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Abstract

Real-world timeseries have complex underlying temporal dynamics and the detec-
tion of anomalies is challenging. In this paper, we propose the Temporal Hierar-
chical One-Class (THOC) network, a temporal one-class classification model for
timeseries anomaly detection. It captures temporal dynamics in multiple scales
by using a dilated recurrent neural network with skip connections. Using multiple
hyperspheres obtained with a hierarchical clustering process, a one-class objective
called Multiscale Vector Data Description is defined. This allows the temporal
dynamics to be well captured by a set of multi-resolution temporal clusters. To
further facilitate representation learning, the hypersphere centers are encouraged to
be orthogonal to each other, and a self-supervision task in the temporal domain is
added. The whole model can be trained end-to-end. Extensive empirical studies
on various real-world timeseries demonstrate that the proposed THOC network
outperforms recent strong deep learning baselines on timeseries anomaly detection.

1 Introduction

In complex cyber-physical systems such as power plants, data centers and smart factories, there are
tons of sensors operating and generating substantial amounts of measurements continuously. To help
monitor the system’s real-time working conditions, it is critical to be able to find anomalies such
that potential risks and financial losses can be avoided. The problem of identifying the system’s
abnormal status in each time step of the timeseries data is called timeseries anomaly detection [31].
A comprehensive survey on the traditional techniques can be found in [6].

An effective timeseries anomaly detection method should be able to model the complex nonlinear
temporal dynamics of the underlying system’s normal behavior, while being robust and can be
generalized to unseen anomalies. However, the development of such a technique is very challenging.
First, real-world timeseries have highly nonlinear temporal dependencies and complex interactions
among variables. Moreover, anomalies are often rare. The finding and labeling of these anomalies
are very time-consuming and expensive in practice. Hence, timeseries anomaly detection is usually
formulated in the unsupervised learning setting [28], which is also the focus in this paper.

One-class classification [19] is a popular paradigm for anomaly detection. The idea is that by
assuming that most of the training data are normal, their characteristics are captured and learned by a
model. An outlier is then detected when the current observation cannot be well-fitted by the model.
Two well-known and closely related one-class classification models are the one-class support vector
machine (OC-SVM) [26], which uses a hyperplane to separate the normal data from anomalous data;
and the support vector data description (SVDD) [29], which uses a hypersphere to enclose the normal

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



data. While they have been successfully used in many real-world applications [3, 15, 32], they are
often limited to data-rich scenarios so that the normal patterns can be sufficiently captured.

The OC-SVM and SVDD rely on the kernel trick [27] to map input features to a high-dimensional
space for data separation. Motivated by the immense success of deep learning in various applications
such as computer vision, speech recognition and natural language processing [12, 25], recent efforts
try to integrate the powerful representation learning ability of deep networks into the traditional
one-class classifiers. For example, deep SVDD [22] replaces the kernel-induced feature space in
SVDD by the feature space learned in a deep network. DAGMM [34] is a density-based one-class
classifier that integrates a deep autoencoder with the Gaussian mixture model (GMM), such that the
normal data can be well-captured by the GMM in a low-dimensional latent space. As in other deep
networks, these models can all be conveniently trained via back-propagation in an end-to-end manner.

The above-mentioned traditional/deep one-class classifiers are designed for fixed-dimensional input
data. It is still an open issue on how to extend them for timeseries anomaly detection. A simple
approach is to run a sliding window on the timeseries data. A fixed-dimensional vector containing
the history information is then extracted and fed to the one-class classifier. However, this fails to
adequately capture the underlying temporal dependency. To alleviate this problem, a number of
models based on recurrent networks have been recently proposed for timeseries anomaly detection.
An early attempt is a LSTM-based encoder-decoder model [17], and an anomaly score is defined
based on the reconstruction error on the timeseries. However, it suffers from error accumulation
on decoding a long sequence. Other more powerful deep generative models, such as the recurrent
variational autoencoder [28], and variants of the generative adversarial network (GAN) (e.g., MAD-
GAN [13] and BeatGAN [33]) have also been proposed. However, training of the GAN is usually
difficult, and requires a careful balance between the discriminator and generator [10].

