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Abstract—Successful deep neural network models tend to pos-
sess millions of parameters. Reducing the size of such models by
pruning parameters has recently earned significant interest from
the research community, allowing more compact models with
similar performance level. While pruning parameters usually
result in large sparse weight tensors which cannot easily lead to
proportional improvement in computational efficiency, pruning
filters or entire units allow readily available off-the-shelf libraries
to harness the benefit of smaller architecture. One of the most
well-known aspects of network pruning is that the final retained
performance can be improved by making the process of pruning
more gradual. Most existing techniques smooth the process by
repeating the technique (multi-pass) at increasing pruning ratios,
or by applying the method in a layer-wise fashion. In this paper,
we introduce Dynamic Unit Surgery (DUS) that smooths the
process in a novel way by using decaying mask values, instead
of multi-pass or layer-wise treatment. While multi-pass schemes
entirely discard network components pruned at the early stage,
DUS allows recovery of such components. We empirically show
that DUS achieves competitive performance against existing state-
of-the-art pruning techniques in multiple image classification
tasks. In CIFAR10, we prune VGG16 network to use 5% of the
parameters and 23% of FLOPs while achieving 6.65% error rate
with no degradation from the original network. We also explore
the method’s application to transfer learning environment for
fine-grained image classification and report its competitiveness
against state-of-the-art baseline.

Index Terms—Neural Network, Pruning, Network Compres-
sion, Network Acceleration, Deep Learning, Image Classification

I. INTRODUCTION

Recently, deep neural networks have achieved significant
improvements in a variety of domains such as computer vision,
natural language processing, and reinforcement learning. With
the ever-increasing size of datasets [9], models have become
deeper and wider [14, 29], relying on millions or even bil-
lions of parameters. While such a trend has led to improved
accuracy and overall performance, it has also created a bot-
tleneck in a variety of industrial applications. For instance,
deployment in mobile devices, or real-time applications with
online learning may significantly suffer from large networks’
intensively high requirements in memory, CPU, and energy.

A variety of approaches have been introduced to make
deep neural networks more compact. Network pruning [11,
12, 13, 23, 25] seeks to reduce the number of param-
eters by removing units and/or connections, usually from

pre-trained networks. Parameter sharing [7, 20] reduces the
number of parameters from the very beginning, leveraging
domain knowledge such as symmetry and invariance. Low-
rank parameter factorization/regularization reduces the size of
layer’s parameter matrices / tensors by factorization of weights
during post-processing [32] or regularization embedded during
training [2]. Weight quantization approximates the original
network weights by reducing the conventional floating-point
representation to a fewer-bit [6], or even binary [8], represen-
tation. Finally, knowledge distillation transfers the knowledge
in a large network (teacher) to a smaller network (student)
[3, 5, 16, 28], by encouraging the student network to mimic
the teacher network’s outputs [16] or hidden representations
[28]. Note that these categories of methods can be used
together. For example, one may apply low-rank factorization
to convolutional filters, and parameter pruning to the fully
connected layers.

In this paper, we will focus on neural network pruning.
Recent works have shown that removing unimportant net-
work connections can significantly reduce the model size
(by a factor of 10 or more) without significant performance
deterioration [1, 10, 11, 12]. However, this may not lead
to proportional speedup or memory-saving as the sparsified
weight matrices require the same amount of floating point
operations (FLOPs) unless specially designed sparse matrix
operations are implemented [17, 22, 23]. Thus, pruning of
entire units or filters can be more practical and desirable, with
the potential effect of better regularization [23, 32].

However, filter1 pruning methods tend to have more severe
performance degradation than parameter pruning, due to the
grouped structure of pruned parameters. Existing state-of-the-
art methods [12, 23, 25] resort to repeating the method while
increasing the portion of network components to be pruned,
along with intermediate fine-tuning stages, sometimes layer by
layer. Such an approach constrains the increase in network loss
from pruned components, especially in deep networks, where
accurate high-order approximation of components’ saliency
is too costly. However, this multi-pass, layer-wise approach
inevitably makes the whole process very time-consuming.

