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The Nyström method is a well-known sampling-based technique for ap-
proximating the eigensystem of large kernel matrices. However, the cho-
sen samples in the Nyström method are all assumed to be of equal impor-
tance, which deviates from the integral equation that defines the kernel
eigenfunctions. Motivated by this observation, we extend the Nyström
method to a more general, density-weighted version. We show that by in-
troducing the probability density function as a natural weighting scheme,
the approximation of the eigensystem can be greatly improved. An effi-
cient algorithm is proposed to enforce such weighting in practice, which
has the same complexity as the original Nyström method and hence is no-
tably cheaper than several other alternatives. Experiments on kernel prin-
cipal component analysis, spectral clustering, and image segmentation
demonstrate the encouraging performance of our algorithm.

1 Introduction

Eigenvalue decomposition of the kernel matrix plays an important role in
many machine learning and computer vision problems. For example, in
kernel principal component analysis (KPCA) (Schölkopf, Smola, & Müller,
1998), the eigenvectors of the kernel matrix are used to extract nonlinear
structures in the high-dimensional feature space. In spectral clustering (Shi
& Malik, 2000; Fowlkes, Belongie, Chung, & Malik, 2004; Ng, Jordan, &
Weiss, 2002), the eigenvectors of the (normalized) kernel matrix provide an
approximate solution for the NP-hard clustering problem. The eigenstruc-
tures of the kernel matrix are also quite useful in kernel design (Chapelle,
Weston, & Schölkopf, 2003; Smola & Kondor, 2003), semisupervised learn-
ing (Zhang & Ando, 2006), manifold learning, and embedding (Belkin &
Niyogi, 2002).

However, eigenvalue decomposition of an n × n kernel matrix takes
O(n3) time and is computationally prohibitive. This poses a big challenge
in applying the technique to large-scale problems. In this letter, we focus on
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a class of sampling-based approximation techniques that have been widely
used in machine learning. Among them, a well-known approach is the
Nyström method, which originated from the numerical treatment of the
integral equation (Baker, 1977):

∫
p(y)k(x, y)φ(y) dy = λφ(x). (1.1)

Here, k(·, ·) is the kernel function, which is usually positive semidefinite;
p(·) is the underlying probability density function; and λ and φ(·) are the
eigenvalue and eigenfunction of the kernel k, respectively. As will be clear
in section 2, the Nyström method can be deemed as selecting a random sub-
set of samples to approximate the integral 1.1, or, equivalently, as choosing
a random subset of rows or columns of the full kernel matrix to approxi-
mate its eigensystem. It has been successfully used in speeding up kernel
machines (Williams & Seeger, 2001) and spectral clustering (Fowlkes et al.,
2004). Platt (2005) further showed that several forms of multidimensional
scaling (Cox & Cox, 1994), including the landmark MDS (Silva & Tenen-
baum, 2003), FastMap (Faloutsos & Lin, 1995), and MetricMap (Wang et al.,
1999), are all variants of the Nyström method.

Besides random sampling, more sophisticated sampling schemes have
also been pursued recently with the Nyström method. In Drineas and
Mahoney (2005), the rows and columns of the kernel matrix are chosen
based on a nonuniform, data-dependent probability distribution, which
leads to a provable probabilistic bound. Ouimet and Bengio (2005) pro-
posed a greedy sampling scheme based on the feature space geometry.
However, these algorithms are usually more expensive. For example, the
sampling probabilities in Drineas and Mahoney (2005) are computed based
on the norms of all the rows and columns of the Gram matrix, which takes
O(n2) time. The greedy scheme in Ouimet and Bengio (2005) has a time
complexity of O(m2n) for the sampling step, where m is the number of
representatives chosen. In comparison, the (random) sampling step in the
Nyström method is much cheaper.

While most works on the Nyström method focus on the design of sam-
pling schemes, we find that the basic formulation may have a key inef-
ficiency: that the chosen samples (also called the landmark points) are
all assumed to be of equal importance. This deviates from the integral
equation 1.1, where a density-based weighting p(y) is imposed on the
integration variable y. In the following, we illustrate the importance of
the density-based weighting with a numerical example. Suppose the den-
sity is a univariate gaussian p(x) = (2a/π )

1
2 exp(−2ax2), and the gaussian

kernel k(x, y) = exp
(−b(x − y)2

)
is used. In this case, the eigenfunctions

can be obtained analytically as φ(x) = exp
(−(c − a )x2

)
Hk(

√
2cx), where

c = √
a2 + 2ab and Hk(x) = k!

2π i

∫
e−t2+2txt−k−1dt is the kth order Hermite



Density-Weighted Nyström Method 123

0 1 2 3
0

0.2

0.4

0.6

0.8

1

x

φ 1(x
)

eigenfunction
interpolated

(a) 1st eigenfunction.
0 1 2 3

0

0.5

1

x

φ 2(x
)

eigenfunction
interpolated

(b) 2nd eigenfunction.
0 1 2 3

0

0.5

1

x

φ 3(x
)

eigenfunction
interpolated

(c) 3rd eigenfunction.

0 1 2 3
0

0.2

0.4

0.6

0.8

1

x

φ 1(x
)

eigenfunction
interpolated

(d) 1st eigenfunction.
0 1 2 3

0

0.5

1

x

φ 2(x
)

eigenfunction
interpolated

(e) 2nd eigenfunction.
0 1 2 3

0

0.2

0.4

0.6

x

φ 3(x
)

eigenfunction
interpolated

(f) 3rd eigenfunction.

Figure 1: Approximations of the eigenfunctions using the original Nyström
method with n = 500 samples (top) and the weighted Nyström method using
m = 13 landmark points (bottom; landmark points marked by circles). The thick
gray curve is the true eigenfunction.

expansion (Williams & Seeger, 2000). We choose a = 1/4 (i.e., p(x) has the
unit standard deviation) and b = 1. We first apply the original Nyström
method to approximate the eigenfunction, using n = 500 landmark points
randomly drawn from p(x). Then we apply the density-based weighting
p(x) on the landmark points in the Nyström method (details are given
in section 3), but this time using only m = 13 landmark points uniformly
distributed in [−3, 3]. Results are plotted in Figure 1. As can be seen, the
weighted version, though using many fewer landmark points, gives better
performance than the original Nyström method.