Inspired by deep SVDD, we propose in this paper the Temporal Hierarchical One-Class (THOC)
network. First, it uses the dilated recurrent neural network (RNN) [2] with skip connections to
efficiently extract multi-scale temporal features from the timeseries. Instead of using only the lowest-
resolution features obtained at the top layer of the dilated RNN, THOC fuses features from all
intermediate layers together by a differentiable hierarchical clustering mechanism. At each resolution,
normal behaviors are represented by multiple hyperspheres. This captures the complex characteristics
in real-world timeseries data, and is more powerful than the use of a single hypersphere in deep
SVDD. A multiscale support vector data description (MVDD), which is a one-class objective defined
based on the difference between the fused multiscale features and hypersphere centers, allows the
whole model to be trained end-to-end. Finally, a novelty score, which measures how the current
observation deviates from the normal behaviors represented by the hyperspheres, is used for anomaly
detection on an unseen observation. Experiments performed on a number of real-world timeseries
data sets show that the proposed model outperforms the recent state-of-the-arts.

2 Related Work

In this section, we briefly review the support vector data description (SVDD) [29], and the more
recent deep SVDD [22]. Given a set of N data samples {x1, . . . ,xN}, in which most of them are
normal but some are anomalous (outliers), SVDD tries to find a small hypersphere (with center c and
radius R) to enclose the normal data. This can be formulated as the following optimization problem:

minc,R,ξ R2 +
1

νN

N∑
i=1

ξi (1)

s.t. ‖φ(xi)− c‖2 ≤ R2 + ξi, ξi ≥ 0 ∀i = 1, . . . , N, (2)

where φ is a kernel-induced feature map.

Deep SVDD improves SVDD by replacing φ(·) with representations learned by a deep network.
Analogous to (1), its optimization problem becomes

min
R,W

R2 +
1

νN

N∑
i=1

max{0, ‖NN(xi;W)− c‖2 −R2}+λΩ(W),
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where NN(·;W) is a deep network with parameterW , and Ω(W) is a regularizer (such as the `2-
regularizer). Empirically, it is found that the following simplified objective yields better performance:

min
W

1

N

N∑
i=1

‖NN(xi;W)− c‖2+λΩ(W). (3)

The whole model is then learned end-to-end.

3 Temporal Hierarchical One-Class (THOC) Network

In timeseries anomaly detection, we are given a set of timeseries D = {X1, . . . ,XN}. Xs is of
length Ts, and its observation at time t is xt,s ∈ RD. The task is to determine if xt,s is anomalous,
based on the partial timeseries x1:t,s that have been observed so far. Following [17, 28, 13, 31], we
consider the unsupervised learning setting, and do not use any label information during training. This
is more practical as labeled anomalies are rare and often difficult to identify.

3.1 Architecture

Figure 1 shows the proposed architecture. On the left, temporal features at multiple time scales are
extracted from the timeseries (Section 3.1.1). On the right, the features are fused and processed by a
hierarchical network, which outputs an anomaly score at the top (Section 3.1.2).

TIMESERIES

Anomaly Score

Obtain temporal featues at time t

Lowest resolution

Highest resolution

cluster centers updated features scale-   features fused features

Figure 1: The proposed Temporal Hierarchical One-Class (THOC) network with L = 3 layers.

3.1.1 Multiscale Temporal Features

To extract multiscale temporal features from the timeseries, we use an L-layer dilated recurrent
neural network (RNN) [2] with multi-resolution recurrent skip connections. Other networks capable
of extracting multiscale features (such as the WaveNet [20]) can also be used. For simplicity of
notations, we drop the subscript s in this section. At time t, let the (partial) timeseries that has been
observed so far be x1:t−1. For a particular layer l, the hidden state f lt of the recurrent cell is:

f lt =

{
FRNN(xt, f

l
t−s(l)) if l = 1,

FRNN(f l−1t , f l
t−s(l)) otherwise,

(4)

where FRNN is any RNN cell (such as the vanilla RNN cell, LSTM or GRU), and f l
t−s(l) is the input

for the skip connection with skip length s(l). The use of skip connections helps model long-term
dependencies in the timeseries and alleviates the problem of vanishing gradient. The larger the s(l),
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the longer the dependency layer l captures. Similar to the WaveNet [20], an exponentially increasing
skip dilation is used here: s(l) = M0

∏l−1
i=1M (in Figure 1, M0 = 1 and M = 2). With multiple

layers, the dilated-RNN can extract an abundance of multiscale temporal features, with shorter-term
information learned at the lower layers and longer-term information at the upper layers.

