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Abstract
In classification problems, isotonic regression has
been commonly used to map the prediction scores
to posterior class probabilities. However, isotonic
regression may suffer from overfitting, and the
learned mapping is often discontinuous. Besides,
current efforts mainly focus on the calibration of a
single classifier. As different classifiers have dif-
ferent strengths, a combination of them can lead
to better performance. In this paper, we propose
a novel probability calibration approach for such
an ensemble of classifiers. We first construct iso-
tonic constraints on the desired probabilities based
on soft voting of the classifiers. Manifold infor-
mation is also incorporated to combat overfitting
and ensure function smoothness. Computation-
ally, the extended isotonic regression model can
be learned efficiently by a novel optimization al-
gorithm based on the alternating direction method
of multipliers (ADMM). Experiments on a number
of real-world data sets demonstrate that the pro-
posed approach consistently outperforms indepen-
dent classifiers and other combinations of the clas-
sifiers’ probabilities in terms of the Brier score and
AUC.

1 Introduction
In many classification problems, it is important to estimate
the posterior probabilities that an instance belongs to each
of the output classes. For example, in medical diagnosis, it
is more natural to estimate the patient’s probability of hav-
ing cancer, rather than simply giving an assertion [Gail et al.,
1989]; in computational advertising, it is useful to estimate
the probability that an advertisement will be clicked [Richard-
son et al., 2007]. Moreover, different misclassifications may
have different costs, which need not even be known during
training. In order to make cost-sensitive decisions, probabil-
ity is again an essential component in the computation of the
conditional risk [Zadrozny and Elkan, 2001].

However, many popular classifiers, such as the SVM and
boosting, can only output a prediction score; while others,
such as the naive Bayes classifier, are unable to produce ac-
curate probability estimates [Niculescu-Mizil and Caruana,

2005]. Calibration of these scores or probabilities is thus an
important research issue. Currently, the most popular cali-
bration methods are Platt scaling [Platt, 1999] and isotonic
regression [Zadrozny and Elkan, 2001; 2002]. Platt scaling
is based on fitting the scores with a sigmoid. This, how-
ever, may not be the right transformation for many classifiers
[Niculescu-Mizil and Caruana, 2005]. Isotonic regression, on
the other hand, is nonparametric and only needs to assume
that the calibrated probability is monotonically increasing
with the score. It has demonstrated great empirical success
on various classifiers [Niculescu-Mizil and Caruana, 2005;
Caruana and Niculescu-Mizil, 2006; Caruana et al., 2008],
and has also outperformed Platt’s method on most problems
[Caruana et al., 2008]. Recently, this is further improved by
generating the isotonic constraints based on a direct optimiza-
tion of the AUC via ranking [Menon et al., 2012].

Though flexible, isotonic regression can suffer from over-
fitting, especially with limited calibration data [Niculescu-
Mizil and Caruana, 2005]. Moreover, as the construction
of isotonic constraints depends only on the scores’ ordering,
similar scores need not yield similar calibrated probabilities.
Indeed, the isotonic regression function is not even continu-
ous in general and can have jumps (Figure 1). This is often
undesirable and may hurt prediction performance. A vari-
ety of techniques have been proposed to smooth out the dis-
continuities, such as by using moving average [Friedman and
Tibshirani, 1984], kernel estimator [Hall and Huang, 2001;
Jiang et al., 2011] and smoothing spline [Wang and Li, 2008].
However, they are applicable only when the isotonic con-
straints are ordered on a one-dimensional list.

Another limitation of existing calibration algorithms is that
they only focus on one single classifier. As different classi-
fiers may have different strengths, it is well-known that en-
semble learning can improve performance [Zhou, 2012]. A
standard ensemble approach is to average (possibly weighted)
the probabilities obtained from all the classifiers. As will be
seen in Section 4, empirically this can be outperformed by
better approaches proposed in the following.

