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Abstract

Optical lenses, particularly those with long focal lengths, suffer from the problem of limited depth of field. Con-

sequently, it is often difficult to obtain good focus for all objects in the picture. One possible solution is to take several

pictures with different focus points, and then combine them together to form a single image. This paper describes an

application of artificial neural networks to this pixel level multifocus image fusion problem based on the use of image

blocks. Experimental results show that the proposed method outperforms the discrete wavelet transform based ap-

proach, particularly when there is a movement in the objects or misregistration of the source images. � 2002 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Optical lenses, particularly those with long focal
lengths, suffer from the problem of limited depth
of field. Consequently, the image obtained will not
be in focus everywhere, i.e., if one object in the
scene is in focus, another one will be out of focus.
A possible way to alleviate this problem is by im-
age fusion (Zhang and Blum, 1999), in which
several pictures with different focus points are
combined to form a single image. This fused image
will then hopefully contain all relevant objects in
focus (Li et al., 1995; Seales and Dutta, 1996).

The simplest image fusion method just takes the
pixel-by-pixel average of the source images. This,
however, often leads to undesirable side effects
such as reduced contrast. In recent years, various
alternatives based on multiscale transforms have
been proposed. The basic idea is to perform a
multiresolution decomposition on each source
image, then integrate all these decompositions to
produce a composite representation. The fused
image is finally reconstructed by performing an
inverse multiresolution transform. Examples of
this approach include the Laplacian pyramid (Burt
and Andelson, 1983), the gradient pyramid (Burt
and Kolczynski, 1993), the ratio-of-low-pass pyra-
mid (Toet et al., 1989) and the morphological
pyramid (Matsopoulos et al., 1994). More re-
cently, the discrete wavelet transform (DWT)
(Chipman et al., 1995; Koren et al., 1995; Li et al.,
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1995; Yocky, 1995, 1999) has also been used. In
general, DWT is superior to the previous pyramid-
based methods (Li et al., 1995). First, the wavelet
representation provides directional information
while pyramids do not. Second, the wavelet basis
functions can be chosen to be orthogonal and so,
unlike the pyramid-based methods, DWT does not
carry redundant information across different res-
olutions. Upon fusion of the wavelet coefficients,
the maximum selection rule is typically used, as
large absolute wavelet coefficients often corre-
spond to salient features in the images. Fig. 1
shows a schematic diagram for the image fusion
process based on DWT.

While these methods often perform satisfac-
torily, their multiresolution decompositions and
consequently the fusion results are shift-variant
because of an underlying down-sampling process.
When there is a slight camera/object movement or
when there is misregistration of the source images,
their performance will thus quickly deteriorate.
One possible remedy is to use the shift-invariant
discrete wavelet frame transform (Unser, 1995).
However, the implementation is more complicated
and the algorithm is also more demanding in terms
of both memory and time.

In this paper, we propose a pixel level multi-
focus image fusion method based on the use of
image blocks and artificial neural networks. The
implementation is computationally simple and can
be realized in real-time. Experimental results show
that it outperforms the DWT-based method. The

rest of this paper is organized as follows. The
proposed fusion scheme will be described in Sec-
tion 2. Experiments will be presented in Section 3,
and the last section gives some concluding re-
marks.

2. Neural network based multifocus image fusion

Fig. 2 shows a schematic diagram of the pro-
posed multifocus image fusion method. Here, we
consider the processing of just two source images,
though the algorithm can be extended straight-
forwardly to handle more than two. Moreover, the
source images are assumed to have been registered.

The basic fusion algorithm will be described in
Section 2.1. The input features to the neural net-
works will be discussed in Section 2.2. Section 2.3
contains a brief introduction to the two neural
network models that will be used in the experi-
ments.

2.1. The basic algorithm

The algorithm first decomposes the source im-
ages into blocks. Given two of these blocks (one
from each source image), a neural network is
trained to determine which one is clearer. Fusion
then proceeds by selecting the clearer block in
constructing the final image. As mentioned in
Section 1, the fusion result of DWT is shift-
dependent. The use of image blocks, on the other

Fig. 1. Image fusion based on the DWT.
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hand, avoids this problem. Even if there is object
movement or misregistration in the source images,
each object will still be in better focus in one of the
source images. Thus, in the fused image, all the
blocks covering a particular object will come from
the same source image and hence its clarity will not
be affected by any misregistration problem.

In detail, the algorithm consists of the following
steps:

1. Decompose the two source images A and B into
M � N blocks. Denote the ith image block pair
by Ai and Bi, respectively.

2. From each image block, extract three fea-
tures that reflect its clarity (details in Section
2.2). Denote the feature vectors for Ai and
Bi by ðSFAi ; VIAi ;EGAiÞ and ðSFBi ; VIBi ;EGBiÞ, re-
spectively.

