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Abstract— The SVDD (support vector data description) is
one of the most well-known one-class support vector learning
methods, in which one tries the strategy of utilizing balls defined
on the feature space in order to distinguish a set of normal data
from all other possible abnormal objects. The major concern
of this paper is to extend the main idea of the SVDD for the
problem of pattern de-noising. Combining the projection onto the
spherical decision boundary resulting from the SVDD together
with a solver for the pre-image problem, we propose a new
method for pattern de-noising. In the proposed method, we first
solve the SVDD for the training data, then for each noisy test
pattern, perform de-noising by projecting its feature vector onto
the decision boundary on the feature space, and finally find the
location of the de-noised pattern by obtaining the pre-image of the
projection. The applicability of the proposed method is illustrated
via an example dealing with noisy handwritten digits.

I. INTRODUCTION

Recently, the support vector learning method has grown up
as a viable tool in the area of intelligent systems [1], [2].
Among the important application areas for the support vector
learning, we have the one-class classification problems [2], [4],
[5], [6], [7], [8], [9], [10], [11]. In the problems of one-class
classification, we are in general given only the training data
for the normal class, and after the training phase is finished,
we are required to decide whether each test vector belongs
to normal class or abnormal class. The one-class classification
problems are often called outlier detection problems or novelty
detection problems. Obvious examples of this class include the
fault detection for machines and the intrusion detection system
for computers [2]. One of the most well-known support vector
learning methods for the one-class problems is the SVDD
(support vector data description) [4], [5]. In the SVDD, balls
are used for expressing the region for the normal class. Among
the methods having the same purpose with the SVDD are the
so-called one-class SVM of Schölkopf et al. [6], [7], [8], the
linear programming method of Campbell and Bennet [9], the
information-bottleneck-principle based optimization approach
of Crammer and Chechik [10], and the single-class minimax
probability machine of Lanckriet et al. [11]. Since balls on
the input domain can express only limited class of regions, the
SVDD in general enhances its expressing power by utilizing
balls on the feature space instead of the balls on the input

domain. In this paper, we extend the main idea of the SVDD
toward the use for the problem of pattern de-noising [12], [13].
Combining the projection onto the spherical decision boundary
resulting from the SVDD together with a solver for the pre-
image problem, we propose a new method for pattern de-
noising. The proposed method consists of the following steps:
First, we solve the SVDD for the training data. Second, for
each noisy test pattern, we perform de-noising by projecting
its feature vector onto the spherical decision boundary on the
feature space. Finally in the third step, we recover the location
of the de-noised pattern by obtaining the pre-image of the
projection following the strategy of [13].

The remaining parts of this paper are organized as follows:
In Section 2, preliminaries are provided regarding the SVDD.
Our main results on the pattern de-noising based on the SVDD
are presented in Section 3. In Section 4, the applicability of
the proposed method is illustrated via an example dealing
with noisy handwritten digits. Finally, in Section 5, concluding
remarks are given.

II. PRELIMINARIES

The SVDD method, which approximates the support (i.e.,
existing region) of objects belonging to normal class, is derived
as follows [4], [5]: Consider a ball � with the center �����	�
and the radius 
 , and the training data set � consisting of
objects ��	��� � , �	��������������� . Since the training data may
be prone to noise, some part of the training data could be
abnormal objects. The main idea of the SVDD is to find a
ball that can achieve the two conflicting goals simultaneously:
First, it should be as small as possible, and with equal
importance, it should contain as many training data as possible.
Obviously, satisfactory balls satisfying these objectives can be
obtained by solving the following optimization problem:

min ������
! ������#"�$��%
! '&)(+*-, .0/ "�
s. t. 12���34��15 !6�
! '&+"�7�8"�89;:<�=�>�?��������������@

(1)
Here, the slack variable "A represents the penalty associated
with the deviation of the � -th training pattern outside the ball.
The objective function of (1) consists of the two conflicting
terms, i.e., the square of radius, 
B , and the total penalty
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*-, .0/ "� . The constant ( controls relative importance of each
term; thus called the trade-off constant. The dual problem of
the above can be derived as follows: First by introducing a
Lagrange multiplier for each inequality condition, we obtain
the following Lagrange function:�C�-
  &D( ,E  .0/ "�#& ,E  .0/GF �HI12���3J��1  3J
  3	"�LK73 ,E  .0/NM �"�#� (2)

where F B9O: , M D9O: , PQ� . From the saddle point condition
[1], [2], the optimal solution of (1) satisfies the following:RSSSSSST SSSSSSU

