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Abstract— For high-dimensional data classification problems
such as face recognition, one of the most efficient classifiers
is the Nearest Neighbor (NN) classifier. What mostly affects
the NN classification performance is the feature extracted by
some methods. And the kernel method is one of the efficient
methods for extracting features. However, the selection of kernel
parameters is still difficult. In this paper, we propose a so-called
data dependent kernel (DDK) which is defined by generalizing
the Gaussian kernel. Also an efficient and practical method
is presented to calculate the DDK parameters. Moreover, one
DDK based on subspaces is given to improve the recognition
performance. Experiments show that the proposed DDK can
achieve promising classification performance in face recognition
and SPECT heart diagnosis.

I. INTRODUCTION

In pattern classification, one of the most difficult problems
is high-dimensional data classification problem with a small
number of training samples, such as face recognition in
which there are only several instances of high dimension
for each subject. Some powerful classifiers, which usually
require a large number of training samples compared with
the dimension, may not obtain satisfactory performance. In
practice, the Nearest Neighbor classifier can achieve promising
performance. Recently, extracting and selecting features for
NN classifiers have become a hot topic in high-dimensional
data classification problems.

One classical algorithm is the Principal Component Analy-
sis (PCA) [1]. PCA is to extract the features as the projections
on the principal subspace whose basis vectors correspond to
the maximum variance directions in the original space, while
discard the complementary subspace as a noise subspace.
In some cases, PCA can obtain satisfactory performance.
However, no theory can prove the complementary subspace
is useless for recognition, and, on the contrary, experiments
show that using the complementary subspace properly may
improve recognition performance.

There are other component analysis methods, such as Linear
Discriminant Analysis (LDA) [2], and Independent Compo-
nent Analysis (ICA) [3]. However, both methods usually use
PCA dimension reduction as the preprocessing step. Therefore,
the two methods still discard the so-called noise subspace. To
efficiently utilize the entire space, Wang and Tang [4] proposed
the technique of random sampling the two base vectors on the

principal and complementary subspaces for face recognition,
which, however, in some sense, causes over-selecting features.

Recently, kernel methods, such as kernel PCA [5], kernel
LDA [6] and kernel ICA [7], have been introduced to extract
features for recognition. However, kernel parameter selection
is difficult. One method is by trial-and-error heuristics, which
is easy to implement but not efficient and also causes overfit-
ting problem. The second is using boosting method [8] to learn
the combination of kernel functions with different kernel types
or different kernel parameters. In [9] one transformed kernel
function is discussed, which is good in theory but can not give
an easy and efficient way to obtain the transformation matrix.

The goal of this paper is to give an efficient and conve-
nient approach to extract features for high-dimensional data
classification problems by generalizing the Gaussian kernel
function. We analyze the NN classifier for high-dimensional
data classification problems. To obtain better performance, we
generalize the Gaussian Kernel to the so-called Data Depen-
dent kernel, which can be easier to calculate compared with
the invariant kernel in [9] and obtain better performance than
conventional Gaussian kernel and Bayesian Face Matching
method [10]. Moreover, we explain why the specified DDK
based on subspaces works well.

The paper is organized as follows. Section II analyzes the
NN classifier for the high dimensional data classification prob-
lem and reviews the data dependent kernel in unsupervised
problems. In section III, the proposed data dependent kernel
is presented. Section IV presents the comparisons with other
related methods. Experiment results are given in section V.
Final section is about the conclusion.

II. BACKGROUND

A. Nearest Neighbor Classifier in High-Dimensional Classifi-
cation Problems

In pattern recognition, low-dimensional problems with large
scale seem easy to process except sometimes the large com-
putation cost. However, few algorithms can well deal with
high-dimensional classification problems with small scale,
especially when the samples in the different classes are much
similar. For example, in face recognition, the faces of differ-
ent subjects seems also very similar, but the between-class
difference is much different from the within-class difference.
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How do we use the property? One method is LDA, which
usually suffers from the singularity problem. Another method
is based on kernels, which selects a proper kernel parameter
according to the property. Both methods usually use the NN
classifier. Consider the NN classifier with Euclidean distance
measure, and we can get at least two observations: (1) NN
actually considers the differences rather than the original
samples; (2) To improve the recognition performance, it is
important to choose some features to discriminate the with-
and between-class differences so as to reduce the within-
class distance and increase the between-class distance. One
straightforward method is to discover two complementary
subspaces: one (called the principal subspace) only for within-
class differences and the other (called the complementary)
only for between-class differences. Then, by assigning less
weight on the principal subspace while more weight on the
complementary subspace, we can obtain a better distance
measure. In this paper, we will incorporate this idea into kernel
design to obtain an efficient data-dependent kernel based on
subspace.