In this paper, we extend the isotonic regression model to al-
leviate the above problems. First, instead of constructing iso-
tonic constraints individually for each classifier, we construct
a more refined set of isotonic constraints based on the vector
of scores obtained from all the classifiers. Moreover, to avoid
overfitting and ensure smoothness of the calibrated probabili-
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Figure 1: Calibration curve obtained on the ijcnn1 data set.
The abscissa is the classifier score and the ordinate is the cal-
ibrated probability produced by isotonic regression with (red)
and without manifold regularization (blue).

ties with respect to the scores, we incorporate the highly suc-
cessful technique of manifold regularization [Belkin et al.,
2006]. To learn this extended model, we propose a novel opti-
mization algorithm based on the alternating direction method
of multipliers (ADMM) [Boyd, 2010], which has attracted
significant interest recently in diverse fields such as machine
learning, data mining and image processing.

The rest of this paper is organized as follows. Section 2
first gives a brief review of isotonic regression and ADMM.
Section 3 describes the proposed calibration model and its
solver. Experimental results are presented in Section 4, and
the last section gives some concluding remarks.

Notations: In the sequel, matrices and vectors are denoted
in bold, with upper-case letters for matrices and lower-case
for vectors. The transpose of a vector/matrix is denoted by
the superscript >.

2 Related Work
2.1 Isotonic Regression for Probability Calibration
Isotonic regression has been used in diverse areas includ-
ing physics, chemistry, biology, operations research, and
statistics [Barlow et al., 1972]. Given a set of observations
{(x1, y1), . . . , (xn, yn)}, where xi ∈ Rd and yi ∈ R, iso-
tonic regression finds the estimates {f1, . . . , fn} at the xi’s
such that the model (i) fits the data with minimum error w.r.t.
a convex loss function; and (ii) satisfies the isotonic con-
straints: fi ≥ fj if xi � xj . Here, � is an application-
specific partial order defined on the xi’s, and is often repre-
sented by a directed acyclic graph (DAG).1 Over the decades,
solvers have been developed for various combinations of loss
functions (such as `1, `2 and `∞) and subclasses of DAG
(such as general DAGs, trees, grids, and linear lists). A re-
cent survey can be found in [Stout, 2013].

In the context of probability calibration for a single clas-
sifier [Zadrozny and Elkan, 2002], fi is the calibrated prob-
ability of pattern i that is to be estimated, input xi is the the
classifier’s prediction score, and output yi = 1 if the pattern
belongs to the positive class; and 0 otherwise. Since the xi’s
are scalars here, the partial order “�” becomes a total order,

1In the DAG representation, each vertex vi corresponds to a xi,
and there is a directed edge from vi to vj if xi � xj .

and can be easily obtained by sorting the xi’s. Intuitively, this
amounts to assuming that the mapping from scores to prob-
abilities is non-decreasing. With the commonly-used square
loss, this isotonic regression problem can be formulated as:

min
f1,...,fn

n∑
i=1

(yi − fi)2 : fi ≥ fj if xi ≥ xj . (1)

2.2 Alternating Direction Method of Multipliers
(ADMM)

ADMM is a simple but powerful algorithm first introduced in
the 1970s [Glowinski and Marrocco, 1975], and has recently
been popularly used in diverse fields such as machine learn-
ing, data mining and image processing [Boyd, 2010]. It can
be used to solve optimization problems of the form

min
x,y

φ(x) + ψ(y) : Ax + By = c,

where φ(·), ψ(·) are convex functions, and A,B (resp. c) are
constant matrices (resp. vector) of appropriate sizes. As in
the method of multipliers, ADMM considers the augmented
Lagrangian: L(x,y,u) = φ(x) + ψ(y) + u>(Ax + By −
c)+ ρ

2‖Ax+By−c‖2, where u is the vector of Lagrangian
multipliers, and ρ > 0 is a penalty parameter. At the kth
iteration of ADMM, the values of x,y and u (denoted xk,yk

and uk) are updated as
xk+1 = argmin

x
L(x,yk,uk),

yk+1 = argmin
y
L(xk+1,y,uk),

uk+1 = uk + ρ(Axk+1 + Byk+1 − c).