To apply the weighted Nyström formulation in practice, we need knowl-
edge of the underlying probability density function, which might be difficult
to obtain. To avoid this problem, we resort to a novel block-quantization
scheme of the kernel matrix. The resultant algorithm, which is called the
weighted Nyström method, is computationally very efficient and demon-
strates superior performance in our numerical evaluations.

The rest of the letter is organized as follows. We first briefly introduce
the Nyström method in section 2. Then we extend it to the weighted version
in section 3. In section 4 we propose a block-quantization scheme of kernel
matrices. We show that such a quantization scheme is actually a special case
of the weighted Nyström formulation, which provides important insights
into how to choose the landmark points and their associated weighting co-
efficients. In section 5, we discuss the application of the weighted Nystrom̈
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method in speeding up the normalized cut. Section 6 provides several dis-
cussions on the weighted Nyström method. Experimental results on using
our approach for KPCA, spectral clustering, and image segmentation are
presented in section 7, and the last section gives concluding remarks. Our
preliminary work is reported in Zhang and Kwok (2006).

2 The Nyström Method

The Nyström method was originally designed for numerical treatment of
integral equations like equation 1.1. Based on a set of independent and
identically distributed (i.i.d.) samples X = {xi }n

i=1 that are supposed to be
drawn from the probability density p(·), the integral can be approximated
by

λφ(x) =
∫

p(y)k(x, y)φ(y) dy � 1
n

n∑
j=1

k(x, xj )φ(xj ). (2.1)

When x in equation 2.1 goes through all xi ’s in X, we obtain n linear
equations:

1
n

n∑
j=1

k(xi , xj )φ(xj ) = λφ(xi ), i = 1, 2, . . . , n,

which can be written as the eigenvalue decomposition:

Kφ = nλφ. (2.2)

Here K ∈ R
n×n is the kernel matrix such that Ki j = K (xi , xj ), and φ ∈ R

n

is the corresponding eigenvector. After equation 2.2 is solved, the eigen-
function φ(·) at any point x can be approximately evaluated using equation
2.1:

φ(x) ≈ 1
nλ

n∑
j=1

k(x, xj )φ(xj ).

The eigenvalue decomposition in equation 2.2 scales cubically with the
sample size. To reduce the time complexity, one may use only a random
subset of the available samples, which leads to a much smaller eigenvalue
problem. This is commonly known as the Nyström method (Williams &
Seeger, 2001; Fowlkes et al., 2004) and is summarized in algorithm 1:
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Algorithm 1: The Nyström Method

1. Given the sample set X = {xi }n
i=1, randomly choose a subset Z =

{zk}m
k=1.

2. Compute the kernel submatrix W ∈ R
m×m:

Wi j = k(zi , z j ). (2.3)

3. Perform the eigenvalue decomposition WφZ = mλZφZ, with eigenvec-
tor φZ ∈ R

m and eigenvalue mλZ.
4. Compute the extrapolation matrix E ∈ R

n×m:

Ei j = k(xi , z j ). (2.4)

5. Extrapolate φZ ∈ R
m to φX ∈ R

n by φX = (mλZ)−1 EφZ.

In algorithm 1, the subscript Z is to emphasize that the evaluation is
with regard to the landmark point set Z, and φX ∈ R

n×1 represents the
(approximate) evaluations of the kernel eigenfunction φ(·) on the whole
sample set X = {xi }n

i=1. Note that φX will approximate the eigenvectors of
the complete kernel matrix after some scaling (Williams & Seeger, 2001).
Therefore in the sequel, we simply focus on the derivation of φX.

3 Density-Weighted Nyström Method

In this section, we extend the Nyström method to a more general setting
based on the integral equation, 1.1. As has been discussed in section 1,
the original Nyström method assigns equal importance to all the chosen
samples. This deviates from the integral equation 1.1, where the integration
variable is weighted by the density function. Here, we explicitly introduce
this density function p(·) evaluated at the landmark points Z = {zi }m

i=1. Then
the integral equation 1.1 can be approximated as

λφ̃(x) =
∫

p(y)k(x, y)̃φ(y) dy � 1
c

m∑
i=1

p(zi )k(x, zi )̃φ(zi ),

where c = ∑m
i=1 p(zi ) is the normalization factor. Here the symbol ·̃ de-

notes entities corresponding to this weighted version. By choosing x at the
landmark points, we have

W̃φ̃Z = cλ̃Zφ̃Z, (3.1)

where W̃ ∈ R
m×m is the density-weighted kernel matrix evaluated at the

landmark points,

W̃i j = p(z j )k(zi , z j ), (3.2)
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and φ̃Z ∈ R
m and cλ̃Z are the corresponding eigenvector and eigenvalue,

respectively. After the eigensystem 3.1 is solved, the eigenfunction can be
evaluated at an arbitrary point x as

φ(x) ≈ 1
cλ̃Z

m∑
j=1

p(z j )k(x, z j )̃φ(z j )

or in matrix form

φX = (cλ̃Z)−1 Ẽ φ̃Z,

where Ẽ ∈ R
n×m is the density-weighted extrapolation matrix,

Ẽi j = p(z j )k(xi , z j ). (3.3)

We can see that a major difference between the density-weighted
Nyström formulation and the original one is that the probability density
function appears explicitly. Both the kernel matrix to be diagonalized (W in
equation 2.3), and the extrapolation matrix (E in equation 2.4) are weighted
by the density p(·) as shown in equations 3.2 and 3.3, respectively. In the next
section, we discuss how to choose landmark points Z and the density-based
weighting p(zk)’s through a matrix quantization view.

4 Kernel Matrix Quantization

This section presents a novel block-quantization scheme of the kernel ma-
trix, which will be shown to be a special case of the weighted Nyström
formulation. It provides important insights on how to choose the density-
based weighting coefficients p(zk)’s (section 4.1) and the landmark points
zk ’s (section 4.2).