B. Data-Dependent Kernels in Unsupervised Learning

Kernel methods have been successfully applied in many
problems. Its basic idea is to implicitly map the data from
the input space X to a high-dimensional feature space H via
a nonlinear function φ : X → H, and then a similarity measure
in H is defined as the dot product:

k(x,x′) ≡ 〈φ(x) · φ(x′)〉 .

Here, the kernel function k should satisfy Mercer condition
[11].

However, one major question is how to choose k(·, ·) and
its associated kernel parameters. One approach to alleviate this
problem is using the data-dependent kernel. The concept of
data-dependent kernels is first introduced in [12], as shown
in Table I. In that paper, the data-dependent kernel is used in
unsupervised problems, such as nonlinear dimension reduc-
tion and clustering. In spectral clustering [13], one divisive-
normalized kernel is proposed, where the divisive coefficient
is determined by all the data. The divisive-normalized kernel
is proved to help clustering the data. In Isometric Feature
Mapping (Isomap) [14], they used so-called geodesic distance
kernel to keep the geodesic distance of the data manifold to re-
duce the dimension. In Local Linearly Embedding (LLE) [15],
they use the kernel to keep the local linear reconstruction. All
the methods are applied in unsupervised problems.

TABLE I
DATA-DEPENDENT KERNELS IN UNSUPERVISED LEARNING.

Method Data-dependent Kernel
KPCA Centralization Normalization
Isomap Isomap Kernel
LLE LLE Kernel
Spectral Clustering Division Normalization

Actually, the data-dependent kernel can also be used in
supervised problems. For example, spectral clustering has been
used in recognition. In this paper, we want to design special
data dependent kernel for high-dimensional classification prob-
lems based on the Gaussian Kernel.

III. DATA DEPENDENT KERNELS FOR CLASSIFICATION

In this section, we start with the generalized Gaussian
kernel:

k(x,y) = exp{−
1

2
(x− y)′H−1(x− y)}, (1)

whereH is a transformation matrix and ′ denotes the transpose
operation. In cases where certain input transformations are
known to leave function values unchanged, the use of H can
also allow such invariance to be incorporated into the kernel
function [9]. In the following, we propose several methods
for obtaining H from the training data, and the corresponding
kernels are called data dependent kernels kd(x,y).

A. Using the Covariance Matrix

An obvious choice for H is the d× d covariance matrix:

H = E[(x− x̄)(x− x̄)′], (2)

where x ∈ R
d is the data vector and x̄ the corresponding

mean vector. By assuming that the entries of the sample vector
are independent, (2) can be simplified by dropping the off-
diagonal elements as:

H = Diag[diag[E[(x− x̄)(x− x̄)′]]].

Here, diag(·) extracts the diagonal elements of (2), which are
then used to construct a diagonal matrix by Diag(·), and the
obtained kernel by this matrix H is called Independent DDK.

For high-dimensional training sets with small scale, such an
H = Diag(h1, · · · ,hd) obtained1 from the empirical data is
often singular, as the data dimensionality is larger than the
sample size. To avoid this problem, we replace the d − p

smallest diagonal elements in H by their average, i.e.,

Ĥ =

[

Hp

ρId−p

]

. (3)

Here, p ∈ {0, 1, . . . , d} is a user-defined parameter,

ρ =
1

d− p

∑d

i=p+1
hi, (4)

Hp = Diag(h1, · · · ,hp) and Id−p is the (d − p) × (d − p)
identity matrix. (4) can be justified from an information-
theoretic point of view. Details can be found in [10].

Notice that when p is set to zero, H is of the form H = σ2I

(where σ is a measure of the data spread) and (1) reduces to
the conventional Gaussian kernel:

k(x,y) = exp{−
‖x− y‖

2

2σ2
} (5)

1Here, we assume that the entries of the sample vector have been permu-
tated such that h1 ≥ h2 ≥ · · · ≥ hd.
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While (5) implicitly assumes the same variance for each
entry of the sample vector (i.e., the data is isotropic, and
accordingly the kernel is called Isotropic DDK when σ2 is
calculated as in (4) ), this is not necessary for the generalized
Gaussian kernel.