V �XW V ��
! 5$Y�%:<Z
thus * , .0/ F 0�?��@V �XW V �[�-:<Z
thus �\�]�^* , .0/ F ���^$�W_�^* , .0/ F `$Y�a* , .0/ F ���#@V �XW V "�N�-:<Z
thus F 8�+H :<�b(	K^�cPQ�b@

(3)

Substituting the above into � , the Lagrange function can be
expressed in terms of the dual variables:�)� ,E  .0/NF �de����#��^f03 ,E  .0/ ,Eg .0/�F  F g de��#�#� g f2@ (4)

Thus, the dual problem can now be written as follows:hjilk<m *%, .0/ F �de��#�#��^f>3 *%, .0/ *-,g .0/ F  F g de����#� g fs. t. *%, .0/ F 0�n��� F 8�4H :<�b(	K^�oPQ� (5)

Note that the above is equivalent to the following QP
(quadratic programming problem, or quadratic program):h\p q�m *%, .0/ *-,g .0/ F  F g de����#� g f>3 *%, .0/ F �de��#�#��^fs. t. *%, .0/ F 0�n��� F 8�4H :<�b(	K^�oPQ� (6)

Also, note that from the Kuhn-Tucker complementarity condi-
tion [1], the following should hold true at the optimal solution:F #��12��N34��1  34
  3r"�^$Y�%:<�oPQ� (7)

From the equation (7), we can easily see that ultimately only
the data points on the boundary or outside the ball can have
the positive F  values. These data points are called the support
vectors. Once the F  are obtained by solving (6), the center of
the optimal ball can be obtained from (3). Also, the optimal
value of 
  can be found by applying the condition (7) to the
support vectors on the ball boundary. After the training phase
is over, we may decide whether a given test point �?�?� �
belongs to the normal class utilizing the following criterion:s �e�Q$t�u
  3%12��34��1  �u
! X3;�#de�G�#�Qf83+vY* , .0/ F �de��#�#�Qf&�*-, .0/ *%,g .0/ F  F g de��#�#� g f#$9w:<@ (8)

Obviously, balls can express very limited class of subsets. To
express more complex decision regions in � � , one can use
the so-called feature map x;yN� ��z|{ and balls defined on

the feature space { . More precisely, the problem of finding a
reasonably small ball �!} in { that contains reasonably large
portion of the (transformed) training data ��}~� � x0�e��^$�� �J��������������4�B� { can be handled by the following QP:

min �Y}���
! } ����}X�#"�$��-
! } &)(+* , .0/ "�
s. t. 1�x0�e��c$034��}	1  6;
  } &+"�#�8"�89�:<�=�8�n��������������@

(9)
Proceeding similar to the above with the so-called kernel trickd`x0�e�<$2�bx0����$#f'�%�)�e�Q����$2� (10)

we can derive the following QP for the SVDD utilizing balls
on the feature space:h\p q�m *-, .0/ *%,g .0/ F  F g �)�e��#�#� g $>3 *-, .0/ F `�)�e��#�#��^$s. t. *-, .0/ F G�?��� F >�+H :<�b(	K^�oPQ� (11)
If the Gaussian function�)�e�G����$��%� k_� �73[12�j34�Q1  Wl�  $ (12)

is chosen for the kernel � , we have �)�e�G�#�Q$\�=� for each����� � . Thus, the above formulation can be further simplified
as follows: h\p q�m *%, .0/ *-,g .0/ F  F g �)�e��#�#� g $s. t. * , .0/ F 0�n��� F 8�4H :<�b(	K^�oPQ� (13)

For simplicity, the use of the Gaussian kernel is assumed
throughout this paper. Note that now the result corresponding
to (3) contains ��}+� ,E  .0/NF ^x0�e��c$2� (14)

and for each support vector �Q on the decision boundary, its
feature-space distance from the center �<} is the same with the
radius of the ball �!} , thus the following holds true:
! } 3%1�x0�e��^$>34��}�15 ��
! } 3;�7��3+vY* , .0/ F ��)�e��#�#�Q$&�*%, .0/ *-,g .0/ F  F g �)�e��#�#� g $#$��:<@ (15)