In this paper, we propose a novel filter pruning technique
called Dynamic Unit Surgery (DUS). It reduces performance

1In the sequel, we refer to filters, units, nodes interchangeably.
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degradation and pruning / fine-tuning time via two mecha-
nisms: (1) allowing pruned components to recover during fine-
tuning, and (2) pruning each component in a continuously
decaying manner, instead of abruptly dropping the component.

The rest of the paper is organized as follows. In Section II,
we discuss early methods to prune neural networks and
describe more recent techniques that extend to deep networks.
We also highlight the problems we aim to tackle with the
proposed methodology. In Section III, we describe DUS and
how the two mechanisms interact with each other in detail. In
Section IV, we conduct a series of experiments to empirically
show DUS’s competitiveness in retaining original network
performance on various image classification benchmarks, in
comparison to the most relevant state-of-the-art baseline. Fi-
nally, we conclude our work in Section V.

II. RELATED WORKS

A. Neural Network Pruning

Neural network pruning focuses on reducing neural network
components while minimizing the increase in training error
from pruning. One of the earliest techniques is optimal brain
damage [21] (OBD). With a quadratic approximation of the
error surface using a diagonal Hessian matrix, the elements
are used to approximate increase in error when the corre-
sponding connections are pruned from the network. Optimal
brain surgeon (OBS) [13] relaxes the diagonal assumption to
gain better performance. In each iteration, after the removal
of less important connections, the remaining connections are
optimally adjusted. Though OBS outperforms OBD, the use of
a full Hessian is very computationally expensive for modern
deep networks with millions of parameters.

To alleviate this problem, Han et al. [12] proposed to remove
small-magnitude connections after training with weight decay.
The method achieves a high compression ratio while main-
taining original model performance. However, the heuristic
choice of pruning induces a significant drop in performance
after pruning (before fine-tuning), as the scheme implicitly
assumes the error Hessian to be an identity matrix. This greedy
approach prunes potentially important connections without
considering the higher-order interactions among connections.
The irrecoverably pruned connections can lead to worse
performance after re-training [1], though a more granular
combination of pruning and re-training in multiple iterations
might alleviate the problem. Thus, a multi-pass scheme is often
required, which repeats the lengthy processes of pruning and
re-training.

B. Multi-Pass Scheme and Layer-Wise Treatment

The ideal way to prune parameters and components in an
inference model would be to have an accurate and robust
approximation of the change in learning objective due to the
components’ removal (saliency). However, the measurement
can be challenging and costly in deep neural networks. The
problem deteriorates as the size of pruned component gets
larger due to higher-order interactions among components.
Most existing techniques circumvent this by adopting (1) a

multi-pass scheme and/or (2) layer-wise treatment. Instead of
pruning the architecture once, a multi-pass scheme gradu-
ally increases the pruning ratio by including the fine-tuning
stage in between updates of pruning ratio. Liu et al. [23]
and Han et al. [12] report that the multi-pass versions of
their proposed pruning methods outperform the single-pass
counterparts. Experiments in [25] with AlexNet and ImageNet
show that the number of training iterations between pruning
filters one-by-one actually has larger impact than the saliency
measurement criteria used to select filters. Li et al. [22] claims
that iterative pruning and retraining is particularly helpful for
prune-sensitive layers.

Instead of assessing filters/units on the entire network’s
objective, layer-wise treatment computes saliency based on
layer-wise information. Dong et al. [10] uses the layer-wise
application of optimal brain surgery on deep networks. He
et al. [15] solves layer-wise lasso to mute channels while
minimizing layer-wise output reconstruction error without
involving nonlinearity. Similarly, instead of optimizing the
layer-wise reconstruction error, ThiNet [24] approximates and
minimizes the reconstruction error between consecutive layers.