In a classification problem, a major deficiency of the H’s
defined in (2) and (3) is that they do not utilize the class
labels. Thus, they are not discriminative in nature. As will be
demonstrated in Section V, experimental results obtained with
the corresponding kernels are not satisfactory in practice.

B. Subspace-Based Data Dependent Kernel

As discussed in Section II, it is desirable to have a kernel
such that the corresponding intra-class (within-class) differ-
ence is reduced while the inter-class (between-class) difference
is increased. In this paper, we adopt the subspace method, and
use one subspace for the intra-class difference and another for
the inter-class difference. Different distance measures are then
defined on these two complementary subspaces. Here, the two
subspaces are obtained as follows:

1) For each class, obtain all the intra-class differences
{xc

i − x
c
j}i,j , where xc

i ,x
c
j are samples from the same

class c.
2) Pool the intra-class differences from all classes together,

and then perform PCA.
3) The principal subspace is used to represent the intra-

class difference, while the remaining subspace for the
inter-class difference.

Note that as class information is used, the resulting kernel,
called Intra-DDK, is discriminative.

PCA in Step 2 involves eigendecomposition on the d × d

matrix

H =
C
∑

c=1

Hc (6)

where Hc =
∑Nc

i,j=1
(xc

i − x
c
j)(x

c
i − x

c
j)
′, xc

i ,x
c
l ’s are sam-

ples from class c, Nc is the number of patterns belonging
to class c, and C is the total number of classes. As d is
assumed to be large here, so, instead of eigendecomposing
(6), a common trick is to perform eigendecomposition on the
1

2

∑C

c=1
Nc(Nc − 1)× 1

2

∑C

c=1
Nc(Nc − 1) matrix









...
(xc

i − x
c
j)
′

...









[

· · · (xc
k − x

c
l ) · · ·

]

.

However, this is still more computationally expensive than
performing standard PCA on the whole data set, which only
involves a matrix of size

∑C

c=1
Nc ×

∑C

c=1
Nc.

To improve efficiency, instead of (6), we will use

H =

C
∑

c=1

Sc, (7)

where Sc =
∑Nc

i=1
(xc

i − µc)(x
c
i − µc)

′ is the covariance
matrix for class c (with µc being the mean of class c). Now,

it can be easily proved that

Sc =
1

2Nc

Hc.

and so (6) and (7) only differ by the term 1

2Nc

. Let Xc =

{ 1√
2Nc

(xc
1 − µc), · · · ,

1√
2Nc

(xc
Nc

− µc)}. Therefore, we can
perform PCA on X = {X1, · · · ,XC} instead of Step 2,
which will only require eigendecomposing a matrix of size
∑C

c=1
Nc ×

∑C

c=1
Nc.

As mentioned earlier, the leading p-dimensional subspace is
used to encode the intra-class difference, while the remaining
subspace is for the inter-class difference. To avoid the problem
of having a singular matrix, we use the same technique as in
Section III-A. Suppose that the eigendecomposition of H is
H = UΛU′, where Λ = Diag(λ1, . . . , λd) is the diagonal
matrix containing the eigenvalues of H and U is the matrix
containing the corresponding eigenvectors. The data dependent
kernel matrix Ĥ is then defined as

Ĥ = U

[

Λp

ρd−p

]

U′, (8)

where p ∈ {0, 1, . . . , d}, Λp = Diag(λ1, · · · , λp), and

ρ =
1

d− p

∑d

i=p+1
λi.

IV. DISCUSSION

A. Relationship to Bayesian Face Matching and Relevant
Component Analysis

Matrix H in the subspace-based data dependent kernel
is obtained in a similar way as the Bayesian face match-
ing (BFM) algorithm [10] and relevant component analysis
(RCA) [16]. In some sense, this paper can be viewed as
combining BFM or RCA into kernel PCA. In this paper, (1)
the matrix H in Section III-B is derived from the insight
that there exist two subspaces to represent the intra-class
and inter-class differences, while the authors in [17] gives
the intuitive interpretation. (2) In Section III-B, the principal
and complementary subspaces from H are assigned different
weights, while the complementary subspace in RCA is dis-
carded. (3) We give an effective method to calculate the matrix
H and eigendecompose H. (4) We combine the matrix H into
the generalized Gaussian kernel to obtain better recognition
performance.