3.1.2 Fusing the Multiscale Features

Instead of only using features from dilated RNN’s last layer, features from intermediate layers may
also contain useful information. In this section, we propose a differentiable hierarchical clustering
procedure to fuse information from all these different scales.

For a particular scale l ∈ {1, . . . , L}, there is a corresponding clustering layer withKl clusters whose
centers are {cl1, . . . , clKl}. At time t, the inputs to this layer are the outputs from the previous layer
{f̄ l−1t,1 , . . . , f̄

l−1
t,Kl−1} (which will be detailed in (8)). When l = 1, we use the temporal features f1t

from (4) as input (and thus K0 = 1). The hierarchical clustering procedure proceeds by alternating
the following two steps.

Step 1 (Assignment): Based on the similarities between f̄ l−1t,i and each center clj , we assign f̄ l−1t,i to
these centers with probabilities:

P lt,i→j = P (f̄ l−1t,i → clj) =
exp(score(f̄ l−1t,i , c

l
j)/τ)∑Kl

k=1 exp(score(f̄ l−1t,i , c
l
k)/τ)

, (5)

where τ ∈ (0,∞) is a temperature parameter, and score(·, ·) is a similarity score function. When
τ →∞, f̄ l−1t,i is assigned to all the centers with equal probabilities. When τ → 0, the soft assignment
becomes hard. As for the score function, we use the simple cosine similarity:

score(f̄ , c) = f>c/(‖f‖ · ‖c‖). (6)

Other similarity functions can also be used.

Step 2 (Update): After obtaining the assignment probabilities, all features {f̄ l−1t,1 , . . . , f̄
l−1
t,Kl−1} from

the lower level are fused and transformed in each cluster clj as

f̂ lt,j =

Kl−1∑
i=1

P lt,i→jReLU(Wl f̄ l−1t,i + bl), j = 1, . . . ,Kl, (7)

where both the weight Wl and bias bl are learned end-to-end with the other model parameters (as
will be discussed in Section 3.2). If l ≤ L − 1, f̂ lt,j is then concatenated with the corresponding
scale-(l+1) feature f l+1

t from the dilated RNN, and further transformed by a fully-connected layer
FMLP with output having the same dimension as f̂ lt,j . Note that f̂Lt,j’s are directly used as output at the
last layer.

f̄ lt,j =


f1t if l = 0

FMLP([f̂
l
t,j ; f

l+1
t ]) if 1 ≤ l ≤ L− 1

f̂Lt,j otherwise (i.e., l = L)
. (8)

3.2 Multiscale Support Vector Data Description (MVDD)

As in deep SVDD, we measure the difference between features {f̄Lt,j} and centers {cL1 , . . . , cLKL} at
the last layer. As we use the cosine similarity in (6), the cosine distance (i.e., 1− cosine similarity) is
used as d(f̄Lt,s, c

L
k ). LetW be all the learnable weights in the network. Our objective is:

LTHOC =
1

NKL

N∑
s=1

1

Ts

Ts∑
t=1

KL∑
j=1

RLt,j,sd(f̄Lt,j,s, c
L
j ) + λΩ(W), (9)

where Ω(W) is the `2-regularizer. Note that we have explicitly added back the subscript s for samples.
Moreover, while deep SVDD has only one hypersphere, the proposed model involves multiple layers
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each with multiple centers. Hence, RLt,j,s in (9) indicates the degree that current observation xt,s is
associated with center cLj .

The following shows that RLt,j,s can be computed easily in a recursive manner. For simplicity of
notations, we drop the subscript s here. At the first layer, the only input is f1t , and so R1

t,j = P 1
t,1→j

in (5). For layer l, Rlt,j is obtained by a softmax over all centers in the same layer:

Rlt,j =
exp(R̃lt,j)∑Kl

i=1 exp(R̃lt,i)
, where R̃lt,j =

{
P 1
t,i→j , if l = 1∑Kl−1

i=1 P lt,i→jR
l−1
t,i if 1 < l ≤ L

. (10)

R̃lt,j depends on both the degrees Rl−1t,i ’s that xt is associated to centers (cl−1i ’s) in the previous layer
(l − 1) and the assignment probabilities (P lt,i→j’s) that the f̄ l−1t,i output from cl−1i is assigned to clj .