Finally, the criterion for the normality can be summarized as
follows:s }��e�Q$ t�u
! } 3%1�x0�e�Q$834��}�15 �u
! } 3��'&)vY* , .0/ F `�)�e��7�#�Q$3C*-, .0/ *-,g .0/ F  F g �)�e��#�#� g $9w:<@ (16)

III. MAIN RESULTS: PATTERN DE-NOISING BASED ON
SVDD

In the SVDD, the objective is to find the support of the
normal objects, and anything outside the support is viewed as
abnormal. On the feature space, the support is expressed by
a reasonably small ball containing a reasonably large portion
of the x0�e��c$ . The main idea of this paper is to utilize the
ball-shaped support on the feature space for the purpose of

950



correcting test inputs distorted by noise. More precisely, with
the trade-off constant ( of (9) set appropriately1, we can find
a region where the normal objects without noise generally
reside. When an object (which was originally normal) is given
as a test input � in a distorted form, the network resulting
from the SVDD is supposed to judge that the distorted object� does not belong to the normal class. The role of the SVDD
has been conventionally up to this point, and the problem of
curing the distortion might be thought beyond the scope of
the SVDD. However, here we observe that since the decision
region of the SVDD is a simple ball �!} on the feature space{ , it is quite easy to let the feature vector x0�e�Q$ of the distorted
test input � move toward the center �_} of the ball �J} until
it reaches the decision boundary so that it can be tailored
enough to be normal. Of course, since the movement starts
from the distorted feature x0�e�Q$ , there are plenty of reasons to
believe that the tailored feature �Dx0�e�Q$ still contain essential
information about the original pattern. Thus, we claim that the
tailored feature �Dx0�e�Q$ is the de-noised version of the feature
vector x0�e�Q$ . The above arguments together with additional
step for finding the pre-image of �Dx0�e�Q$ comprise our proposal
for a new de-noising strategy. In the following, we present the
proposed method more precisely with mathematical details.

As mentioned before, the proposed method consists of three
steps: In the first step, we solve the SVDD (13) for the given
training data � t� � ����C� � � �����������������4� . As a result, we
find the optimal F  along with ��} and 
! } obtained via (14)
and (15). In the second step, we consider each test pattern � .
When the decision function

s } of (16) yields a nonnegative
value for � , the test input is accepted normal as it is, and the
de-noising process is bypassed. In the otherwise case, the test
input � is considered to be abnormal and distorted by noise.
To recover the de-noised pattern, we move its feature vectorx0�e�Q$ toward the center �_} up to the point where it touches the
ball �J} . Thus, the outcome of this movement is the following:�Dx0�e�Q$Y�-��}�& 
J}1�x0�e�Q$834��}�1 �`x0�e�Q$834��}�$2@ (17)

Obviously, this movement is a kind of the projection, and can
be interpreted as performing de-noising in the feature space.
Note that as a result of the projection, we have the obvious
result 15�Dx0�e�Q$>34��}	1��-
J}X@ (18)

Also, note that with� t�-
J}YW<1�x0�e�Q$>34��}�1l� (19)

the equation (17) can be further simplified into�Dx0�e�Q$Y� � x0�e�Q$0&-�7��3 � $7��}�� (20)

1In our experiments, �r�C�����L�a�D�A� �5� was used for the purpose of de-
noising.

where

�
can be computed from�  � �����c���  A¡^¢�£ � � �� ����� / ¢  <¤¦¥ m ¥�§ �   ¥^¨  A¡e© ¤[¥ª¤[« m ¥ m «#§ �   ¥^¨   « ¡e¡ @ (21)

In the third and final step, we try to find the pre-image of the
de-noised feature �Dx0�e�Q$ . If the inverse map x ¢ / y {?z � � is
well-defined and available, this final step attempting to get the
de-noised pattern via ¬�+�x ¢ / ���Dx0�e�Q$#$ will be trivial. How-
ever, the exact pre-image typically does not exist [12]. Thus,
we need to seek an approximate solution instead. For this, we
follow the strategy of [13], which uses a simple relationship
between feature-space distance and input-space distance [14]
together with the MDS (multi-dimensional scaling) [15]. Using
the kernel trick (10) and the simple relation (20), we see that
both 15�Dx0�e�Q$�15 and d��Dx0�e�Q$2�bx0�e��#$#f can be easily computed
as follows:15�Dx0�e�Q$�15 ®� �  '&)v � �7��3 � $¯* , .0/ F `�)�e��#�#�Q$&-�7��3 � $  >*%, .0/ *-,g .0/ F  F g �)�e��#�#� g $2�(22)d��Dx0�e�Q$2�bx0�e��#$#f�� � �)�e��#�#�Q$�&°�7�<3 � $ ,Eg .0/QF g �)�e��7�#� g $2@ (23)