B. Comparison with Invariant Kernels

The invariant kernels in [9] is also closely related to the
proposed data-dependent kernels. In [9], PCA is performed on
the tangent vector set as a pre-processing step. Let the tangent
covariance matrix be C and B = C−

1

2 . Then, the invariant
kernel is:

k(x,y) = 〈Bx,By〉 .

In essence, our data-dependent kernel also finds the matrix B,
though there are some important differences. On the one hand,
our data-dependent kernel provides an easy and feasible way
to calculate B, while the work in [9] requires prior knowledge
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on the tangent vectors. On the other hand, the subspace based
data-dependent kernel, which is derived from the insight that
there exist two subspaces to represent the intra-class and inter-
class differences, is designed specially for high-dimensional
classification problems and in some sense can also be viewed
as a discriminative kernel.

V. EXPERIMENTS

Section V-A demonstrates the difference between the data-
dependent kernel based on subspaces and the conventional
Gaussian kernel (i.e., Isotropic DDK). In the later subsections,
the performance of the proposed data-dependent kernels is
then evaluated on two face recognition problems and non-
image data sets. All the proposed data-dependent kernels are
used in kernel PCA to extract low-dimensional features. Then
the low-dimensional features are used in the Nearest Neighbor
classifier to classify the test samples. The detailed algorithm is
in Table II. The corresponding data dependent kernel PCAs are
called Isotropic-KPCA, Independent-KPCA and Intra-KPCA.

TABLE II
CLASSIFICATION USING THE DATA DEPENDENT KERNEL.

Step 1. Compute the matrix H of the data dependent kernel.

Step 2. Compute the kernel matrix Kij = kd(xi,xj) using
the data dependent kernel

Step 3. Solve
Mλα = Kα,

where M is the number of training samples, then normalize
the eigenvector expansion coefficients. Let λ1 ≥ λ2 ≥
· · · ≥ λM denote the eigenvalues of K and α1, · · · , αM

the corresponding eigenvectors. Normalize the coefficients by
requiring λi

〈

αi · αi
〉

= 1.

Step 4. Extract d principal components fx (corresponding
to the data dependent kernel) of the training point x by
computing the projections onto the the first p eigenvectors
as

〈wn · φ(x)〉 =
∑M

i=1
αn

i kd(xi,x).

Step 5. Extract the features ft of the test point t as in step 4.

Step 6. Obtain the same classification label with the training
sample whose feature fx has the shortest distance to ft.

A. Demonstration

Figures 1 and 2 show the training kernel matrix Ktr and
the similarity matrix Ks between the training and testing
patterns on AR2 [18] and ORL3 face databases. We observe
that the within-class similarity is larger than the between-class
similarity in both the two matrices (The gray of the pixel
represents the similarity of the associated two samples.). If we
observe carefully the images, the within-class samples using
Intra-DDK are more similar than using Isotropic-DDK, while
the between-class samples using Intra-DDK are less similar

2http://rvl1.ecn.purdue.edu/˜aleix/ar.html.
3http://www.uk.research.att.com/facedatabase.html.

than using Isotropic-DDK. From this sense, the Intra-DDK is
more discriminative than Isotropic-DDK.

(a) Ktr (b) Ks (c) Ktr (d) Ks

Fig. 1. The training kernel and similarity matrices on the AR database using
Intra-DDK ((a), (b)) and Isotropic-DDK ((c), (d)).

(a) Ktr (b) Ks (c) Ktr (d) Ks

Fig. 2. The training kernel and similarity matrices on the ORL database
using Intra-DDK ((a), (b)) and Isotropic-DDK ((c), (d)).

B. SPECT Heart Diagnosis

In this section, experiments are performed on the
SPECT/SPECTF heart diagnosis data sets4 from the UCI
Machine Learning Repository. Both are on diagnosing of car-
diac Single Proton Emission Computed Tomography (SPECT)
images. Each contains 267 samples, which are represented
by attributes summarizing the original SPECT images. The
SPECT data has 22 binary attributes, whereas the SPECTF
data has 44 continuous attributes. The task is to diagnose
whether the heart in each patient or image is normal or not.
The training set contains 80 samples (40 samples in each
category), and the test set contains 187 samples.