Note that ADMM minimizes L(x,y,uk) w.r.t. x and y in
an alternating manner, while the method of multipliers min-
imizes x and y jointly. This allows ADMM to more easily
decompose the optimization problem when φ and ψ are sep-
arable. Let r = u

ρ be the scaled dual variable, the ADMM
procedure can be expressed as in Algorithm 1 [Boyd, 2010].

Algorithm 1 The ADMM algorithm.
1: Initialize x0,y0, r0, set t← 0;
2: repeat
3: xt+1 ← argminx φ(x) +

ρ
2‖Ax + Byt − c + rt‖2;

4: yt+1 ← argminy ψ(y)+
ρ
2‖Axt+1+By−c+rt‖2;

5: rt+1 ← rt + (Axt+1 + Byt+1 − c);
6: t← t+ 1;
7: until convergence;
8: return xt,yt obtained in the last iteration.

3 Calibration for Multiple Classifiers
Given a set of C classifiers (such as the SVM, logistic re-
gressor, boosted decision trees, etc.), we propose to obtain
a calibrated probability estimate by utilizing all C predic-
tion scores. Section 3.1 presents an extension of the isotonic
regression approach in [Zadrozny and Elkan, 2002]. Sec-
tion 3.2 combats the overfitting and smoothness problems of
isotonic regression by incorporating manifold regularization.
Finally, Section 3.3 proposes an ADMM-based solver for the
resultant optimization problem.
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3.1 Construction of the Isotonic Constraints
For pattern i, let xi = [xi1, . . . , xiC ]

> be the vector of scores
obtained from the C classifiers. Recall that {f1, . . . , fn}
are the calibrated probabilities to be estimated, and that the
mapping from scores to probabilities is assumed to be non-
decreasing. A natural extension of [Zadrozny and Elkan,
2002] is to require fi ≥ fj if all C classifiers agree, i.e.,
xic ≥ xjc for c = 1, . . . , C. However, unless C is small,
getting this consensus may be too stringent. This will be par-
ticularly problematic when some classifiers are not accurate.

To alleviate this problem, we perform soft voting of the
classifiers. Specifically, different weights ηc’s, where ηc ≥ 0

and
∑C
c=1 ηc = 1, are assigned to the classifiers. An isotonic

constraint fi ≥ fj is constructed if
∑C
c=1 ηcI(xic ≥ xjc) ≥

α, where α ∈ (0.5, 1] is a user-defined threshold, and I(·)
is the indicator function which returns 1 when the argument
holds, and 0 otherwise. Problem (1) is then modified as:

minf1,...,fn

n∑
i=1

(yi − fi)2 (2)

s.t. fi ≥ fj if
C∑
c=1

ηcI(xic ≥ xjc) ≥ α.

In general, the isotonic constraints above may lead to a di-
rected graph with cycles, as when fi ≥ fj ≥ fk ≥ · · · ≥ fi.
In this paper, we use topological sort to detect such cycles
[Cormen et al., 2009], and remove all the associated con-
straints. Problem (2) is then a standard isotonic regression
problem with constraints ordered on a DAG G(V,E), where
V denotes the set of vertices and E is the set of edges.

3.2 Incorporating Manifold Regularization
To combat the overfitting and smoothness problems in iso-
tonic regression, we encourage the regression outputs (i.e.,
calibrated probabilities) for patterns i and j to be close if their
score vectors xi,xj are similar. This can be implemented
with the manifold regularizer

∑
eij∈E ωij(fi − fj)

2. Here,
ωij measures the similarity between xi,xj , and can be set
by prior knowledge or as a function of the distance between
xi,xj . Let f = [f1, . . . , fn]

>. It is well-known that the mani-
fold regularizer can be written as f>Ωf , where Ω is the graph
Laplacian matrix of G. Adding this to (2), we then have

min
f

n∑
i=1

(yi − fi)2 +
λ

2
f>Ωf : fi ≥ fj if eij ∈ E, (3)

where λ is a regularization parameter.