4.1 Block Quantization. Unlike common quantization methods, which
sparsify the matrix by zeroing out small entries, our quantization scheme
takes advantage of the special pairwise structure of the kernel matrix.
The basic idea is to partition the data set X into disjoint clusters Sk ’s
(k = 1, 2, . . . , m), each with cluster size |Sk | and cluster representative zk .
Then, for any two points xi ∈ Sp and xj ∈ Sq , the kernel evaluation k(xi , xj )
is approximated by using the corresponding cluster representatives as
k(xi , xj ) = k(zp, zq ). Without loss of generality, suppose that the data set
is ordered such that the first |S1| samples belong to cluster S1, the following
|S2| samples belong to cluster S2, . . . , and the last |Sm| samples belong to
cluster Sm. The n × n kernel matrix K can then be quantized into m × m
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constant blocks. We use W to denote this block-wise constant matrix, with

Wi j = k(zp, zq ), xi ∈ Sp, xj ∈ Sq , 1 ≤ i, j ≤ n, 1 ≤ p, q ≤ m. (4.1)

In the sequel, the symbol · denotes entities that are related to this block-
wise constant matrix. The following is an illustrative example where the
data are grouped into two clusters, with |S1| = 2 and |S2| = 3:

W =



a a b b b

a a b b b

c c d d d

c c d d d

c c d d d

 .

The following proposition shows that the eigenvectors of W are piecewise
constant and can be simply computed by decomposing a much smaller
matrix W̃ in O(m3) time. As we shall see, this is the key to the computational
advantage of the weighted Nyström method. The proof can be found in
appendix A.

Proposition 1. Define a matrix based on the cluster centers zk’s and cluster sizes
|Sk |’s, W̃ ∈ R

m×m, such that

W̃pq = k(zp, zq )|Sq |, p, q = 1, 2, . . . , m, (4.2)

and let φ̃ ∈ R
m be the corresponding eigenvector. Then the eigenvector φ ∈ R

n of
the block-wise constant kernel matrix Wn×n in equation 4.1 can be obtained as

φ(i) = φ̃(k), ∀xi ∈ Sk,

that is, φ is obtained by repeating the kth entry of φ̃ (1 ≤ k ≤ m) |Sk | times and
then concatenating them together.

The block-quantization procedure is actually a weighted Nyström for-
mulation. First, note that the block quantization depends on grouping
the sample set X into clusters. These clusters can be considered as the
bins in a multivariate histogram, and the bin heights can be chosen as
the (normalized) cluster sizes 1

n |Sk |’s. Now, by using p(zk) = 1
n |Sk | and

c = ∑m
k=1 p(zk) = 1, the eigenvalue decomposition in the weighted Nyström

formulation 3.1 can be written as W̃φ̃Z = λZφ̃Z, with W̃pq = K (zp, zq )|Sq |/n.
This is almost identical to eigenvalue decomposition 4.2 in the block-
quantization procedure except for a scaling of the eigenvalues. Therefore,
the weighted Nyström formulation, when using the normalized histogram
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as the density estimator, is equivalent to the block quantization of the kernel
matrix. In other words, the block-quantization procedure is a special case
of the weighted Nyström formulation.

4.2 Choosing the Landmark Points. In this section, we consider how
to choose the landmark points zk ’s in the weighted Nyström method. The
basic idea is to choose zk ’s such that the resultant, block-wise constant kernel
matrix W is close to the original kernel matrix K . We do so by minimizing
the Frobenius norm of the difference between them. With regard to this, we
have the following proposition (the proof can be found in appendix B):

Proposition 2. Suppose that the data set X = {xi }n
i=1 is partitioned into m

disjoint clusters Sk’s with cluster center zk’s, k = 1, 2, . . . , m, and the block-wise
constant kernel matrix, equation 4.1 is obtained by replacing each sample xi with
its corresponding cluster center zc(i). Then, with the use of the stationary kernel
k(x, y) = k(‖x − y‖2/σ 2), we have

‖K − W‖F ≤ 8
ξ 2

σ 4

(
nR2 D(2) + nRD(3) + 1

4
nD(4) + R2(D(1))2 + 3

4
(D(2))2

+ 3RD(2) D(1) + D(3) D(1)
)

,

where R is the maximum pairwise distance between samples, ξ = maxx|k ′(x)|, and
D(k)’s are distortion errors under different norms defined by

D(k) =
n∑

i=1

‖xi − zc(i)‖k

for k = 1, 2, 3, 4.

From proposition 2, we can see that ‖K − W‖F is determined by D(k)’s
(k = 1, 2, 3, 4), which are the distortion errors of quantizing each point with
the corresponding cluster center. The lower the distortion error, the smaller
the ‖K − W‖F . In the limiting case where each sample is chosen as a land-
mark point and considered as one cluster, D(k)’s are all zero, and, hence, the
Frobenius norm error is also zero.

Note that when k = 2, D(k) is exactly the objective of the k-means
clustering algorithm, which can find a local minimum of the D(k) (Gersho
& Gray, 1992). Therefore, we choose the k-means algorithm to partition the
data set and use the resultant cluster centers as the landmark points zk ’s.
Note that the k-means algorithm is easy to implement, and the complexity
is linear with the sample size and dimension. There are also several recent
advances on scaling up the k-means algorithm (Pelleg & Moore, 1999;
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Elkan, 2003; Kanungo et al., 2002). Therefore, the k-means-based sampling
strategy is suitable for solving large-scale problems in this context.
The complete weighted Nyström method for approximating the kernel
eigenfunctions is shown in algorithm 2:

Algorithm 2: The Weighted Nyström Method

1. Given the sample set X = {xi }n
i=1, use k-means to group it into m clus-

ters, with cluster centers zk ’s and cluster sizes |Sk |’s, k = 1, 2, . . . , m.
2. Compute the weighted kernel submatrix W̃ ∈ R

m×m, W̃i j = k(zi , z j )|Sj |.
3. Perform the eigenvalue decomposition W̃φ̃Z = ñλZφ̃Z, with eigenvec-

tor φ̃Z ∈ R
m and eigenvalue ñλZ.

4. Compute the weighted extrapolation matrix Ẽ ∈ R
n×m, Ẽi j =

k(xi , z j )|Sj |.
5. Extrapolate φ̃Z ∈ R

m to φX ∈ R
n by φX = (ñλZ)−1 Ẽ φ̃Z.

