
tion. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 3646–3653,
2014.

Robbins, H. and Monro, S. A stochastic approximation
method. The Annals of Mathematical Statistics, pp. 400–
407, 1951.

Sculley, D. Large scale learning to rank. In NIPS 2009
Workshop on Advances in Ranking, 2009.

Shalev-Shwartz, S. and Zhang, T. Stochastic dual co-
ordinate ascent methods for regularized loss minimiza-
tion. Journal of Machine Learning Research, 14:567–
599, 2013.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

van der Maaten, L., Chen, M., Tyree, S., and Weinberger,
K. Learning with marginalized corrupted features. In In-
ternational Conference on Machine Learning, pp. 410–
418, 2013.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Man-
zagol, P. Stacked denoising autoencoders: Learning use-
ful representations in a deep network with a local denois-
ing criterion. Journal of Machine Learning Research, 11
(12):3371–3408, 2010.

Wager, S., Wang, S., and Liang, P. S. Dropout training as
adaptive regularization. In Advances in Neural Informa-
tion Processing Systems, pp. 351–359, 2013.

Wager, S., Fithian, W., Wang, S., and Liang, P. S. Alti-
tude training: Strong bounds for single-layer dropout. In
Advances in Neural Information Processing Systems, pp.
100–108, 2014.

Xiao, L. Dual averaging methods for regularized stochastic
learning and online optimization. Journal of Machine
Learning Research, 11(Oct):2543–2596, 2010.