C. Dynamic Pruning and Recovery of Parameters

Bringing the pruning and fine-tuning routine (multi-pass
scheme) more granular to the level of each mini-batch update
proved successful in dynamic network surgery (DNS) [11].
DNS tackles the problem by (1) mixing pruning and re-
training at a more granular manner, and (2) allowing the
network to recover (splice) pruned connections. By keeping a
mask variable corresponding to each connection, DNS trains
both the original network weights and mask variables by the
following update rule, which allows pruned connections to
absorb gradient from their corresponding mask variables:

w ← w − α ∂L

∂(w �m)
, (1)

m ← topn(w, n). (2)

Equation (1) describes the simplified vanilla stochastic gradi-
ent descent (SGD) version of DNS’s update rule for weight
matrix/tensor w in a deep neural network, with the correspond-
ing mask m (whose size is equal to that of w). Here, L is the
network’s optimization loss. Equation (2) shows how mask m
is updated based on its corresponding weight parameter w. The
function topn is a generic operation that chooses n elements to
be one (kept) in the binary mask m, while the others are set to
zero (pruned), based on the saliency measure from parameter
w. In Section III, we will generalize this update rule to prune
different groups of network parameters (such as hidden units
and convolutional filters).

D. Pruning Filters with Sparsity Regularization

Recently, the multiplicative scaling factor has become one
of the most popular indicators for measuring saliency of a net-
work component. Liu et al. [23] introduces network slimming
(NS), which applies `1-regularization on the scaling parameter
(γ in (3)) in batch normalization (BN) [18] to assess and prune
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filters. In BN, given the ith sample xi in mini-batch B, BN
outputs

yi ← γ
xi − µB√
σ2
B + ε

+ β, (3)

where µB, σB are the average and standard deviation, respec-
tively, of the mini-batch. The normalized input is then treated
with an affine transformation with scaling factor γ and bias
factor β, for each dimension separately. For convolutional
layers, each output feature map is normalized and transformed
by the same set of parameters, whereas for fully connected
layers, BN is applied per unit basis.

In network slimming (NS) [23], the original network is
first trained with `1-regularization on the γ parameter, and
then pruned by each filter’s global ranking based on the
corresponding γ magnitude. Finally, the pruned network is
re-trained, but without `1-regularization on γ.

Ye et al. [33] adopts a similar optimization objective, and
proposes usage of ISTA [4] instead of conventional SGD
to allow application to any pre-trained network. They show
that the plug-and-play application of the method requires
multiple hyperparameter tuning stages, along with additional
treatments such as re-scaling the filter weights and BN scaling
parameters for smooth optimization procedure. Huang and
Wang [17] further generalize applying `1-regularization on
multiplicative scaling parameters to prune various components
of deep networks, using accelerated proximal gradient.

III. DYNAMIC UNIT SURGERY

Based on the advantages of the multi-pass scheme and usage
of BN’s scaling parameters, we propose dynamic unit surgery
(DUS) that dynamically turns on and off the units/filters with
a novel way to make the pruning process more gradual. Al-
lowing pruned components to be recovered during fine-tuning
can compress multi-pass schemes at one-go, and adopting
BN scaling parameters for this iterative saliency assessment
keeps the computational overhead manageable without any
modification in the original network architecture.

In Section III-A, we show how DUS leverages standard
back-propagation procedure to choose components to be
pruned and those to be recovered from the pruned state.
Section III-B introduces a novel mechanism to preserve the
pruned components’ gradient information, which ultimately
allows the pruned architecture to better retain the original
network’s performance.

A. Allowing Recovery of Pruned Components

When network components are pruned via the conventional
multiplicative binary mask (with value one for kept compo-
nents, and zero for pruned ones), all gradient information
that passes through the pruned component becomes zero. This
makes it difficult for standard back-propagation to recover the
pruned component. To alleviate this, dynamic network surgery
(DNS) [11] proposes to assume pruned/masked parameters to
be un-pruned parameters with constant value of zero, thus
allowing nonzero gradients via (1).