3. Train a neural network to determine whether Ai

or Bi is clearer. The difference vector ðSFAi�
SFBi ; VIAi � VIBi ;EGAi � EGBiÞ is used as input,
and the output is labeled according to

targeti ¼
1 if Ai is clearer than Bi;
0 otherwise:

�
4. Perform testing of the trained neural network

on all image block pairs obtained in Step 1.
The ith block, Zi, of the fused image is then con-
structed as

Zi ¼
Ai if outi > 0:5;
Bi otherwise;

�
ð1Þ

where outi is the neural network output using
the ith image block pair as input.

5. Verify the fusion result obtained in Step 4. Spe-
cifically, if the neural network decides that a
particular block is to come from A but with
the majority of its surrounding blocks from
B, this block will be switched to come from
B. In the implementation, a majority filter with
a 3� 3 window is used.

2.2. Feature extraction

In principle, in Step 3 of the algorithm above,
the two M � N blocks Ai and Bi can be fed directly
into a neural network for discrimination. But, in
practice, using such a long feature vector (of size

Fig. 3. Basic architecture of a PNN/RBFN.

Fig. 2. Schematic diagram of the proposed fusion method.
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2MN ) can lead to slow convergence and poor
generalization performance (curse of dimensiona-
lity (Bellman, 1961)). Feature extraction is thus
usually imperative.

In this paper, we extract three features from
each decomposed image block to represent its
clarity. These are the spatial frequency (Section
2.2.1), visibility (Section 2.2.2) and an edge feature
(Section 2.2.3). The effectiveness of these three
features in representing image clarity will be ex-
perimentally demonstrated in Section 3.1.

2.2.1. Spatial frequency (SF)
Spatial frequency is used to measure the overall

activity level of an image (Eskicioglu and Fisher,
1995). For an M � N image F, with the gray value

at pixel position ðm; nÞ denoted by F ðm; nÞ, its
spatial frequency is defined as

SF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RF 2 þ CF 2

p
;

where RF and CF are the row frequency

RF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XM
m¼1

XN
n¼2

ðF ðm; nÞ � F ðm; n� 1ÞÞ2
vuut ;

and column frequency

CF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XN
n¼1

XM
m¼2

ðF ðm; nÞ � F ðm� 1; nÞÞ2
vuut ;

respectively.

Fig. 4. Original and blurred versions of an image block extracted from ‘‘Lena’’. (a) Original; (b) radius ¼ 0.5; (c) radius ¼ 0.8;

(d) radius ¼ 1.0; (e) radius ¼ 1.5.

Fig. 5. Original and blurred versions of an image block extracted from ‘‘Peppers’’. (a) Original; (b) radius ¼ 0.5; (c) radius ¼ 0.8;

(d) radius ¼ 1.0; (e) radius ¼ 1.5.

Table 2

Feature values for the image blocks in Fig. 5

Fig. 5(a) Fig. 5(b) Fig. 5(c) Fig. 5(d) Fig. 5(e)

SF 28.67 17.73 12.98 10.04 7.52

VI 0.0067 0.0063 0.0060 0.0057 0.0054

EG 329 310 274 260 216

Table 1

Feature values for the image blocks in Fig. 4

Fig. 4(a) Fig. 4(b) Fig. 4(c) Fig. 4(d) Fig. 4(e)

SF 16.10 12.09 9.67 8.04 6.49

VI 0.0069 0.0066 0.0062 0.0059 0.0055

EG 269 243 225 183 181
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Fig. 6. The ‘‘Balloon’’ reference image, blurred images and fusion results. The training set is selected from regions marked by the

rectangles in (b) and (c). (a) Reference image (all in focus); (b) focus on the left; (c) focus on the right; (d) fused image using DWT;

(e) fused image using PNN and (f) fused image using RBFN.
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Fig. 7. Differences between the fused images in Fig. 6(d), (e) and source image Fig. 6(a). (a) Difference between the fused image using

DWT (Fig. 6(d)) and source image Fig. 6(a). (b) Difference between the fused image using PNN (Fig. 6(e)) and source image Fig. 6(a).

Fig. 8. The ‘‘Lab’’ source images and fusion results. The training set is selected from regions marked by the rectangles in (a) and (b).

(a) Focus on the clock; (b) focus on the student; (c) fused image using DWT (db40, level ¼ 5) and (d) fused image using PNN.
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2.2.2. Visibility (VI)
This feature is inspired from the human visual

system, and is defined as (Huang et al., 1999)

VI ¼
XM
m¼1

XN
n¼1

jF ðm; nÞ � lj
laþ1

; ð2Þ

where l is the mean intensity value of the image,
and a is a visual constant ranging from 0.6 to 0.7.