Note that the weighted Nyström method needs to decompose an asym-
metric matrix W̃ (step 3). However, W̃ can be written as W̃ = WP , where
W ∈ R

m×m is a symmetric kernel matrix defined on the landmark set Z and
P ∈ R

m×m is a diagonal matrix such that Pkk = p(zk). Therefore we can apply
a simple transform u = P− 1

2 φ̃Z and turn step 3 into a symmetric eigenvalue
problem (Press, Teukolsky, Vetterling, & Flannery, 1992). This is numerically
much easier than decomposing asymmetric matrices.

Considering that random initialization of the k-means introduces some
statistical variability and that we may prefer scanning the data only once for
a large data set rather than iterate many steps, we propose an efficient pro-
cedure to partition the data in one round, which is called sequential sampling
in algorithm 4 (see appendix C). Its complexity is only O(mn) since the al-
gorithm requires only one pass of the data, and when a hierarchical scheme
is used (Feder & Greene, 1988), it can be further reduced to O(n log m). We
can also use sequential sampling to initialize the k-means procedure.

5 Application in Normalized Cut

The normalized cut (Ncut) (Shi & Malik, 2000) is the most popular spectral
method (Ng et al., 2002) and has been widely used in clustering problems
such as speech separation (Bach & Jordan, 2006), image, and motion
segmentation (Fowlkes et al., 2004; Shi & Malik, 2000). In this section,
we discuss how to apply the weighted Nyström formulation to speed up
eigenvalue decomposition in the normalized cut.

The key step of normalized cut is to solve the following eigenvalue
problem:

D−1/2 K D−1/2z = λz. (5.1)
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Here K ∈ R
n×n is the similarity (or adjacency) matrix, and D ∈ R

n×n is the
diagonal degree matrix whose ith entry is the sum of the ith row of K . After
obtaining the eigenvector corresponding to the second-largest eigenvalue
of equation 5.1, and transforming it by D−1/2z, we can obtain a relaxed
solution of the normalized cut partition (Shi & Malik, 2000). Note that the
integral equation corresponding to equation 5.1 is

∫
D− 1

2 (x)k(x, y)p(y)D− 1
2 (y)φ(y) dy = λφ(x), (5.2)

where

D(x) =
∫

k(x, y)p(y) dy. (5.3)

We now consider how to obtain an approximate solution of equation 5.2
using the weighted Nyström formulation. Similar to section 3, we choose
both x and y in equation 5.2 at a set of landmark points Z = {zi }m

i=1 and
obtain the following set of linear equations:

1
c

m∑
q=1

D− 1
2 (zp)k(zp, zq )p(zq )D− 1

2 (zq )φ(zq )=λφ(zp), p=1, 2, . . . , m,

(5.4)

where c = ∑m
q=1 p(zq ). Note that D(zk) (k = 1, 2, . . . , m) can be computed

by the discrete counterpart of equation 5.3, as

D(zk) = 1
c

m∑
i=1

k(zk, zi )p(zi ). (5.5)

Plugging equation 5.5 into equation 5.4, we have

1
c

m∑
q=1

(
1
c

m∑
i=1

k(zp, zi )p(zi )

)− 1
2

k(zp, zq )p(zq )

(
1
c

m∑
i=1

k(zq , zi )p(zi )

)− 1
2

×φ(zq ) = λφ(zp),

or in matrix form,

D
− 1

2
Z W̃D

− 1
2

Z φ̃Z = λφ̃Z,
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where W̃ is the same as defined in equation 3.2, φ̃Z ∈ R
m is the eigenvector,

and DZ is the diagonal matrix whose pth diagonal entry is

[DZ]p,p =
m∑

k=1

k(zp, zk)p(zk), p = 1, 2, . . . , m. (5.6)

Note that DZ is actually the degree matrix of W̃, in that the kth diagonal
entry of DZ is the sum of the kth row of W̃.

To evaluate the eigenfunction at any point x, we use the discrete approx-
imations of equations 5.2 and 5.3 to obtain

φ(x) = 1
cλ

m∑
q=1

D− 1
2 (x)k(x, zq )p(zq )D− 1

2 (zq )φ(zq ), (5.7)

D(x) = 1
c

m∑
i=1

k(x, zi )p(zi ). (5.8)

Plugging equations 5.5 and 5.8 into 5.7, we have

φ(x) = 1
cλ

m∑
q=1

(
1
c

m∑
i=1

k(x, zi )p(zi )

)− 1
2

k(x, zq )p(zq )

×
(

1
c

m∑
i=1

k(zq , zi )p(zi )

)− 1
2

φ(zq ).

The eigenvector of the full sample set X can thus be obtained as

φX = 1
λ

D
− 1

2
X Ẽ D

− 1
2

Z φZ,

where Ẽ is the same as defined in equation 3.3, and DX is the diagonal
matrix whose ith diagonal entry (i = 1, 2, . . . , n) is

[DX]i,i =
m∑

k=1

k(xi , zk)p(zk) i = 1, 2, . . . , n. (5.9)

Note that DX is actually the degree matrix of Ẽ , in that the kth diagonal
entry of DX is the sum of the kth row of the matrix Ẽ .
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The normalized cut algorithm using weighted Nyström approximation
is summarized in algorithm 3 (for notational clarity, we use capital letters
for matrices of (multiple) eigenvectors and eigenvalues):

Algorithm 3: Normalized Cut Through Weighted Nyström Method

1. Perform steps 1, 2, and 4 in algorithm 2.
2. Compute DZ (see equation 5.6) and DX (see equation 5.9).
3. Perform the eigenvalue decomposition D

− 1
2

Z W̃D
− 1

2
Z U1 = U1�1, with

eigenvector matrix U1 ∈ R
m×m and diagonal eigenvalue matrix �1 ∈

R
m×m.

4. Extrapolate U1 ∈ R
m×m to Ū ∈ R

n×m by Ū = D
− 1

2
X Ẽ D

− 1
2

Z U1�
−1
1 .

5. From Ū, choose the eigenvector of the second-largest eigenvalue, ū,
map it to D−1/2

X ū, threshold, and obtain the normalized cut.

Note that the matrix to be decomposed in algorithm 3, D
− 1

2
Z W̃D

− 1
2

Z , is
asymmetric, and the corresponding eigenvectors might be complex. How-
ever, as will be shown in proposition 3, the eigensystem must be real since
it can be represented by that of a symmetric matrix. Proof can be found in
appendix D.