To allow the centers clk’s in each layer to be as diverse as possible, we add the following loss

Lorth =
1

L

L∑
l=1

‖(Cl)>Cl − I‖2F , (11)

where Cl = [cl1 · · · clKl ], I is the identity matrix, and ‖ · ‖F is the Frobenius norm. This encourages
clk’s to be orthogonal to each other.

Moreover, self-supervision [4], which constructs related auxiliary tasks to aid in the learning of
informative features, has recently shown to be an effective unsupervised representation learning
method in many real-world applications [4, 11, 7]. For timeseries data, a natural self-supervised
learning task is multi-step-ahead prediction. Here, to encourage the learning of useful features at all
layers of the dilated-RNN, we use a linear model (with learnable weight Wl

pred in each layer l) to
predict xt,s from the corresponding layer-l hidden state f l

t−s(l),s at time t− s(l). This leads to the
following temporal self-supervision loss (TSS):

LTSS =
1

NL

N∑
s=1

L∑
l=1

 1

Ts − s(l)
Ts∑

t=s(l)+1

‖Wl
predf

l
t−s(l),s − xt,s‖2

 . (12)

Combining all three losses, we obtain the following multiscale support vector data description
(MVDD) objective:

Ltotal = LTHOC + λorthLorth + λTSSLTSS, (13)

where λorth and λTSS are tradeoff hyperparameters. All the parameters can be learned in an end-to-end
manner. The whole procedure is shown in Algorithm 1.

Algorithm 1 Temporal hierarchical one-class learning (THOC).

Input: timeseries Xs = (x1,s,x2,s, . . . ,xTs,s); number of centers {Kl}; skip lengths {s(l)}.
1: repeat
2: feed xt,s into the L-layer dilated-RNN and obtain {f lt} from each layer;
3: for layer l = 1, . . . , L do
4: obtain the lth clustering layer’s input {f̄ l−1t,i }i=1,...,Kl−1 by (8) where K0 =1;
5: compute probabilities {P lt,i→j}i=1,...,Kl−1,j=1,...,Kl from (5);
6: compute {Rlt,j}j=1,...,Kl for each cluster center at layer l from (10);
7: update and obtain output features {f̂ lt,j}j=1,...,Kl from (7);
8: end for
9: minimize MVDD objective in (13) by the Adam optimizer;

10: until convergence.

With the trained model, let the observation for an unseen timeseries X at time t be xt. As in (9),
we define its anomaly score as: AnomalyScore(xt) =

∑KL

j=1R
L
t,j · d(f̄Lt , c

L
j ). Given a predefined

threshold δ, we then label xt as abnormal if Anomaly Score(xt) > δ, and normal otherwise.
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4 Experiments

In this section, we demonstrate the performance of the proposed model on a number of commonly
used benchmark timeseries data sets.

4.1 Data Sets

The following timeseries data sets are used:

(i) 2D-gesture [9], which records the X-Y coordinate sequences of hand gestures in a video;

(ii) Power demand[9], which contains a year of power demand at a Dutch research facility;

(iii) KDD-Cup99 data from the DARPA’98 Intrusion Detection Evaluation Program [14]. It
contains around seven million network traffic connection records over a 7-week period. A
connection is a sequence of TCP packets. Each record is labeled as either normal or attack;

(iv) Secure Water Treatment (SWaT) data [18], which is collected from a water treatment testbed
over 11 days. 36 attacks were launched during the last 4 days of the collection process.
These attacks were launched with different intents and diverse lasting durations (from a few
minutes to an hour);1

(v) Mars Science Laboratory rover (MSL); and

(vi) Soil Moisture Active Passive satellite (SMAP) data: Both MSL and SMAP are public data sets
from NASA [8]. They contain telemetry anomaly data derived from the Incident Surprise
Anomaly (ISA) reports of spacecraft monitoring systems. Each data set has a training and a
testing set. Anomalies in the testing set are labeled, while the training set contains unlabeled
anomalies.

As will be seen in section 4.2, some of the baselines are designed for non-temporal data. Thus,
a sliding window is needed to convert the timeseries to fixed-length input. Specifically, the raw
timeseries data is partitioned into fixed-length sequences (80 for 2D-gesture and power-demand, and
100 for the others) by using a sliding window (with stride 100 for MSL and SMAP, and 1 for the
others). To allow fair comparison, we employ the same data preprocessing for all methods.