We generalize this idea to be applicable to the entire
unit/filter, instead of individual weights. This is done by
applying the mask on batch normalization (BN) scaling factor
γ. First, BN normalization prevents the issue of redundant
parameterization when adding multiplicative scaling factor,
which can be harmful for optimization. Second, BN is widely
used in most deep learning architectures, allowing broad ap-
plication of the proposed method without requiring significant
architectural modification for pruning. Third, as mentioned in
Section II-D, BN scaling factors are useful heuristics to assess
saliency of units/filters for pruning. [17, 23, 33].

Given layer l, and the multiplicative binary mask vector m
for SGD, we substitute w in (1) with BN scaling factor γ,
yielding the following update rule:

γ(l) ← γ(l) − α ∂L

∂(γ(l) �m(l))
. (4)

Both γ(l) and m(l) are vectors of the same size (equal to
the number of units, filters, or any other groupings that
correspond to each γ(l) factor in BN). Other than the scaling
factors that have been effectively zero-ed out by the mask
parameters, the process remains identical to standard back-
propagation. Thus, (4) can be implemented very easily in
modern machine learning libraries, by simply setting the back-
propagated gradient for γ(l) �m(l) to be the gradient of γ(l).

After each update of the scaling factors using update rule
(4), mask value m can also be updated correspondingly
based on (2). There exist different realizations of the generic
operation topn that uses approximated component saliency to
determine mask values, or equivalently, components to prune.
Liu et al. [23] and Guo et al. [11] prune components of which
scaling factors are smaller than a pre-defined threshold. Ye
et al. [33] and Huang and Wang [17] simply prune the com-
ponents with scaling factors equal to zero, and the network’s
pruned portion is thus determined by the regularization hyper-
parameter. While the former approach allows user to easily
specify target architecture / computational requirement, the
latter approach can be advantageous in that it does not require
additional fine-tuning. All these options are viable for DUS’s
mask update rule after each back-propagation iteration. In
this work, we use the per-layer pruning ratio r(l) to prune
components with smaller scaling factors as:

m(l) ← topn(γ(l), r(l)d). (5)

B. Decaying Mask

With update equation (4), the gradient information still
cannot flow into the pruned components (with m = 0) due
to the ReLU activation following BN. Specifically, for feature
map f of which the corresponding mask value mf is zero, the
update gradient still remains zero:

∂

∂γ
[ReLU(BN(xf )×mf )]

∣∣∣∣
mf=0

= 0. (6)

Hence, instead of using a zero mask value for those com-
ponents with low saliency measure γ, we propose to adopt
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a decaying nonzero mask value k. For instance, using an
initial k = 1 reduces the multiplicative binary mask m to be
trivial identity scaling factor, keeping the model un-pruned.
Beginning from this state, DUS gradually decays k to zero
during fine-tuning in order to obtain a pruned model in the
end. In the following, we adopt an exponentially decaying
schedule for k. At iteration i,

ki = ki−1η = k0η
i. (7)

We vary the per-update decay rate η in the range
[0.99, 0.99999] for different data sets, so that the value is
not too far from zero near the end of training. This way of
“leaking” information from an otherwise pruned component
not only mitigates the issue of zero gradient in (6), but
also allows the entire pruning procedure to be more smooth.
The equations below show DUS’s update rules for decaying
mask m̃(l) and BN scaling factor γ(l) for layer l. The whole
procedure is shown in Algorithm 1.

m̃
(l)
j =

{
k if m(l)

j = 0

1 if m(l)
j = 1

, (8)

γ(l) ← γ(l) − α ∂L

∂γ(l)
. (9)

Algorithm 1 Dynamic unit surgery (DUS).

1: Input: (pretrained) network, compression ratio r, mask
decay rate η.