2.2.3. Edge feature (EG)
This feature is based on the number of edges

extracted from the image. Intuitively, for images of
comparable complexity, a clearer image will have

more edges. Here, we first apply the Canny edge
detector (Canny, 1986) to each decomposed block.
The total number of one’s in the resultant binary
image block is then taken as the edge feature.

2.3. Artificial neural networks

Many neural network models have been pro-
posed for tackling a diverse range of problems
(Bishop, 1995; Hertz et al., 1991), including pat-
tern classification, function approximation and re-
gression. The fusion problem we examine here can
be considered as a classification problem. In this

Fig. 9. Differences between the fused images in Fig. 8(c), (d) and source images in Fig. 8(a), (b). (a) Difference between the fused image

using DWT (Fig. 8(c)) and source image Fig. 8(a). (b) Difference between the fused image using DWT (Fig. 8(c)) and source image Fig.

8(b). (c) Difference between the fused image using PNN (Fig. 8(d)) and source image Fig. 8(a). (d) Difference between the fused image

using PNN (Fig. 8(d)) and source image Fig. 8(b).
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paper, we consider two closely related neural net-
work models, namely, the probabilistic neural
network (PNN) (Specht, 1990) and radial basis
function network (RBFN) (Moody and Darken,
1998).

The idea underlying both networks is to overlap
localized receptive fields of the hidden units to
create arbitrarily complex nonlinearities. The typi-
cal architecture consists of one hidden layer and
one output layer (Fig. 3). Each hidden unit cor-
responds to a basis or kernel function of the input
vector x, and is usually of the Gaussian form:

hðxÞ ¼ exp

 
� kx� ck2

r2

!
: ð3Þ

Here, c is the position of the hidden unit and r is a
user-defined width that controls its spread. For
PNNs, a hidden unit is positioned at every training
data point, whereas for RBFNs, the number of
hidden units is usually smaller. The network out-
put is simply a linear summation of these basis
functions.

3. Experiments

3.1. Demonstration of the effectiveness of the
features

In this section, we first experimentally demon-
strate the effectiveness of the three features pro-

Fig. 10. The ‘‘Disk’’ source images and fusion results. The training set is selected from regions marked by the rectangles in (a) and (b).

(a) Focus on the left; (b) focus on the right; (c) fused image using DWT (db8, level ¼ 5) and (d) fused image using PNN.
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posed in Section 2.2 (namely SF ; VI and EG) in
representing the clarity level of an image. An im-
age block of size 64� 64 (Fig. 4(a)) is ex-
tracted from the ‘‘Lena’’ image. Fig. 4(b)–(e)
show the degraded versions by blurring with a
Gaussian of radius 0.5, 0.8, 1.0 and 1.5, re-
spectively. As can be seen from Table 1, when
the image becomes more blurred, all the three
feature values diminish accordingly. Another
experiment on an image block extracted from
the ‘‘Peppers’’ image produces similar results
(Fig. 5 and Table 2). These suggest that all
the three features can be used to reflect image
clarity.

3.2. Quantitative evaluation of the fusion method

3.2.1. Experimental setup
Experiment is performed on an 256-level image

of size 480� 640 (Fig. 6(a)), with good focus ev-
erywhere. We artificially produce a pair of out-
of-focus images, by blurring the left part to obtain
the image in Fig. 6(b), and then blurring the right
part to produce the image in Fig. 6(c). Blurring is
accomplished by using a Gaussian of radius 2.

Image blocks of size 32� 32 are used. Two
pairs of regions, each containing 30 image block
pairs, are selected from the two out-of-focus im-
ages. In 15 of these block pairs, the first image is

Fig. 11. Differences between the fused images in Fig. 10(c), (d) and source images in Fig. 10(a), (b). (a) Difference between the fused

image using DWT (Fig. 10(c)) and source image Fig. 10(a). (b) Difference between the fused image using DWT (Fig. 10(c)) and source

image Fig. 10(b). (c) Difference between the fused image using PNN (Fig. 10(d)) and source image Fig. 10(a). (d) Difference between the

fused image using PNN (Fig. 10(d)) and source image Fig. 10(b).
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clearer than the second image, and the reverse is
true for the remaining 15 pairs. A training set with
a total of 60 image block pairs is thus formed. The
three features, SF ; V I and EG, are extracted (with
a ¼ 0:6 in (2)) and normalized to the range [0, 1]
before feeding into the PNN and RBFN. Both
neural networks contain three input units and one
output unit. For the PNN, we have 60 hidden
units 1 and r ¼ 0:09 in (3), whereas for the RBFN,
we use 16 hidden units and r ¼ 0:25.

For comparison purposes, we also perform fu-
sion using the DWT-based method mentioned in
Section 1. The wavelet basis ‘‘coif5’’, together with
a decomposition level of 5, is used. Similar to (Li

et al., 1995), we employ a region-based activity
measurement for the active level of the decom-
posed wavelet coefficients, a maximum selection
rule for coefficient combination, together with a
window-based consistency verification scheme.