Table 1: Statistics of the data sets used.

dim length #training #validation #testing
2D-gesture 2 80 8,170 420 2,420

power-demand 1 80 18,145 4,786 10,000
KDD-Cup99 34 100 56,139 24,601 24,602

SWaT 51 100 47,420 22,396 22,396
MSL 55 100 40,721 17,396 73,629

SMAP 25 100 94,528 40,455 427,517

For 2D-gesture, power-demand, KDD-Cup99, and SWaT, the raw data set has only a training set and
a test set. To allow model selection and hyperparameter tuning, we use part of the provided test set
for validation. For MSL and SMAP, we follow the setting in [28], and hold out 30% of the training
data as validation set. A summary of the resultant data set statistics is shown in Table 1.

4.2 Baselines for Comparison

The proposed model is compared with the following groups of anomaly detection algorithms.2 The
first group contains anomaly detectors for general multivariate data. These include traditional one-
class classifiers: (i) local outlier factor (LOF) [1], (ii) one-class SVM (OC-SVM) with RBF kernel
[29], and (iii) isolation forest [16]), and the recent deep learning models of (i) deep SVDD [22], (ii)
AnoGAN [24], and (iii) deep autoencoding Gaussian mixture model (DAGMM) [34]. The second
group contains deep-network-based anomaly detectors for timeseries data. These include (i) the

1The KDD-Cup99 and SWaT data are downsized by a downsampling rate of 10:1.
2Source codes of the baselines are downloaded from the web.
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Table 2: Precision (prec), recall (rec) and F1 score results (as %) on various data sets. The number in
brackets after the F1 value is the rank of the method. The smaller the better.

2D-gesture power-demand KDD-Cup99 SWaT avg

rankprec rec F1 prec rec F1 prec rec F1 prec rec F1

LOF 27.82 87.21 42.18 (8) 15.29 28.13 19.81 (9) 95.38 99.55 97.42 (11) 76.97 98.36 86.36 (7) 8.75

OC-SVM 65.50 25.57 36.78 (14) 12.40 60.43 20.58 (8) 95.25 99.92 97.53 (10) 99.47 61.47 75.98 (13) 11.25

iso forest 28.54 68.04 40.22 (10) 7.85 89.77 14.44 (13) 96.85 99.38 98.10 (7) 99.00 74.47 85.00 (9) 9.75

deep SVDD 26.26 64.53 37.32 (13) 11.51 64.74 19.54 (10) 89.83 100.0 94.64 (14) 97.68 71.88 82.82 (11) 12

AnoGAN 57.85 46.50 51.55 (4) 20.28 44.41 28.85 (5) 93.11 99.93 96.40 (12) 99.01 77.01 86.64 (5) 6.5

DAGMM 25.66 80.47 38.91 (12) 34.37 41.72 37.69 (4) 96.12 99.70 97.86 (8) 90.60 80.72 85.38 (8) 8.0

EncDec-AD 24.88 100.0 39.85 (11) 13.98 54.20 22.22 (6) 89.74 99.50 94.37 (13) 93.69 63.31 75.56 (14) 11

LSTM-VAE 36.62 67.76 47.54 (6) 8.00 56.66 14.03 (14) 98.84 98.09 98.47 (3) 98.39 77.01 86.39 (6) 7.25

MadGAN 29.41 76.40 42.47 (7) 13.20 60.57 21.67 (7) 96.73 99.55 98.12 (6) 98.72 77.60 86.89 (2) 5.5

BeatGAN 55.11 45.33 49.74 (5) 8.04 76.58 14.56 (12) 97.54 98.94 98.23 (5) 88.37 76.41 81.95 (12) 8.5

OmniAnomaly 27.70 79.67 41.11 (9) 8.55 78.73 15.42 (11) 97.63 99.69 98.65 (2) 99.01 77.06 86.67 (4) 6.5