Thus, the feature-space distance between �Dx0�e�Q$ and x0�e��c$
can be obtained via plugging the equations (22) and (23) into
the following:±²  ����Dx0�e�Q$2�bx0�e��7$#$ t� 15�Dx0�e�Q$>3+x0�e��c$�15 � 15�Dx0�e�Q$�15 �3+v<d��Dx0�e�Q$2�bx0�e��7$#fG&%��@

(24)
Now, note that for the Gaussion kernel, the following simple
relationship holds true between

² �e�Q#�#� g $ t�³12��Y3%� g 1 and±² �`x0�e��c$2�bx0�e� g $#$ t�´1�x0�e��^$>3+x0�e� g $�1 [14]:2±²  µ�`x0�e��c$2�bx0�e� g $#$¶� 1�x0�e��c$03Cx0�e� g $�15 �uvJ3+v·�)�e��#�#� g $�uvJ3+v>� k_� �73[12��Q3r� g 15 ªWl�� A$�uvJ3+v>� k_� �73 ²  ��e��#�#� g $�Wl�� A$2@ (25)

Since the feature-space distance
±²  ����Dx0�e�Q$2�bx0�e��#$#$ is now

available from the equation (24) for each training pattern �� ,
we can easily obtain the corresponding input-space distance
between the desired approximate pre-image ¬� of �Dx0�e�Q$ and
each �� . Generally, the distances with neighbors are the most
important in determining the location of any point. Hence here,
we only consider the squared input-space distances between�Dx0�e�Q$ and its ¸ nearest neighbors

� x0�e� � / ¡ $2�������N�bx0�e� � ¹·¡ $b�D��\} , and define ²  t�?H ²  / � ²   �������N� ²  ¹ KLº�� (26)

where
²  is the input-space distance between the desired pre-

image of �Dx0�e�Q$ and � �  ¡ . In MDS [15], one attempts to find a

2Another possible way to get the input-space distance »ª� ¼µ½c¾�¼�¿�� is via using
the geodesic distance between À_� ¼�½�� and À_� ¼�¿A� on the sphere instead of the
feature-space distance in (25).
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representation of the objects that preserves the dissimilarities
between each pair of them. Thus, we can use the MDS idea to
embed �Dx0�e�Q$ back to the input space. For this, we first take
the average of the training data

� � � / ¡ �������N�#� � ¹·¡ �j�~� to get
their centroid Á�C���7�lWª¸G$�* ¹ .0/ � �  ¡ , and construct the

²ÃÂ ¸
matrix Ä t�]H � � / ¡ �#� �  ¡ �������N�#� � ¹·¡ K^@ (27)

Here, we note that by defining the ¸ Â ¸ centering matrixÅ t�%Æ ¹ 3;�7�lWª¸G$2� ¹ �Aº¹ �
where Æ ¹ t� diag H �������������5KG��� ¹�Ç_¹
and � ¹ t�]H �������������5KLºr��� ¹�Ç / �
the matrix

Ä Å
centers the � �  ¡ ’s at their centroid, i.e.,Ä Å �]H � � / ¡ 3aÁ�G�������N�#� � ¹·¡ 3aÁ�<K^@ (28)

The next step is to define a coordinate system in the column
space of

Ä Å
. When

Ä
(or
Ä Å

) is of rank È , we can obtain
the SVD (singular value decomposition) [16] of the

²4Â ¸
matrix

Ä Å
asÄ Å � H ÉY/�É  KYÊ\Ë /Ì:: :CÍ Ê¦Î º/Î º Í�ÏÉY/ Ë / Î º/�ÏÉY/�Ð�� (29)

where ÉY/��]H Ñ·/ª����������ÑlÒ�K
is the

²�Â È matrix with orthonormal columns Ñl , andÐ t� Ë / Î º/ �?H �·/ª�������N��� ¹ K
is a È Â ¸ matrix with columns �l being the projections of� �  ¡ 3~Á� onto the Ñ g ’s. Note that12� �  ¡ 3~Á�81  �]15�ª�1  �=�>�?�����������#¸8� (30)

and collect these into an ¸ -dimensional vector, i.e.,²  � t�]HI15�·/l1  ���������ª15� ¹ 1  KLºY@ (31)