Proposition 3. Define the diagonal matrix P ∈ Rm×m such that Pkk = p(zk), k =
1, 2, . . . , m. Then the eigensystems associated with the matrices D

− 1
2

Z W̃D
− 1

2
Z and

(DP
Z )−

1
2 (PWP) (DP

Z )−
1
2 ,

D
− 1

2
Z W̃D

− 1
2

Z U1 = U1�1,(
DP

Z

)− 1
2 (PWP)

(
DP

Z

)− 1
2 U2 = U2�2,

will satisfy �1 = �2 and U1 = P− 1
2 U2.

6 Discussion

6.1 Relationship with Quadrature Method. The quadrature rule
(Davis & Robinowitz, 1984) is widely used for numerical approximations of
integrals. It is of the general form

∫ b

a
F (s) ds �

n∑
i=1

wi F (s j ),

where w j ’s are the quadrature weights and s j ’s are the quadrature points
or nodes. On using the quadrature rule to approximate the integral in
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equation 1.1, we have

n∑
j=1

w j k(x, s j )φ(s j ) = λφ(x).

By choosing x at the nodes, we obtain the linear system

KWφ = λφ,

where K is the kernel matrix defined on the nodes and W is the diagonal
matrix containing the weights w j ’s. Different quadrature rules will enforce
different choice of weights, such as the Simpson’s rule or the trapezoid rule.

Note that the standard Nyström method and the density-weighted ver-
sion can also be deemed as quadrature methods in approximating the in-
tegral equation. However, unlike commonly used quadrature rules, both
methods actually enforce some kind of data-dependent quadrature rules
(since the integral to be approximated is data dependent). This is reflected
in the way they treat the density p(·): the standard Nyström method im-
plicitly approximates the density through the samples that are drawn from
p(·) while the weighted Nyström method directly estimates the density by
the normalized data histogram.

6.2 Probabilistic Sampling. Recently a probabilistic sampling scheme
has been proposed for the Nyström method in Drineas and Mahoney (2005).
Given an n × n kernel matrix K , a prespecified integer m ≤ n, and a distri-
bution {pi }n

i=1, the algorithm proceeds as follows:

1. Pick with replacement m i.i.d. columns of K with respect to the prob-
abilities {pi }n

i=1. Let I be the set of indices of the sampled columns
obtained.

2. Scale each sampled column by dividing its elements by
√

mpi .
3. Let C be the n × m matrix containing the sampled columns after

rescaling and W be the m × m submatrix of K whose entries are
Wi j = Ki j/

√mpi p j for i, j ∈ I .
4. Compute Wk , the best rank-k approximation to W.
5. Return Kk = CW+

k C ′.

Typically, the distribution {pi }n
i=1 is computed based on the norms of the

rows or columns of the kernel matrix K as pi = ‖K (i)‖2
‖K‖F

, where K (i) denotes
the ith row of K .

The algorithm can be deemed as approximating the eigenvectors of the
kernel matrix K with Ū = CU�−1, where U contains the eigenvectors of
W as columns and � contains the eigenvalue of W in its diagonal (i.e.,
W = U�U ′). To see this, note that reconstruction of K using Ū�Ū ′ will lead
to K ≈ Ū�Ū ′ = CU�−1��−1U ′C ′ = CW−1C ′, which is quite similar to step
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5 except that the matrix inverse is replaced by the pseudo-inverse there for
numerical stability. Therefore, it is a variant of the Nyström method. The
primary difference is that sampling of the rows or columns is based on a
precomputed distribution, and W and C are also reweighted by these prob-
abilities. It is worthwhile to note that the reweighting here is quite different
from our density-based weighting, and in the experimental evaluations (see
section 7), we will see that the density-based weighting will give a better
approximation.

6.3 Complexity. Suppose the sample size is n and the number of land-
mark points is m. Then the original Nyström method (see algorithm 1) has a
complexity O(m3 + nm), where the first term is for the eigenvalue decompo-
sition of the m × m kernel matrix W and the second term is for the Nyström
extension. For the weighted Nyström method, we need to perform k-means
to partition the data set, which takes an extra O(mnl) time, where l is the
number of k-means iterations. Since we set l as a constant (10 in all our ex-
periments), the overall complexity of the weighted Nyström method is still
O(m3 + mn). This is the same as the original Nyström method and is notably
cheaper than several other related algorithms mentioned in section 1.

In applying the weighted Nyström method to the NCut, some extra
computations are needed for estimating the degree matrices DZ and DX.
The former is computed based on the row sums of the n × m matrix Ẽ and
the latter on the m × m matrix W̃. Therefore, O(mn) time is further needed,
which, however, does not change the complexity of O(m3 + mn).

Note that the approximate eigenvectors obtained by the Nyström
method (see algorithm 1) may not satisfy the orthogonality constraints. An
orthogonalization step can therefore be applied (Fowlkes et al., 2004), which
improves the approximation performance but at the cost of increasing the
overall complexity from O(m3 + mn) to O(m2n). For simplicity, in this letter,
we make comparisons between different algorithms without requiring the
orthogonality condition. Note that orthogonalization of the approximate
eigenvectors in the weighted Nyström method will involve developing its
matrix completion view and will be considered in the future.

7 Experiments

In this section, we evaluate the performance of the different variants of
the Nystrom̈ method for eigenapproximation. Experiments include kernel
principal component analysis (section 7.1), spectral clustering, and image
segmentation (section 7.2).

7.1 Eigenvalue Decomposition of the Kernel Matrix. We first evaluate
the proposed algorithms by performing eigenvalue decomposition of the
kernel matrix and examining the approximation qualities of the obtained
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(b) 2nd eigenvector.
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(c) 3rd eigenvector.

Figure 2: Approximation errors of the top three eigenvectors on the 1D gaussian
data set.

eigenvectors. This is the first step of the kernel principal component
analysis.