2: Output: A pruned model.
3: for each update iteration i do
4: for each layer l do
5: update ki using (7);
6: if ki < 10−5 then
7: ki ← 0;
8: end if
9: update m̃(l) using (5), (8), and η;

10: apply standard forward pass with each layer l: y(l) ←
m̃(l) � (γ x−µB√

σ2
B+ε

+ β);

11: end for
12: for each layer j do
13: apply standard back-propagation (9);
14: end for
15: end for

As the value of k decays, it (i) gradually splits the activation
distributions of masked (m(l)

j = k) and unmasked (m(l)
j = 1)

components by a larger degree before the former eventually
reaching to zero, and (ii) simultaneously decays the scale of
back-propagated gradients through masked components, while
(iii) preventing zero gradients from equation (6). When k
converges to zero, no gradient will pass through the pruned
component. However, the pruned component still has chance
to be recovered via (5). Thus, one might decide not to allow
any leakage (k0 = 0) in the first place, or use (k0 = 1) for a
more gradual pruning procedure. In the experiments, we use an

initially fixed k0 = 1 to emphasize the impact of the proposed
method.

As an illustration, Figure 1 shows heatmaps of a convolu-
tional layer’s BN γ and m̃ values along the training process.
Each row corresponds to one of the 256 filters. Except for the
mask entries of value 1, the other entries share the same value
of k which is shared across the layer and decaying exponen-
tially per mini-batch update. As training proceeds, components
to be pruned are gradually fixed. To our knowledge, this is
a novel approach to smooth network pruning procedure by
introducing a new dimension of continuity, while most existing
methods resort to multi-pass schemes or layer-wise pruning
to gradually increase the portion of pruned components as
discussed in the previous Section.

Fig. 1: Evolution of the BN scaling factors (top) and mask
(bottom).

IV. EXPERIMENTS

In this Section, we show how DUS mitigates the subop-
timality of its greedy/static counterpart on multiple publicly
available image classification benchmarks in both fully con-
nected feed-forward networks and (fully) convolutional neural
networks. As DUS and network slimming (NS) share the
important feature of using Batch Normalization scaling factors
as network component saliency heuristics, and NS shows
state-of-the-art pruning performances in these benchmarks, we
primarily focus on comparing DUS with NS.

A. MNIST Pixel Selection with DUS

The first experiment is on MNIST digit classification. As
in [20], we train a multilayer perceptron (MLP), with two
ReLU hidden layers of sizes 300 and 100, using SGD (with
learning rate 0.1 and Nesterov momentum 0.9). To compare
DUS and NS for pixel selection, we also add a BN layer after
the input layer. The entire network architecture consists of
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784-300-100-10 units, corresponding to 784 input pixels and
10 output labels. We then try pruning 80% and 90% of the
784 input pixels based on (1) NS and (2) DUS.

Figure 2 visualizes the difference between greedy choice
of units and dynamically optimized choice of units. While
NS’s chosen (brighter) units with high BN scaling factors
are restricted in the center, DUS chooses units that are more
widespread to reduce overlapping and correlated information
from nearby pixels, similar to subsampling. For NS, changing
the `1 regularization parameter on BN scaling factors does not
change the overall shape of scattering, which indicates that
DUS’ dynamic approach is essential to tackle suboptimality.

(a) 80%, NS. (b) 80%, DUS.

(c) 90%, NS. (d) 90%, DUS.

Fig. 2: Pixel selection on MNIST data.

Figure 3 shows the MLP’s classification error rate on the
MNIST dataset with different input pixel pruning ratios (from
40% to 90%). In Figure 3(a), without `1 regularization on
the BN scaling factors, we observe that DUS achieves below
2% error rate even after excluding 90% of the input pixels,
while NS suffers substantial degradation. As mentioned in Sec-
tion III-A, this emphasizes that DUS does not require special
modification (i.e., `1 regularization on BN scaling factors) in
networks’ standard training process to retain original architec-
ture’s performance. Figure 3(b) shows results from the best λ
parameter setting (λ = 0.001) for NS, which corresponds to
Figures 2(c) and 2(d). Based on better distributed input pixel
selection, DUS still outperforms NS when the pruning ratio is
higher.