3.3 Optimization Solver for the Extended Model
Obviously, problem (3) reduces to standard isotonic regres-
sion when λ = 0. However, no existing solver can handle the
case of λ 6= 0 on general DAG ordering. Moreover, while
smoothing and spline regularization have been used with iso-
tonic regression as reviewed in Section 1, they can only be
used with constraints ordered on a one-dimensional list, but
not on a DAG ordering as we have here.

In the sequel, we first convert the DAG ordering in (3) to
an equivalent tree ordering with additional constraints, and

then apply ADMM in Section 2.2. As will be seen, one of
the ADMM update steps has a simple closed-form solution,
while the other can be reduced to a standard isotonic regres-
sion problem on tree orderings.

Converting the DAG Ordering to a Tree Ordering
The conversion algorithm first checks the number of parents
(npar(i)) for every vertex vi ∈ V . If npar(i) > 1, we duplicate
vi (npar(i) − 1) times and add edges such that each of its
parents is connected to a copy of vi, thus forming a tree2

T (Figure 2). For any f ∈ Rn defined on the nodes of G,
the corresponding vector defined on the nodes of T is f̂ =

[f̂1,1, f̂2,1, f̂2,2, . . . , f̂2,npar(2)︸ ︷︷ ︸
npar(2) times

, , . . . , f̂n,1, f̂n,2, . . . , f̂n,npar(n)︸ ︷︷ ︸
npar(n) times

]>

∈ R|E|+1. Here, the root has index 1. For notational simplic-
ity, we set npar(1) = 1, and thus f̂1,1 = f1. By construction,
if f satisfies the isotonic constraints in G, f̂ also satisfies the
isotonic constraints in T . Moreover, it can be easily seen that
f̂ and f are related as f̂ = Qf , where Q ∈ R(|E|+1)×n with
rows indexed in the same order as f̂ ; and

Qek = 1 if j = k; 0 otherwise, (4)
where e = eij ∈ E is an edge from vi to vj . Note also that

(fi−yi)2 = 1
npar(i)

npar(i)∑
p=1

(f̂i,p−yi)2. Hence, problem (3) can

be rewritten as

min
f̂ ,f

δ(f̂) +
n∑
i=1

1

npar(i)

npar(i)∑
p=1

(f̂i,p − yi)2︸ ︷︷ ︸
φ(f̂)

+
λ

2
f>Ωf︸ ︷︷ ︸
ψ(f)

(5)

s.t f̂ = Qf ,

where δ(f̂) = 0 if f̂ satisfies the isotonic constraints in T ; and
∞ otherwise.

Using ADMM
By defining φ(·) and ψ(·) as shown in (5), we now use the
ADMM to obtain an ε-approximate solution of (5). Recall
that ADMM involves two key steps: (i) the updating of f̂
(step 3 in Algorithm 1), and (ii) the updating of f (step 4).
The first subproblem can be rewritten as

minf̂ φ(f̂) +
ρ

2
‖f̂ −Qf t + rt‖2

= minf̂ φ(f̂) +
ρ

2

n∑
i=1

npar(i)∑
p=1

(f̂i,p − f ti + rti,p)
2

= minf̂

∑
i,p

wi,p(f̂i,p − ci,p)2 (6)

s.t. f̂ satisfies the isotonic constraints in T ,
where

wi,p =
1

npar(i)
+
ρ

2
, ci,p =

2yi + ρnpar(i)(f
t
i − rti,p)

ρnpar(i) + 2
,

2We assume that the DAG has a single root. Otherwise, a pseudo-
root, with froot = 1, is added and connected to all the original roots.
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Figure 2: Converting a DAG to a tree.

and the last equality is obtained by completing squares with
the quadratic term in φ(f̂). Problem (6) is a standard isotonic
regression problem on tree ordering, and can be solved effi-
ciently in O(|E| log |E|) time [Pardalos and Xue, 1999].