The first data set has n = 500 samples drawn from the 1D normal distri-
bution p(x) = 1√

2π
exp(−x2/2). The gaussian kernel k(x, y) = exp(−b(x −

y)2) is used with b = 1. We compare the Nyström method using (1)
randomly chosen landmark points; (2) k-means-based landmark points;
(3) weighted, k-means-based landmark points (our approach); and (4) prob-
abilistic sampling by Drineas and Mahoney (2005). We gradually increase
the subset size m from 5 to 50, and for each m, all the algorithms are repeated
100 times with the average performance reported.

Figure 2 shows the average approximation errors (and the 1-standard-
deviation error bars1 on the first three eigenvectors of the kernel matrix
K . Here the error is computed as the L2-distance between the original and
the approximate eigenvectors, both of which are scaled to have norm 1. As
can be seen, the approximation errors obtained by the weighted Nyström
method are much lower than those by others. Indeed, on average, the
probabilistic sampling scheme in Drineas and Mahoney (2005) performs
even worse than random sampling, which is also observed in the context
of singular value decomposition (Drineas, Drinea, & Huggins, 2003).

The second data set is from the digits 0 and 1 of the MNIST data set.2 We
randomly choose 2000 images for training. Following Ouimet and Bengio
(2005), we use the gaussian kernel with bandwidth σ = 31.6. We gradually
increase m from 10 to 200, and for each m, all the algorithms are repeated 30
times. Figure 3 plots the errors of the top three eigenvectors obtained by the
different algorithms. Again, we can see that our method is more accurate,
and the leading eigenvectors are usually better approximated than the trail-
ing ones. Another observation is that the direct use of k-means for choosing
the landmark points in the Nyström method, although it slightly improves

1Note that the error curves are slightly offset so that the error bars can be more easily
identified.

2Available online at: http://yann.lecun.com/exdb/mnist/.
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(c) 3rd eigenvector.

Figure 3: Approximation errors of the top three eigenvectors on the MNIST
digits 0 and 1.
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Figure 4: Embedding error (using the three leading eigenvectors) versus the
number of representatives used.

the approximation performance, is still worse than the weighted Nyström
method. This reflects the importance of the density-based weighting in the
Nyström method.

Following Ouimet and Bengio (2005), we perform a quantitative compar-
ison on the embedding results of the three leading eigenvectors obtained in
the KPCA. We align the obtained embedding (i.e., coordinates of the data
points) to the KPCA embedding through linear regression and then report
the mean squared error between them. Both the in-sample error (based on
the embedding of the training patterns) and out-of-sample error (based on
the embedding of a test set of 2000 images) are shown in Figure 4. As can
be seen, our embedding results are always superior, and the error drops
rapidly as the number of landmark points increases.

We also provide a visual example by comparing the embedding results
of our approach with that of standard KPCA. Figures 5a and 5b show
the standard KPCA embedding results using the three leading eigenvec-
tors, while Figures 5c and 5d show our results using only m = 6 landmark
points. As can be seen, by using only six representatives, our method obtains
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Figure 5: Embedding of the digits 0 and 1 obtained by KPCA (using the three
leading eigenvectors) and our method (using only six representatives).

comparable results to those of KPCA. In other words, the eigenvectors of
the 2000 × 2000 kernel matrix have been well approximated by those of a
6 × 6 matrix. This demonstrates the effectiveness of our approach in extract-
ing the eigenstructures of large kernel matrices with highly compact models.

7.2 Spectral Clustering. In this section, we perform spectral clustering
on two-digit data set, UCI and MNIST.3 The UCI digits are of size 8 × 8, and
each digit has about 350 training instances. The MNIST digits are of size
28 × 28, and each digit has 6000 training instances. For each data set, we
perform clustering between digit 3 and each of the nine remaining digits
(and thus a total of nine clustering tasks for each data set). Considering that
the standard normalized cut can be quite time-consuming on the MNIST

3UCI is from http://mlearn.ics.uci.edu/databases/, and MNIST is from http://yann
.lecun.com/exdb/mnist/.



138 K. Zhang and J. Kwok

Table 1: Clustering Errors (%) on the UCI Digits.

Digit Ncut Drineas Nyström (Random) Nyström(k-Means) Ours

3-0 0.00 14.47 ± 19.43 5.31 ± 14.89 0.17 ± 0.18 0.05 ± 0.06
3-1 1.28 11.31 ± 10.06 20.18 ± 15.62 4.78 ± 7.57 1.63 ± 0.22
3-2 0.78 13.79 ± 14.05 17.53 ± 13.94 5.57 ± 10.23 1.54 ± 1.09
3-4 0.00 7.77 ± 14.28 6.78 ± 11.34 0.41 ± 0.69 0.36 ± 0.60
3-5 4.57 18.29 ± 10.42 20.62 ± 14.29 12.00 ± 8.07 5.19 ± 1.04
3-6 0.00 4.34 ± 9.49 6.48 ± 14.83 0.12 ± 0.14 0.08 ± 0.06
3-7 0.90 7.10 ± 13.36 14.18 ± 15.23 1.49 ± 0.82 1.03 ± 0.28
3-8 2.99 20.16 ± 12.93 19.25 ± 12.20 4.35 ± 4.04 2.32 ± 0.45
3-9 24.38 28.15 ± 12.26 36.52 ± 7.62 30.53 ± 3.08 25.21 ± 4.09

Table 2: Clustering Errors (%) on the MNIST Digits.

Digit Ncut Drineas Nyström (Random) Nyström(k-Means) Ours

3-0 3.80 20.05 ± 12.13 22.17 ± 10.34 7.14 ± 4.63 3.55 ± 0.34
3-1 3.10 27.27 ± 15.06 21.93 ± 12.15 5.35 ± 3.61 3.32 ± 0.34
3-2 13.1 30.80 ± 11.55 25.20 ± 9.20 14.17 ± 4.23 12.64 ± 1.07
3-4 3.00 18.33 ± 12.13 12.00 ± 7.90 4.74 ± 2.26 2.59 ± 0.12
3-5 31.90 39.04 ± 6.41 36.53 ± 7.66 35.17 ± 4.81 32.25 ± 1.34
3-6 2.10 20.92 ± 13.37 18.73 ± 13.87 5.06 ± 4.18 1.87 ± 0.22
3-7 3.30 15.97 ± 9.64 16.38 ± 11.53 5.78 ± 2.84 3.35 ± 0.22
3-8 23.60 33.52 ± 9.46 35.13 ± 8.77 27.55 ± 3.85 25.53 ± 2.44
3-9 6.00 22.45 ± 12.91 22.24 ± 11.83 9.83 ± 3.91 6.50 ± 0.45

digits, each with 6000 samples, we choose only 500 samples from each
MNIST digit. We use the gaussian kernel k(x, y) = exp(−‖x − y‖2/σ 2), and
σ is chosen such that the standard normalized cut gives the best perfor-
mance on the nine clustering tasks. To make the problem more challenging,
we choose the subset size as m = 5. All algorithms are repeated 30 times,
and the averaged performance is reported in Tables 1 and 2.4 As can be
seen, the clustering performance of our approach is very close to that of
the standard normalized cut. In comparison, other variants of the Nyström
method are much inferior. A significance test (paired student-t test) shows
that on all the tasks, our approach is better than the other three approaches,
with a confidence level of at least 97.5%.