MSCRED 61.26 59.11 60.17 (2.5) 55.80 34.32 42.50 (3) 97.31 99.43 98.36 (4) 98.43 77.69 86.84 (3) 3.125

CVDD 56.05 64.95 60.17 (2.5) 49.65 38.36 43.30 (2) 96.37 98.75 97.54 (9) 97.33 73.21 83.56 (10) 5.875

THOC 54.78 75.00 63.31 (1) 61.50 36.34 45.68 (1) 98.20 99.54 98.86 (1) 98.08 79.94 88.09 (1) 1.0

encoder-decoder scheme for anomaly detection (EncDec-AD) [17], (ii) LSTM-VAE [21], (iii) MAD-
GAN [13], (iv) BeatGAN [33], (v) OmniAnomaly [28], and (vi) multi-scale convolutional recurrent
encoder-decoder (MSCRED) [31]. As additional baselines, we also compare with the context vector
data description (CVDD) [23], which is a recent deep network for text-specific anomaly detection
using distributed word representations. We adapt the CVDD for timeseries by using the dilated RNN
for feature representation. Hyperparameters of the proposed method and baselines are selected based
on the F1 value on validation set. Detailed experimental settings can be found in Appendix B.

For performance evaluation, we use the standard metrics of (i) precision; (ii) recall; and (iii) F1 score.
On the MSL and SMAP data sets, we follow [30, 28] and adjust the anomaly detection results as
follows: If a point in a contiguous anomalous segment is detected correctly, all anomalies in the
same segment are also considered to have been correctly detected. This adjustment is justified by the
observation that the time point causing the anomaly does not need to be exactly detected in practice.

4.3 Results on 2D-gesture, power-demand, KDD-Cup99, and SWaT

Table 2 shows the results on 2D-gesture, power-demand, KDD-Cup99, and SWaT. As can be seen,
all methods perform better on KDD-Cup99 and SWaT, which have larger training sets and relatively
simpler temporal dynamics. Moreover, not surprisingly, anomaly detectors for general multivariate
data do not perform well on timeseries, as they do not model the underlying temporal dependency
well even with the use of a sliding window. Timeseries anomaly detectors based on deep generative
models (EncDec-AD, LSTM-VAE, AnoGAN, MAD-GAN, BeatGAN and OmniAnomaly) do not
fare much better in general. As discussed in [28], EncDec-AD may have difficulty in encoding all the
information in the timeseries, while the other generative models often lack sufficient consideration
of the temporal dependence among stochastic variables. Moreover, GAN-based models are usually
harder to train since they can easily suffer from the mode collapse and convergence problems [10].

The recent MSCRED and CVDD achieve good overall performance. However, one limitation of
MSCRED is that it relies on the covariance among different dimensions in the multivariate timeseries.
This measures only the linear dependency among dimensions, and may be problematic when the
underlying interactions are complex and nonlinear. As for CVDD, all its hyperspheres are organized
in a single layer, and so cannot capture multi-scale temporal characteristics from the data.

The proposed THOC model outperforms all the baselines on all data sets. The hierarchical structure
with multiple hyperspheres in each layer efficiently fuses the multiscale temporal information,
allowing the capture of complex temporal dynamics in the timeseries data.
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4.4 F1 Results on MSL and SMAP

Following [28], we only report the F1-values on these two data sets. Figure 2 shows the results
(results of DAGMM, EncDec-AD, LSTM-VAE, and OmniAnomaly are provided by the authors of
[28]). Again, the proposed THOC model achieves the best performance.
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Figure 2: F1 results on the MSL and SMAP data sets.

4.5 Ablation Study

In this section, we perform ablation studies on the following aspects of the proposed THOC: (i) How
to represent the timeseries? (ii) Use a hierarchical structure as in THOC or a flat structure as in deep
SVDD? (iii) Effectiveness of the two loss components Lorth and LTSS in (13).

4.5.1 Timeseries Representation and Hierarchical Structure

Recall that we use a hierarchical timeseries representation, and multiple hyperspheres are used
to capture the temporal dynamics at each resolution. In this experiment, we demonstrate their
effectiveness on the 2D-gesture data set.

First, instead of exploiting the multiscale structure in timeseries, we consider the alternative of using
the deep SVDD, a flat one-class classifier. We use as input the features (denoted “RNN-top") from
the top layer of dilated RNN. To allow a fair comparison, the self-supervision loss (LTSS in (12)) is
also used in the joint end-to-end training of the RNN representation and deep SVDD. As deep SVDD
uses only one hypersphere to capture the samples’ normal behavior, Lorth in (11) is no longer needed.
We also experiment with a recent general-purpose unsupervised timeseries representation proposed
in [5]. Following its paper title, this is denoted USRL. The USRL representation is obtained from an
encoder with causal dilated convolutions (in this experiment, we use a three-layer casual convolution
network). This is trained with a triplet loss that encourages the representation of the whole timeseries
to be close to those of its subseries. Note that while the proposed model involves a LTSS component
in the training objective, USRL does not utilize self-supervised learning.