For comparison with the proposed data-dependent kernel,
we also run the following methods:

1) 1-nearest-neighbor (1-NN) classifier;
2) PCA; and
3) SVM.
For PCA, the dimensionality of the principal subspace is set

to 10. The kernel parameter in SVM is well-tuned. Table III
shows the accuracy. The known best result on this task,
which is achieved by CLIP4 (Cover Learning using Integer
Programming) and the ensemble of CLIP4 [19], is shown in
the table for comparison.

As can be seen, the proposed data-dependent kernels
(Isotropic, Independent, Intra-KPCA) obtain promising results,
though not the best, on the SPECT data set. They get the best
result on the SPECTF data set.

4http://www.ics.uci.edu/˜mlearn/MLSummary.html.
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TABLE III
CLASSIFICATION ACCURACY ON THE SPECT TASK.

METHOD SPECT SPECTF
1-NN 80.2 72.1
PCA 73.3 75.1
SVM 89.9 93.7
5CLIP4 90.4 77.0
ISOTROPIC-KPCA 88.7 94.4
INDEPENDENT-KPCA 89.9 94.4
INTRA-KPCA 89.9 94.4

C. AR Database

In this subsection, experiments are performed on the AR-
face database, which consists of over 3200 color images of the
frontal faces of 126 subjects. There are 26 different images for
each subject. For each subject, these images were recorded in
two different sessions separated by two weeks, each session
consisting of 13 images. Each image is of size 768× 576.

We choose the first 7 face images of the first session by
eliminating occluded face images for each subject. Then, we
have 126×7 face images. We manually locate the centers of the
eyes and then perform geometric normalization with the eye
locations fixed to get geometric normalized face image with
size 24× 18. Examples of the normalized faces are shown in
Figure 3.

Fig. 3. Example face images from the AR database.

In the experiment, we perform ten trials by randomly
selecting five faces for training and two for testing (for each
subject) in each trial. Results are then averaged over 10 trials.
For comparison, we also show the results of 1-NN, PCA and
Bayesian face recognition method. As can be seen in Table IV
with the accuracy and the standard deviation, Intra-KPCA
obtains the best recognition result.

TABLE IV
CLASSIFICATION ACCURACIES ON THE AR DATABASE.

METHOD ACCURACY
1-NN 85.54± 3.4
PCA 87.88± 3.1

BAYESIAN 94.08± 2.4
ISOTROPIC-KPCA 83.96± 3.5

INDEPENDENT-KPCA 83.12± 3.8
INTRA-KPCA 94.67± 2.3

TABLE V
CLASSIFICATION ACCURACIES ON THE ORL DATABASE.

METHOD ACCURACY
1-NN 97.50± 1.0
PCA 94.16± 1.4

BAYESIAN 96.92± 1.5
ISOTROPIC-KPCA 97.17± 1.0

INDEPENDENT-KPCA 97.08± 1.2
INTRA-KPCA 97.92± 1.3

D. ORL Database

The ORL (Olivetti Research Laboratory) face database con-
tains a set of face images taken between April 1992 and April
1994 at the Olivetti Research Laboratory. There are ten differ-
ent images of each of 40 distinct subjects (Figure 4). For some
subjects, the images were taken at different times, varying
the lighting, facial expressions (open/closed eyes, smiling/not
smiling) and facial details (glasses/no glasses). All the images
were taken against a dark homogeneous background with the
subjects in an upright, frontal position (with tolerance for some
side movement). The original image size is 112 × 92. For
convenience, they are downsampled to 28× 23.

Fig. 4. Example face images from the ORL database.

We perform ten trials by randomly selecting seven faces for
training and three for testing (for each subject) in each trial.
Results are then averaged over 10 trials. For comparison, we
also show the results on 1-NN, PCA, Bayesian face recognition
method’s results. As can be seen in Table V, Intra-KPCA again
obtains the best recognition result.

VI. CONCLUSION

This paper addressed the data-dependent kernels for high-
dimension classification problems, which can be efficient to
calculate and would improve the recognition performance. We
give and analyze the different candidates for the matrix H
in data dependent kernels. The experiments show that the
proposed data dependent kernels especially subspace based
DDK can get better recognition performance.
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