B. Pruning VGG-net for CIFAR Datasets
In this Section, we experiment with larger and deeper

networks, and empirically show that this performance gap
widens, as a one-off approximation of network component
saliency inevitably becomes less accurate in larger models.

We show the efficacy of DUS on CIFAR10/CIFAR100
datasets by comparing against its static version Network

(a) λ = 0. (b) λ = 0.001.

Fig. 3: Performance on MNIST.

Slimming (NS). CIFAR10/CIFAR100 datasets are small 32-
by-32 color images with 10 and 100 classes, respectively. We
replicate the setup in [23] with dataset under the PyTorch [27]
framework. We first train CIFAR10/CIFAR100 datasets on a
VGG-like fully convolutional network with 16 convolutional
layers. The baseline model before pruning achieves a test error
rate of 6.69% (resp. 27.92%) on CIFAR10 (resp. CIFAR100),
with BN scaling factor’s sparsity regularization parameter λ
set to 0.0001. The parameter value of 0.0001 is the same as
the grid search result in [23]. The initial learning rate is 0.1,
decaying at the rate of 0.1 at 50% and 75% of the 160 training
epochs. The gradient is accelerated by Nesterov momentum
(with a value of 0.9).

If only the global pruning ratio (instead of layer-specific
pruning ratio) is specified, the resulting pruned architecture
from DUS will likely have different numbers of filters in
different layers from the output of NS due to dynamic nature
of DUS. As early-stage convolutional layers in VGG-like
networks have a smaller number of filters and have larger
feature map size, they contribute more to the number of FLOPs
and less to the number of parameters, than the later stage
convolutional layers. Thus, globally setting a fixed percentage
of filters to prune would result in comparing two networks
with different architectures and computational resources. To
make a fair performance comparison between the two methods
under identical levels of parameter/FLOP saving, we fix the
final pruned architecture for the two methods. In this way, the
result is not affected by different cross-layer normalization
schemes for the saliency measure. For instance, Molchanov
[25] normalizes layer-wise saliency measure by layer-wise `2-
norm of the saliency vector for cross-layer comparison. As Liu
[23] does not use cross-layer normalization scheme, globally
pruning 80% of the filters results in pruning an entire layer,
disconnecting the input from the target. This shortcoming
is expected since each layer has different distributions of
BN scaling factors in general. To mitigate this and focus
on improvement from dynamic component selection under
equivalent computational requirement, we use the same target
architecture for both DUS and NS.

We test two types of pruned architectures: (a) keep 60%
of the filters each layer after pruning, and (b) NS’s multi-
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pass pruning architecture. Keeping an equivalent percentage
of filters within a layer (a) is commonly adopted to evaluate
saliency approximation methods, and (b)’s architecture results
after applying NS for five times, which uses 5%, 23% of
the original network’s parameters and FLOPs, respectively.
For each of the 16 convolutional layers, it keeps 34%, 97%,
65%, 93%, 75%, 66%, 33%, 16%, 6%, 6%, 6%, 6%, 6%, 6%,
6%, 7% of the original layers’ filters. Regarding architecture
(b), we aim to use DUS to recover original architecture
performance within a single pass, as opposed to NS’s five
passes. Following [23], the single pass re-training session
uses the same setup as in original training, without sparsity
regularization on the γ parameters.

Table I shows the performance before pruning and after
pruning/re-training. We observe that DUS consistently out-
performs its static counterpart. Notably, on CIFAR10, DUS
achieves more than four times FLOPs reduction without any
performance degradation, in a single pass. DUS also consis-
tently outperforms NS on CIFAR100 in both pruned archi-
tectures tested, suffering no performance drop for architecture
(b) which achieves almost three times FLOPs reduction. Fur-
thermore, DUS outperforms NS by 4.5%. This suggests that
there exists larger suboptimality from static pruning methods
when classification becomes more fine-grained and that DUS’s
postponed smooth pruning alleviates the performance loss.