For the second subproblem minf
λ
2 f>Ωf+ ρ

2‖f̂
t+1−Qf+

rt‖2, on setting the derivative of its objective to zero, the opti-
mal f can be easily obtained as ρ(λΩ+ρQ>Q)−1Q>(f̂ t+1+
rt). Note that (λΩ+ ρQ>Q)−1 does not change throughout
the iterations and so can be pre-computed.

To terminate ADMM, we require the primal residual
‖f̂ t − Qf t‖ and dual residual ρ‖Qf t − Qf t−1‖ are small
[Boyd, 2010]. The complete procedure is shown in Algo-
rithm 2. In the sequel, the formulation in (2) will be called
Multi-Isotonic-regression-based Calibration (MIC), and its
Manifold-Regularized extension in (3) MR-MIC.

Algorithm 2 Algorithm to solve the MR-MIC model in (3).
1: Convert problem (3) to problem (5);
2: t← 0; set f̂0, f0, r0 ← 0;
3: repeat
4: f̂ t+1 ← solve (6) using standard isotonic regression

solver;
5: f t+1 ← ρ(λΩ + ρQ>Q)−1Q>(f̂ t+1 + rt);
6: rt+1 ← rt + (f̂ t+1 −Qf t+1);
7: t← t+ 1;
8: until convergence.
9: return f t obtained in the last iteration.

Time Complexity
It is easy to see that converting the DAG to a tree in Sec-
tion 3.3 takesO(|E|) time. As φ(f̂) is strongly convex and Q
is full rank, an ε-approximate solution of (5) can be obtained
by ADMM in O(log 1

ε ) iterations [Deng and Yin, 2012]. In
each iteration, step 4 takesO(|E| log |E|) time [Pardalos and
Xue, 1999]. For step 5, note from (4) that Q is sparse and has
only O(|E|) nonzero entries. Hence, computing Q>(f̂ t+1 +
rt) only takes O(|E|) time. Assuming that the n × n matrix
inverse (λΩ+ρQ>Q)−1 has been pre-computed, step 5 then
takesO(n2+ |E|) = O(n2) time.3 Hence, Algorithm 2 takes
a total of O

(
log 1

ε (|E| log |E|+ n2)
)

time. When G is sim-

3In case (λΩ + ρQ>Q)−1 cannot be stored, one can use its
rank-k approximation and Step 5 then takes O(nk + |E|) time.

ply a tree, |E| = O(n) and the total complexity reduces to
O
(
log
(
1
ε

)
(n log n+ n2)

)
= O

(
log
(
1
ε

)
n2
)
.

4 Experiments
In this section, experiments are performed on five standard
binary classification data sets (real-sim, news20, rcv1, ijcnn1,
and covertype) from the LIBSVM archive. Three of these
(real-sim, news20 and rcv1) are text data sets, ijcnn1 comes
from the IJCNN 2001 neural network competition, and cover-
type contains remote sensing image data. For each data set,
1,000 samples are used for training, 1,000 for validation, and
another 10,000 samples for testing. As in [Niculescu-Mizil
and Caruana, 2005], the validation set is used for both pa-
rameter tuning of the classifiers and training of the isotonic
regression model. To reduce statistical variability, results are
averaged over 10 repetitions.

In the experiment, we first train and calibrate a number of
classifiers by isotonic regression [Zadrozny and Elkan, 2002].
The following approaches to combine the calibrated probabil-
ities of classifiers will be compared:

1. avg: simple averaging of the calibrated probabilities;

2. wavg: weighted averaging of the calibrated probabilities
based on the performance of the classifiers. Specifically,
the weight of classifier c is defined as

ηc =
1

Z
exp

(
−(1− AUCc)

2µ

)
, (7)

where AUCc is the area under the ROC curve [Fawcett,
2006] obtained by classifier c on the validation set, µ is
the average of (1−AUCc) over the C classifiers, and Z
normalizes {ηc}Cc=1 to sum to 1. Intuitively, the higher
the classifier’s AUC, the larger its weight.