As the proposed THOC network uses multiple hyperspheres for anomaly detection, we also feed
the single-resolution timeseries representations (RNN-top and USRL) to the proposed MVDD with
multiple hyperspheres. As in THOC, Lorth is used to encourage diversity of the hypersphere centers.

To further investigate the effectiveness of having multiple hyperspheres in each layer in THOC, we
additionally experiment with a THOC variant which uses only one hypersphere in each layer (i.e.,
Kl = 1 for l = 1, 2, . . . , L). As each layer has only one hypersphere, the Lorth component in the
objective becomes unnecessary.

Results are shown in Table 3. As can be seen, the proposed THOC, which uses all levels of the
dilated RNN’s multiscale features, has much better performance than the single-resolution timeseries
representations of RNN-top and USRL. This demonstrates that flat models (even with multiple
hyperspheres) have limited capabilities in modeling the timeseries.
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Table 3: Comparison of variants using different flat and hierarchical timeseries representations.

Lorth LTSS prec recall F1

flat one hypersphere RNN-top × X 31.67 75.70 44.66

USRL × × 59.49 27.10 37.24

multiple hyperspheres RNN-top X X 41.32 68.93 51.66

USRL X × 50.80 45.40 47.95

hierarchical one hypersphere THOC-variant × X 53.27 60.98 56.86

multiple hyperspheres THOC X X 54.78 75.00 63.31

Though USRL demonstrates encouraging performance on timeseries classification [5], it does not
perform well on timeseries anomaly detection. Recall that in training the USRL, the triplet loss
encourages the representation of the whole timeseries to be close to those of its subseries. This
implicitly assumes that the whole timeseries contains no anomalous subseries, and is thus not
suitable for anomaly detection. Besides, though the dilated convolution network used in USRL also
extracts multi-scale features (similar to the dilated RNN in the proposed THOC), the final USRL
representation is extracted only from its top layer. This suffers from a loss of fine-grained temporal
information as the RNN-top representation.

Comparing the use of one versus multiple hyperspheres, it can be seen that using multiple hyper-
spheres is more advantageous in both the flat and hierarchical models. This verifies that the complex
temporal dynamics of real-world timeseries cannot be sufficiently captured by one single hypersphere.
By combining temporal representations from multiple resolutions and using hierarchical fusion with
multiple hyperspheres, THOC achieves the best F1-value of 63.31%.

4.5.2 Effectiveness of Lorth and LTSS

In this experiment, we consider the effectiveness of Lorth and LTSS by dropping one or both
components from the objective in (13). Results are shown in Table 4. As can be seen, both Lorth and
the LTSS are indeed important. Without the orthogonal loss, the centers may be very similar or even
duplicate; without the self-supervised loss (which is based on timeseries prediction), the model may
fail to capture temporal dependencies, which are essential for a proper representation of timeseries
data.

Table 4: Effectiveness of Lorth and LTSS.

Lorth LTSS prec recall F1

× × 52.22 24.77 33.60

X × 34.00 67.29 45.17

× X 42.08 57.71 48.67

X X 54.78 75.00 63.31

5 Conclusion

In this paper, we introduced an improved deep model for timeseries anomaly detection. The proposed
Temporal Hierarchical One-Class (THOC) network is based on a set of hierarchical structured
hyperspheres. The solution uses a probabilistic relevance on cluster centers to help the model access
the whole temporal history. A center orthogonality loss and a temporal self-supervision loss are also
introduced for improved feature representation. We experimentally demonstrate the effectiveness
of each component in our model. Comparisons with state-of-the-art baselines on a number of real-
world timeseries benchmarks demonstrate that the proposed model consistently outperforms existing
timeseries anomaly detection methods.
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Broader Impact

Timeseries anomaly detection is important for complex cyber-physical systems such as power plants,
data centers, and smart factories. By monitoring the system’s real-time working conditions, timeseries
anomaly detection techniques can automatically detect the abnormal status of the system such that
potential risks and financial loss can be avoided. This is very beneficial to the development of social
economy and urban security.
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