Next we use a specific example to demonstrate the efficiency of our
approach. We choose digits 6 and 8 from the MNIST data, gradually increase
the sample size of both digits, and examine the performance (clustering
error and time consumption) of the proposed method (again using m = 5).

4For binary clustering problems, the clustering error is defined as 1
2n min(‖�1 +

�2‖1, ‖�1 − �2‖1), where �1 and �2 are the true label and computed label vectors of {±1},
respectively.
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Figure 6: Comparison of clustering performance for spectral clustering and the
proposed method on MNIST digits 6 and 8.

For comparison, we also report the performance of standard NCut. As can
be seen from Figure 6a, when the sample size increases, the performance of
our approach is very close to or even better than the standard NCut. From
Figure 6b, our algorithm is faster than standard NCut by at least one to
two orders of magnitude. In particular, the larger the sample size, the more
obvious the improvement.

Finally, we perform image segmentation using the NCut by applying
a k-means procedure in the subspace of the top three eigenvectors of the
normalized kernel matrix, equation 5.1. In order to use both local coherence
and global similarity information, we use the RGB colors concatenated
with the (x, y) pixel positions as features. All the features are normalized
to [0, 255]; that is, we assume that the color and spatial features take equal
weight. The gaussian kernel is adopted with bandwidth σ in the range
[20, 40]. The sequential sampling procedure with r = 25 is used to initialize
the k-means partitioning. The implementations here are in VC7.0 and are
run on a Pentium-III 2.26 GHz machine.

Segmentation results on some 481 × 321 images (from the Berkeley im-
age data set) are shown in Figure 7.5 The CPU time is shown in Table 3.
As can be seen, our method produces competitive segmentation results
with very high speed. In particular, note that standard spectral clustering
algorithms cannot be run with this large data set on our machine.

8 Conclusion

In this letter, we identify a primary source of inefficiency in the Nyström ap-
proximation of large kernel eigensystems, namely, that the chosen landmark

5Available online at: http://www.cs.berkeley.edu/projects/vision/grouping.
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Table 3: CPU Time (in Seconds) and Number of Representatives m in Segmen-
tation Tasks.

HILL MAN HOUSE FLOWER

m 114 175 162 86
TIME 0.45 0.66 0.91 0.51

Figure 7: Image segmentation results obtained by normalized cut with the pro-
posed method.

points are treated with equal importance in approximating a distribution-
dependent integral. We therefore extend the Nyström method to a more
general, density-weighted version, called the weighted Nyström method.
It uses the normalized data histogram to set the weighting coefficients,
and the landmark points are carefully chosen as the cluster centers. It has
the same computational complexity as the original Nyström method. Su-
perior empirical results are obtained in its applications to kernel principal
component analysis, spectral clustering, and normalized-cut-based image
segmentation.

Several problems remain to be investigated in the future. For example,
our current analysis and methodology can be extended to different kernels,
such as linear or polynomial kernel. One interesting direction is to gener-
alize our algorithm to more complicated, domain-specific kernels such as
the string kernel. In this case, the data might be nonvectorial, and kernel
evaluations will no longer take analytic forms. As a result the block quan-
tization of kernel matrix will be more difficult. We will investigate efficient
quantization schemes under specific kernel evaluation rules. Another fu-
ture work is to study the matrix completion view of the density-weighted
Nyström method. Such interpretation will allow us to correctly orthogo-
nalize the approximate eigenvectors obtained with the weighted Nyström
method (using more computations). It also makes possible application of
the weighted Nyström method in low-rank approximation problem, which
is the key to scaling up a number of popular kernel methods.
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Appendix A: Proof of Proposition 1

The eigensystem of W can be written as n linear equations:

n∑
j=1

Wi jφ j = λφi , i = 1, 2, . . . , n.

The left-hand sides of the first |S1| equations (i = 1, 2, . . . , |S1|) are all the
same. Therefore, the corresponding right-hand sides, φi ’s, are also the same.
Similarly, the next |S2| φi ’s (i.e., i = |S1| + 1, |S1| + 2, . . . , |S1| + |S2|) are also
the same, and so on. Thus, it is easy to see that the eigensystem Wφ = λφ

has only m independent equations,

m∑
q=1

W̃pq φ̃q = λ̃φ̃p, p = 1, 2, . . . , m,

or, in matrix form, W̃φ̃ = λ̃φ̃, where W̃ ∈ R
m×m with elements W̃pq =

k(zp, zq )|Sq |, and λ̃, φ̃ ∈ R
m are the corresponding eigenvalue and eigen-

vector. Hence, φi can be easily obtained by first performing eigenvalue
decomposition of W̃ and then extending its eigenvector φ̃ ∈ R

m to φ ∈ R
n

by repeating the kth entry of φ̃ nk times (k = 1, 2, . . . , m).

Appendix B: Proof of Proposition 2

For each entry Ki j , the corresponding entry Wi j is K (zp, zq ), where p = c(i)
and q = c( j). Here c(i) maps the sample index i to the corresponding cluster
index c(i). So we have

(Ki j − Wi j )2 = (K (xi , xj ) − K (zp, zq ))2

= (k(‖xi − xj‖2/σ 2) − k(‖zp − zq ‖2/σ 2))2.