3. MIC (model (2)): The isotonic constraints are con-
structed using the weights in (7), and with α = 0.8.

4. MR-MIC (model (3)): The similarity between scores
xi,xj on the manifold is set as ωij = 1

‖xi−xj‖ . Re-
call that the validation set becomes the training set for
the isotonic model. We set aside 1/4 of it to tune λ.
Moreover, the penalty ρ in Algorithm 2 is simply set to
1. In practice, convergence can often be improved by
dynamically adjusting its value [Boyd, 2010].

For performance evaluation, we use the following two
criteria that are commonly used for probability calibration
[Caruana et al., 2008; Niculescu-Mizil and Caruana, 2005]:

1. mean square error (MSE): 1
n

∑n
i=1(yi − fi)2, which is

also called the Brier score [Brier, 1950]; and

2. area under the ROC curve (AUC) [Fawcett, 2006].

4.1 Combining Similar and Dissimilar Classifiers
We use three classifiers (i) linear SVM (SVM-lin) [Fan et al.,
2008]; (ii) `2-regularized logistic regression (logistic) [Fan
et al., 2008], and (iii) ranking SVM with the linear kernel
(rank-SVM) [Menon et al., 2012], which is the state-of-the-
art that combines ranking with isotonic regression. Note that
all three classifiers are linear models with `2-regularization,
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Table 1: Result obtained by the individual classifiers and various combination methods. The best and comparable results
(according to the pairwise t-test with 95% confidence) are highlighted.

method ijcnn1 covertype real-sim news20 rcv1

MSE

SVM-lin 0.0544±0.0033 0.1798±0.0036 0.0566±0.0035 0.0864±0.0022 0.0495±0.0030
logistic 0.0548±0.0023 0.1792±0.0028 0.0544±0.0030 0.0895±0.0023 0.0493±0.0024

rank-SVM 0.0549±0.0030 0.1787±0.0030 0.0552±0.0026 0.0864±0.0023 0.0487±0.0024
avg 0.0522±0.0019 0.1774±0.0027 0.0544±0.0030 0.0870±0.0022 0.0483±0.0024

wavg 0.0522±0.0019 0.1774±0.0027 0.0544±0.0030 0.0870±0.0022 0.0483±0.0024
MIC 0.0522±0.0020 0.1781±0.0030 0.0546±0.0029 0.0872±0.0022 0.0485±0.0022

MR-MIC 0.0519±0.0020 0.1777±0.0030 0.0543±0.0028 0.0869±0.0022 0.0483±0.0023

AUC

SVM-lin 0.8921±0.0165 0.8037±0.0054 0.9729±0.0032 0.9504±0.0025 0.9799±0.0027
logistic 0.9018±0.0074 0.8071±0.0054 0.9750±0.0026 0.9472±0.0028 0.9804±0.0018

rank-SVM 0.9163±0.0042 0.8079±0.0056 0.9744±0.0018 0.9504±0.0024 0.9809±0.0021
avg 0.9194±0.0061 0.8105±0.0045 0.9757±0.0022 0.9500±0.0024 0.9815±0.0020

wavg 0.9196±0.0060 0.8105±0.0045 0.9758±0.0022 0.9500±0.0024 0.9815±0.0020
MIC 0.9204±0.0063 0.8116±0.0045 0.9753±0.0021 0.9504±0.0024 0.9815±0.0023

MR-MIC 0.9218±0.0066 0.8116±0.0047 0.9765±0.0022 0.9509±0.0025 0.9821±0.0020

Table 2: Results on combining dissimilar classifiers.