C. Pruning ResNet for CIFAR Datasets

In this experiment, we prune residual network [14] with
the proposed DUS. As in [23], we use the pre-activation
ResNet with bottleneck structure [14], with 164 layers and `1-
regularization parameter set to 10−5 (which is from grid search
in [23] under equivalent setup). The other setups are the same
as in Section IV-B. We also adopt the approach in Section IV-B
to prune all layers with the corresponding BN layers. In
[30], experimental results showed that the residual network
possesses an ensemble-like feature which makes it relatively
robust to removal/permutation of residual blocks (collections
of paths) with only modest performance degradation. Based
on the observation, in this Section, we show that DUS can
retain performance even after pruning 50% of the filters in
every layer, leading to 75% of parameters/FLOPs saving.

Table II show that DUS outperforms NS with a more
significant gap on the ResNet architecture. As the ResNet has
a significantly larger number of layers, any instant saliency
approximation of network component will have larger approx-
imation error in ResNet. DUS tackles this issue in two ways:
(i) update the saliency (γ) after each update, and (ii) gradually
increases the impact of pruning via a decaying mask.

Figure 4 shows how the choice of component changes per
each of the 164 layers, along with the training process of
the first 120 epochs on the CIFAR10 dataset. The ResNet-
164 consists of three types of residual blocks, represented
by Block1, Block2, and Block3 on the y-axis. Each dot /
entry of the heatmap represents the percentage of the layer’s
components of which status changed in the mask. For instance,
if half of the pruned components in the previous epoch are now

recovered and vice versa, it is represented with color showing
50%. To emphasize the state of no change in choice of pruned
component, 0% entries are replaced by white color.

From figure 4, we note that most of the mask elements are
determined from the first block to the last block, in a feed-
forward fashion. Brighter colors in layers of block groups 2
and 3 suggest they go through more updates in mask values.
However, we also observe that there exist a minority of mask
elements in layers of block groups 1 and 2, are fixed after
masks in block group 3 are fully converged. This indicates that
pruning choices made closer to the output layer do have an
impact on previous layers, made possible by the standard back-
propagation process. It is also notable that the horizontal stripe
pattern in the heatmap (dark row repeating for every three
layers) corresponds to the first layers of each residual blocks.
They tend to modify masks less frequently and converge faster,
due to the reduced number of feature maps across the first
layer.

Fig. 4: Switching and convergence of the ResNet-164 mask
on CIFAR10.

D. Feature Transfer for Fine-grained Image Classification

Neural network pruning can be particularly useful under
the transfer learning setting. First, not all features learned on
source domain A are necessarily helpful for target domain
B. Second, target domain B can have a significantly smaller
dataset size or complexity than target domain A, where
the reduced complexity of a pruned architecture can lead
to regularization. Third, many transfer learning applications
are adopted in the industry, where obtaining an efficient
architecture (via pruning) can be critical for the applications’
scalability.
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TABLE I: DUS and NS on the CIFAR datasets.

architecture pruning method removed parameter (%) saved FLOPs (%) test error (%)
CIFAR-10 original VGG16 architecture 0 0 6.69

(a) keep 60% per layer DUS 64.0 64.2 6.96
NS 64.0 64.2 7.21

(b) NS multi-pass DUS 95.6 77.2 6.54
NS 95.6 77.2 7.19

CIFAR-100 original VGG16 architecture 0 0 27.92
(a) keep 60% per layer DUS 63.9 64.2 27.61

NS 63.9 64.2 32.18
(b) NS multi-pass DUS 95.4 77.2 31.15

NS 95.4 77.2 33.11

TABLE II: Pruning ResNets on the CIFAR datasets.