Two evaluative criteria are used. They are the
root mean squared error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XM
m¼1

XN
n¼1

ðRði; jÞ � Zði; jÞÞ2
vuut ;

between the reference image R and the fused image
Z, and also the corresponding mutual information
(MI)

MI ¼
XL
i1¼1

XL
i2¼2

hR;Zði1; i2Þ log2
hR;Zði1; i2Þ
hRði1ÞhZði2Þ

:

Fig. 12. The ‘‘Pepsi’’ source images and fusion results. The training set is selected from regions marked by the rectangles in (a) and (b).

(a) Focus on the Pepsi can; (b) focus on the testing card; (c) fused image using DWT (coif5, level ¼ 5) and (d) fused image using PNN.

1 Recall that the number of hidden units in a PNN is equal

to the number of training patterns.
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Here, hR;Z is the normalized joint gray level histo-
gram of images R and Z, hR; hZ are the normalized
marginal histograms of the two images, and L is
the number of gray levels. Notice that MI mea-
sures the reduction in uncertainty about the ref-
erence image due to the knowledge of the fused
image, and so a larger MI is preferred.

3.2.2. Results
The resultant fused images are shown in Fig.

6(d)–(f). A clearer comparison can be made by
examining the differences between the fused and
source images (Fig. 7). Recall that the focus in Fig.
6(b) is on the left while that in Fig. 6(c) is on the
right. It can be seen from Fig. 7(b) that the fused

image produced by PNN is basically a combina-
tion of the good-focus parts in the source images.
Result for RBFN is very similar and so will not be
reported here.

Quantitative comparison of their performance
is shown in Table 3. Both neural networks again
show significant improvement over the DWT-
based method.

3.3. Subjective evaluation of the fusion method

3.3.1. Experimental setup
The second experiment is performed on the

three sets of source images in Figs. 8, 10 and
12. Their sizes are 480� 640, 480� 640 and

Fig. 13. Differences between the fused images in Fig. 12(c), (d) and source images in Fig. 12(a), (b). (a) Difference between the fused

image using DWT (Fig. 12(c)) and source image Fig. 12(a). (b) Difference between the fused image using DWT (Fig. 12(c)) and source

image Fig. 12(b). (c) Difference between the fused image using PNN (Fig. 12(d)) and source image Fig. 12(a). (d) Difference between the

fused image using PNN (Fig. 12(d)) and source image Fig. 12(b).
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512� 512, respectively. Here, each image contains
multiple objects at different distances from the
camera. Thus, one or more objects naturally be-
come(s) out-of-focus when the image is taken. For
example, the focus in Fig. 8(a) is on the clock,
while that in Fig. 8(b) is on the student. The true
gray value of each pixel is, however, not available
and so only a subjective visual comparison is in-
tended here. As in Section 3.2.1, we use an image
block size of 32� 32 and a training set size of 60.
The PNN and RBFN also use the same network
topologies as in Section 3.2.1.

3.3.2. Results
Fusion results on using DWT and PNN are

shown in Fig. 8(c), (d), Fig. 10(c), (d) and Fig.
12(c), (d). The RBFN produces very similar results
as the PNN and so will not be reported here.
Again, a clearer comparison of their performance
can be made by examining the differences between
the fused images and each source image (Figs. 9,
11 and 13). Take the ‘‘Lab’’ images as an example.
Recall that the focus in Fig. 8(a) is on the clock
while that in Fig. 8(b) is on the student. It can be
seen from Fig. 9(c) and (d) that the fused image
produced by PNN is basically a combination of
the good-focus clock and the good-focus student.
In comparison, the result by DWT is much infe-
rior. In particular, notice that there is a slight
movement of the student’s head in Fig. 8, and this
causes a lot of differences between the fused image
and the good-focus student (Fig. 9(b)). Similar
observations can be made for the other two sets of
images.

4. Conclusion

In this paper, we combine the idea of image
blocks and artificial neural networks for pixel level

multifocus image fusion. Features indicating the
clarity of an image block are extracted and fed into
the neural network, which then learns to determine
which source image is clearer at that particular
physical location. Two neural network models,
namely the PNN and RBFN, have been used.
Experimental results show that this method out-
performs the DWT-based approach, particularly
when there is object movement or registration
problems in the source images.

An issue that will be investigated in the future is
on adaptive methods for choosing the image block
size. In general, if the block size is too large, a
particular block may contain two or more objects
at different distances from the camera, and con-
sequently will lead to a less clear image. On the
other hand, using a very small block size may lead
to the saw-tooth effect. Nevertheless, preliminary
experiments suggest that the fusion result is not
quite sensitive to this parameter, provided that its
value is not too extreme.
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