method ijcnn1 covertype real-sim news20 rcv1

MSE

SVM-rbf 0.0309±0.0014 0.1764±0.0064 0.0559±0.0036 0.0869±0.0029 0.0488±0.0026
rank-SVM 0.0549±0.0030 0.1787±0.0030 0.0552±0.0026 0.0864±0.0023 0.0487±0.0024

forest 0.0305±0.0012 0.1596±0.0025 0.0887±0.0022 0.1356±0.0085 0.0540±0.0039
boosting 0.0288±0.0011 0.1602±0.0025 0.0724±0.0029 0.1119±0.0233 0.0510±0.0023

avg 0.0266±0.0007 0.1575±0.0024 0.0571±0.0025 0.0917±0.0060 0.0435±0.0024
wavg 0.0257±0.0007 0.1572±0.0024 0.0553±0.0029 0.0889±0.0051 0.0434±0.0023
MIC 0.0251±0.0008 0.1589±0.0022 0.0537±0.0025 0.0853±0.0041 0.0431±0.0022

MR-MIC 0.0247±0.0007 0.1576±0.0021 0.0534±0.0025 0.0850±0.0042 0.0427±0.0023

AUC

SVM-rbf 0.9478±0.0158 0.8104±0.0140 0.9732±0.0033 0.9498±0.0036 0.9807±0.0018
rank-SVM 0.9163±0.0042 0.8079±0.0056 0.9744±0.0018 0.9504±0.0024 0.9809±0.0021

forest 0.9636±0.0079 0.8463±0.0041 0.9339±0.0061 0.8885±0.0128 0.9788±0.0034
boosting 0.9688±0.0062 0.8442±0.0046 0.9586±0.0025 0.9187±0.0339 0.9802±0.0019

avg 0.9777±0.0073 0.8513±0.0032 0.9749±0.0020 0.9463±0.0060 0.9860±0.0016
wavg 0.9784±0.0071 0.8518±0.0033 0.9762±0.0022 0.9488±0.0052 0.9860±0.0016
MIC 0.9714±0.0076 0.8506±0.0039 0.9748±0.0020 0.9518±0.0041 0.9854±0.0016

MR-MIC 0.9791±0.0074 0.8513±0.0034 0.9774±0.0020 0.9528±0.0045 0.9863±0.0015

and differ mainly in the loss function. Hence, as can be
seen Table 1, their performance are very similar, and combin-
ing them yields only a small performance gain. This agrees
with the fact that diversity is essential in an ensemble [Tumer
and Ghosh, 1996]. Nevertheless, even in this “worse-case”
scenario, MR-MIC still outperforms the individual classifiers
and other combination approaches.

Next, we use classifiers that are more different in nature,
including (i) SVM with the RBF kernel (SVM-rbf); (ii) rank-
SVM (iii) random forest (forest) [Caruana et al., 2008]; and
(iv) boosting of 100 decision trees [Caruana et al., 2008].
Results are shown in Table 2. As can be seen, the perfor-
mance differences among individual classifiers are now much
larger. This diversity is more commonly encountered in prac-
tice and agrees with the results in [Caruana and Niculescu-
Mizil, 2006; Caruana et al., 2008]. In this case, combining
the calibrated probabilities, even by simple averaging, often

outperforms any single classifier. Combining using the more
sophisticated MIC approach performs better than averaging,
while further adding manifold information enables MR-MIC
to be consistently better than all the others. While the per-
formance improvements may sometimes appear small, note
that the classifiers used are powerful. Moreover, isotonic-
regression based calibration is equivalent to the ROC convex
hull method, and produces the optimal isotonic-transformed
classifier with respect to a number of performance scores
[Fawcett and Niculescu-Mizil, 2007]. Hence, any possi-
ble improvements by combining these isotonic-transformed
strong classifiers are not expected to be very drastic.