network setup test error

CIFAR-10 ResNet-164 unpruned, trained with `1 5.17%
pruned 50%, DUS 5.53%
Pruned 50%, NS 6.52%

CIFAR-100 ResNet-164 unpruned, trained with L1 23.53%
pruned 50%, DUS 23.95%
pruned 50%, NS 26.92%

In this Section, we test DUS’s feature selection and network
pruning capability in the context of feature transfer for fine-
grained image classification. We use the VGG network pre-
trained on ImageNet dataset to fine-tune on Caltech-UCSD-
Birds 200 (Birds-200) [31], Oxford Flowers 102 (Flowers-
102) [26], and Stanford Cars 196 (Cars-196) [19] datasets.
Birds-200 dataset contains 3000 training images and 3033
test images for 200 classes of birds. Flowers-102 dataset has
2040 training images and 6129 test images for 102 species of
flowers. Finally, Cars-196 has 8144 and 8041 training and test
images for 196 classes of cars.

Table III shows the test accuracies of (1) the original VGG
network after fine-tuning, (2) network pruned and re-trained
with DUS, and (3) network pruned and re-trained with NS. We
use ImageNet pre-trained VGG-D and VGG-A networks, both
of which are directly available from the PyTorch library [27].
The initial fine-tuning before pruning uses standard SGD with
Nesterov momentum 0.9 and weight decay 10−4. For Flowers-
102/Cars-196, we use learning rate 10−2, and for Birds-200,
10−3. For proper comparison with NS, we incorporate `1-
sparsity regularization on BN’s γ parameters with the original
paper’s suggested hyperparameter value of 10−4.

For fine-tuning after pruning, we use 1/10th of the learning
rate used before pruning. Using a smaller learning rate yields
better result for both pruning methods and all datasets. For
simplicity, we prune a fixed proportion (30%) of the filters
and units from all layers, resulting in a 51% reduction of
parameters / FLOPs. We also note that we achieve a new
state-of-the-art baseline result of 5.07% error rate on Flowers-
102 by adding random rotation of images during training.
The results show that DUS better retains the original network
performance after pruning and re-training for all three fine-

TABLE III: DUS for feature transfer.

network setup test error

Flowers-102 VGG-D unpruned, fine-tuned with `1 5.07%
pruned 30%, DUS 5.58%
pruned 30%, NS 6.01%

Birds-200 VGG-D unpruned, fine-tuned with `1 30.98%
pruned 30%, DUS 33.34%
pruned 30%, NS 36.19%

Cars-196 VGG-A unpruned, fine-tuned with `1 13.8%
pruned 30%, DUS 12.24%
pruned 30%, NS 12.46%

grained image classification tasks. On Cars-196, pruning the
original ImageNet pre-trained model leads to significant reg-
ularization effect which highlights the motivation for using
pruned architectures for feature transfer.

We also note that merely using higher `1-regularization
hyperparameter value for more aggressive pruning leads to
optimization difficulty for the original unpruned network,
yielding a much lower testing accuracy. Consequently, NS
prunes filters with a lot of nonzero scaling parameters remain-
ing, instead of relying on the regularization hyperparameter
to completely prune filters. In order to solely rely on reg-
ularization to prune parameters, Huang and Wang [33] and
Ye et al. [17] adopt layer-wise hyperparameter and separately
modified optimization schemes for the scaling parameters.

V. CONCLUSION

In this paper, we proposed Dynamic Unit Surgery to prune
neural network components for model compression and accel-
eration. The proposed method shows consistent improvement
over its greedy/static counterpart, highlighting the advan-
tages from dynamic component choice and smoothly decay-
ing continuous-valued mask in multiple image classification
benchmarks and network architectures. In the future, we would
like to compare different heuristics for dynamic component
choice in DUS framework. Furthermore, applying trust-region
method would allow masks to decay at independent rate,
while avoiding significant performance degradation. Moreover,
application of the technique to other computer vision tasks like
semantic segmentation and object detection would improve
network performances on edge devices.
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