By denoting di j = ‖xi − xj‖, Dpq = ‖zp − zq ‖, and using the mean value
theorem, we have

(Ki j − Wi j )2 = (
k
(
d2

i j/σ
2) − k

(
D2

pq /σ
2))2

= σ−4ξ 2(di j + Dpq )2(di j − Dpq )2, (B.1)



142 K. Zhang and J. Kwok

where ξ = maxx |k ′(x)|. Now we try to find bounds for di j + Dpq and |di j −
Dpq |. Using the triangle inequality, we have

di j = ‖xi − xj‖
≤ ‖xi − zp‖ + ‖zp − zq ‖ + ‖zq − xj‖
= ri + Dpq + r j . (B.2)

Here ri denotes the distance between sample xi and its corresponding clus-
ter center zc(i)—ri = ‖xi − zc(i)‖ = ‖xi − zp‖. By using equation B.2, we have

di j + Dpq ≤ 2Dpq + ri + r j .

Next we derive the bound on |Dpq − di j |. Note that from equation B.2,
we have di j − Dpq ≤ ri + r j . On the other hand, through the triangular
inequality,

Dpq = ‖zp − zq ‖
≤ ‖zp − xi‖ + ‖xi − xj‖ + ‖xj − zq ‖
= ri + di j + r j ,

we have Dpq − di j ≤ ri + r j . So |di j − Dpq | is always bounded by ri + r j .
With the bounds on |di j − Dpq | and di j + Dpq , equation B.1 can be further

bounded by

(
Ki j − Wi j

)2 ≤ σ−4ξ 2(2Dpq + ri + r j )2(ri + r j )2

= σ−4ξ 2 (
4D2

pq (ri + r j )2 + 4Dpq (ri + r j )3 + (ri + r j )4) .

Note that Dpq is the distance between cluster center zp and zq . Here we
assume that Dpq is bounded by R, the maximum pairwise distance be-
tween sample points. Then, by summing up all the pairwise distances in
the Frobenius norm, we have

n∑
i, j=1

(Ki j − Wi j )2 ≤ σ−4ξ 2
n∑

i, j=1

(
4R2(ri+r j )2+4R(ri + r j )3 + (ri + r j )4)

≤ σ−4ξ 2
n∑

i, j=1

(
4R2(r2

i +r2
j

)+4R
(
r3

i + r3
j

) + (
r4

i + r4
j

)
+ 8R2rir j+6r2

i r2
j +12Rrir j (ri+r j ) + 4rir j

(
r2

i +r2
j

))
.
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Recall that ri is the distance between sample xi and its cluster center zc(i). By
breaking the summation over index (i, j) into separate summations over i
and j , we arrive at the bound in proposition 2 using the kth-norm distortion
error defined there.

Appendix C: Sequential Sampling Procedure

This section gives the pseudocode of sequential sampling (see algorithm 4):

Algorithm 4: Sequential Sampling
1. Input: data set X = {xi }n

i=1, threshold r .
2. Initialization: randomly pick one xi as t1 and set C = {t1}, |C | = 1.
3. for i = 1 to n do
4. new center = true;
5. for tj ∈ C do
6. if ‖xi − tj‖ ≤ r then
7. Assign xi to Sj ;
8. new center= false;
9. break;
10. end if
11. end for
12. if new center == true then
13. |C | = |C | + 1;
14. t|C | = xi ;
15. C ← C ∪ {t|C |};
16. end if
17. end for

The number of clusters obtained by sequential sampling is controlled
by the threshold r . In case the user specifies the number of clusters m, a
binary search procedure can be performed that requires O(log m) repeats
of sequential sampling to choose a suitable r . A similar search procedure is
also applied in the greedy sampling approach (Ouimet & Bengio, 2005).

Appendix D: Proof of Proposition 3

We first introduce two lemmas that will be used in the proposition.

Lemma 1. A square matrix A and a nonsingular diagonal matrix D are given.
For the eigensystems

D−1 Aφ1 = λ1φ1,

D− 1
2 AD− 1

2 φ2 = λ2φ2,

the two eigenpairs are related as λ1 = λ2, D
1
2 φ1 = φ2.
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Proof. This can be easily verified by substitution.

Lemma 2. Denote the degree matrix of PWP by DP
Z . Then, DP

Z = DZ P = P DZ,
where DZ (see equation 5.6) is the degree matrix of W̃.

Proof. It is easy to see that W̃ = WP . So DZ is the degree matrix of WP , and
the kth diagonal entry of DZ is the sum of the kth row of WP . Similarly, DP

Z
is the degree matrix of PWP , and the kth diagonal entry of DP

Z is the sum
of the kth row of PWP . Note that the kth row of PWP is Pkk times that of
WP . Therefore, [DP

Z ]k,k = Pkk[DZ]kk , or, in matrix form, DP
Z = DZ P = P DZ,

since both DZ and P are diagonal.

Now we can prove proposition 3:

Proof. Lemma 1 shows that the eigensystem of D
− 1

2
Z (WP)D

− 1
2

Z can be ob-
tained from that of D−1

Z (WP); similarly, the eigensystem of (DP
Z )−

1
2 (PWP)

(DP
Z )−

1
2 can be obtained from (DP

Z )−1(PWP):

D−1
Z (WP)V1 = V1�1, (D.1)(

DP
Z

)−1(PWP)V2 = V2�2. (D.2)

Here (V1,�1) is the eigenpair of D−1
Z (WP), and (V2,�2) is the eigenpair

of(DP
Z )−1(PWP). According to lemma 2, D−1

Z = (DP
Z )−1 P . By plugging it

into equation D.2, we obtain

�1 = �2, and V1 = V2. (D.3)

Namely, the two matrices have the same eigensystem. Now use lemma 1
to map the eigenvectors of D−1

Z (WP) and (DP
Z )−1(PWP) back to those of

D
− 1

2
Z (WP)D

− 1
2

Z and (DP
Z )−

1
2 (PWP)(DP

Z )−
1
2 :

D
1
2
ZV1 = U1, (D.4)(

DP
Z

) 1
2 V2 = U2. (D.5)

By using equations D.3 to D.5, we have

U1 = D
1
2
Z(DP

Z )−
1
2 U2 = D

1
2
Z(P DZ)−

1
2 U2 = P− 1

2 U2.
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