As mentioned before, the location of the pre-image ¬� is
obtained by requiring

²  µ�A¬�0�#� �  ¡ $2�#�Y�´�����������#¸ to be as close
to those values in (26) as possible; thus we need to solve the
LS (least squares) problem to find ¬� :²  �A¬�G�#� �  ¡ $YÓ ²   �=�8�n�����������#¸8@ (32)

Following the steps in [13] and [17], ¬�r�%� ¹�Ç / defined via¬��3aÁ�Ã�~ÉY/<¬� can be shown to satisfy¬�¦�n3 �v Ë ¢ // Î º/ � ²  3 ²  � $2@ (33)

Therefore, by transforming (33) back to the original coordi-
nated system in the input space, the location of the recovered
de-noised pattern turns out to be¬�Ã�~ÉY/<¬�J&nÁ�G@ (34)

IV. EXPERIMENTS

For illustration of the proposed method, we report the de-
noising results performed for the data set obtained from [18],
which consists of v·: Â �AÔ handwritten digits of : throughÕ

, Ö Õ examples of each class. For each of the ten digits, we
chose the first �×�Øv Õ examples to form the training set,
and the remaining �A: examples as the test set. The proposed
de-noising method was applied to each digit separately. Two
types of additive noise were added to the test set in order
to get noisy test patterns of Fig. 1: The first one is the
Gaussian noise �C��:<���N A$ with variance �N %�Ù:<@ Ú , and the
second one is the so-called salt and pepper type noise with
noise level Û��a:<@ Ú , where Û�W·v is the probability that a pixel
flips to black or white. As the first step for the de-noising
with Gaussian kernel �)�e�G����$C�Ü� k_� �73[12�+3n�Q1� AWl�� A$ , we
solved the SVDD (13) with the trade-off constant and the
variance of the Gaussian kernel set as (Ý�|�lW_�`v Õ Â :<@ Þ�$
and �� J�?�lW_���C���a3Ã�ª$¯* , .0/ * ,g .0/ 12��l3¦� g 15 A$ , respectively.
Note that here the value of ( was set to the effect that the
support for the normal class resulting from the SVDD may
cover approximately 50% of the training data. In the second
step, the feature vector of each noisy test pattern in Fig. 2
was projected onto the boundary of �B} , which was obtained
in the first step. Finally, in the third step, we used ten neighbors
to recover the de-noised pattern ¬� by solving the pre-image
problem. Shown in Fig. 2 are the de-noised images, which
seem to be reasonably good.

To compare with existing kernel-based de-noising methods,
we also performed de-noising utilizing the methods of [12]
and [13], respectively, for the same handwritten digit data. As
an index for performance comparison, we used the average
squared error, which is defined as follows:ß t� �àâáEã .0/ 12ä ã 3 ¬ä ã 1  �
where

à
is the number of the test patterns, ä ã is the å th

member of the test patterns, and ¬ä ã is the de-noising result
for the å th noisy test pattern. Shown in Tables 1 and 2 are
the average squared errors for each de-noising method. The
methods of [12] and [13] are both based on the kernel PCA
(principal component analysis), and require the number of
eigenvectors ( æ ß Î ) as a predetermined parameter. In the
tables, we considered the cases with æ ß Î being 5, 10, 15,
and 20. The contents of the tables show that the proposed
method yields better results than the other methods.

V. CONCLUDING REMARKS

In this paper, we addressed the problem of pattern de-
noising based on the SVDD. Along with a brief review
over the SVDD, we presented a new de-noising method,
which utilizes the SVDD, the projection onto the balls in
the feature space, and a method for finding the pre-image of
the projection. Works yet to be done include more extensive
comparative studies, which will reveal the strength and
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Fig. 1. Test images corrupted by Gaussian noise ç_è��r�A� é (left) and salt
and pepper noise ê��ë�A� é (right).

Fig. 2. De-noised results for the cases with Gaussian noise (left) and salt
and pepper noise (right).

weakness of the proposed method, further refinement of the
method for better performance, and the theoretical study
about the convenience of the projection (20) in de-noising.
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