To better illustrate the relationship between performance
improvement and classifier diversity, Table 3 shows the per-
centage MSE reduction of MR-MIC relative to the other
methods. As can be seen, when the ensemble diversity is
large, the corresponding improvements of MR-MIC over the
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Table 3: Percentage MSE reduction of MR-MIC relative to the other methods ( MSEmethod−MSEMR-MIC
MSEmethod

× 100). The top row shows
the ensemble diversity, measured by the normalized standard deviation of the base classifiers’ MSE ( std(MSE)

mean(MSE) ). Cases where
ensemble diversity is large are in bold.

combining similar classifiers combining dissimilar classifiers
ijcnn1 covertype real-sim news20 rcv1 ijcnn1 covertype real-sim news20 rcv1

nstd(MSE) 0.03 0.01 0.02 0.02 0.02 nstd(MSE) 0.34 0.06 0.24 0.24 0.05
avg 0.5 -0.2 0.2 0.1 -0.0 avg 7.2 -0.1 6.4 7.2 1.7

wavg 0.5 -0.2 0.1 0.1 -0.1 wavg 3.7 -0.3 3.3 4.3 1.5

averaging methods (avg and wavg) are also more substantial.
Figure 3 shows the reliability diagrams [Niculescu-Mizil

and Caruana, 2005] for MR-MIC and its closest competitor
“wavg”. On 4 of the 5 data sets, points for MR-MIC lie closer
to the diagonal line than those of wavg.

(a) ijcnn1. (b) covertype. (c) real-sim.

(d) news20. (e) rcv1.

Figure 3: Reliability diagrams of wavg and MR-MIC.

4.2 Variation with the Threshold α
In this section, we study the performance variation with α ∈
(0.5, 1], which is used in constructing the isotonic constraints
(Section 3.1). As expected, a larger α suggests wider consen-
sus among classifiers, and the isotonic constraints are more
reliable but fewer. Experiments are performed on the ijcnn1
and real-sim data sets. As can be seen from Figure 4, the per-
formance remains relatively constant for α ∈ [0.7, 0.9]. The
trends on the other data sets are similar.

(a) ijcnn1. (b) real-sim.

Figure 4: Variation of the AUC with threshold α.

4.3 Manifold Regularization
Finally, we demonstrate that manifold regularization is also
useful in the calibration of individual classifiers. The boosted
version of 100 decision trees is used as classifier, with vary-
ing numbers of calibration samples. Results are shown in
Table 4. As can be seen, manifold regularization is always
useful, particularly when the amount of calibration data is
limited. Figure 1 shows the corresponding isotonic regres-
sion outputs obtained. As can be seen, the use of manifold
regularization leads to much smoother regression outputs.

Table 4: AUC values of the boosted trees.

w/ manifold number of calibration samples
data set regularizer 50 200 500 1000

ijcnn1 no 0.9347 0.9540 0.9659 0.9688
yes 0.9732 0.9700 0.9727 0.9727

covertype no 0.8329 0.8404 0.8431 0.8442
yes 0.8429 0.8447 0.8455 0.8455

real-sim no 0.9408 0.9526 0.9582 0.9586
yes 0.9589 0.9590 0.9601 0.9602

news20 no 0.9078 0.9151 0.9173 0.9187
yes 0.9174 0.9186 0.9192 0.9199

rcv1 no 0.9662 0.9777 0.9795 0.9802
yes 0.9812 0.9811 0.9811 0.9811

5 Conclusion
In this paper, we proposed a novel probability calibration
approach by combining the prediction scores from a set of
classifiers. Manifold regularization is used to avoid overfit-
ting and ensure smoothness of the regression output over the
score manifold. The extended isotonic regression model can
be solved efficiently by a novel solver based on the ADMM.
Experiments on a number of real-world data sets demon-
strate that the proposed method consistently outperforms in-
dependent classifiers and other combinations of the classi-
fiers’ probabilities. The improvement is particularly promi-
nent when the diversity among classifiers is large.
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