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Kernel Eigenvoice Speaker Adaptation
Brian Mak, Member, IEEE, James T. Kwok, and Simon Ho

Abstract—Eigenvoice-based methods have been shown to be ef-
fective for fast speaker adaptation when only a small amount of
adaptation data, say, less than 10 s, is available. At the heart of
the method is principal component analysis (PCA) employed to
find the most important eigenvoices. In this paper, we postulate
that nonlinear PCA using kernel methods may be even more effec-
tive. The eigenvoices thus derived will be called kernel eigenvoices
(KEV), and we will call our new adaptation method kernel eigen-
voice speaker adaptation. However, unlike the standard eigenvoice
(EV) method, an adapted speaker model found by the kernel eigen-
voice method resides in the high-dimensional kernel-induced fea-
ture space, which, in general, cannot be mapped back to an exact
preimage in the input speaker supervector space. Consequently, it
is not clear how to obtain the constituent Gaussians of the adapted
model that are needed for the computation of state observation
likelihoods during the estimation of eigenvoice weights and subse-
quent decoding. Our solution is the use of composite kernels in such
a way that state observation likelihoods can be computed using
only kernel functions without the need of a speaker-adapted model
in the input supervector space. In this paper, we investigate two
different composite kernels for KEV adaptation: direct sum kernel
and tensor product kernel. In an evaluation on the TIDIGITS task,
it is found that KEV speaker adaptation using both forms of com-
posite Gaussian kernels are equally effective, and they outperform
a speaker-independent model and adapted models found by EV,
MAP, or MLLR adaptation using 2.1 and 4.1 s of speech. For ex-
ample, with 2.1 s of adaptation data, KEV adaptation outperforms
the speaker-independent model by 27.5%, whereas EV, MAP, or
MLLR adaptation are not effective at all.

Index Terms—Composite kernels, eigenvoice speaker adap-
tation, generalized EM algorithm, kernel eigenvoice speaker
adaptation, kernel principal component analysis.

I. INTRODUCTION

I N RECENT years, there has been a lot of interest in the
study of kernel methods [1]–[3]. The basic idea is to map

data in the input space to a feature space1 via some non-
linear map , and then apply a linear method there. It is now
well known that the computational procedure depends only on
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1In the kernel methods terminology, the original space where raw data reside
is called the input space and the space to which raw data are mapped is called
the feature space. In order not to confuse this with the acoustic feature space
in speech, the latter will always be called the “acoustic feature space”, while
the feature space in kernel methods will be simply called the “feature space”
but may be sometimes called the “kernel-induced feature space” if additional
clarity is necessary.

the inner products2 in the feature space (where
, ), which can be obtained efficiently from a suit-

able kernel function . Thus, the use of kernels provides
elegant nonlinear generalizations of many existing linear algo-
rithms. A well-known example in supervised learning is the
support vector machines (SVMs). In unsupervised learning, the
kernel idea has also led to methods such as kernel-based clus-
tering algorithms [4], kernel independent component analysis
[5], and kernel principal component analysis [6]. In this paper,
we would like to apply kernel methods to improve the perfor-
mance of eigenvoice-based methods for fast speaker adaptation.

It is commonly known that a well-trained speaker-dependent
(SD) model generally achieves a significantly lower word error
rate than a speaker-independent (SI) model on recognizing
speech from the specific speaker. For many applications such
as phone services, it is hard to acquire a large amount of data
from a user to train his/her SD model. A common technique
to approach the SD performance is to adapt the SI model with
a relatively small amount of SD speech using speaker adap-
tation methods. Adaptation methods like the Bayesian-based
maximum a posteriori (MAP) adaptation [7] and the transfor-
mation-based maximum likelihood linear regression (MLLR)
adaptation [8] have been popular for many years. Neverthe-
less, when the amount of available adaptation speech is really
small—for example, only a few seconds, the more recent
eigenvoice-based adaptation method is found particularly more
effective. The (original) eigenvoice (EV) adaptation method [9]
was motivated by the eigenface approach in face recognition
[10]. The idea is to derive from a diverse set of speakers a
small set of basis vectors called eigenvoices that are believed
to represent different voice characteristics (e.g., gender, age,
accent, etc.), and any training/new speaker is then a point in the
eigenspace. In practice, a few to a few tens of eigenvoices are
found adequate for fast speaker adaptation. Since the number
of estimation parameters is greatly reduced, fast adaptation
using EV is possible with a few seconds of speech. The simple
algorithm was later extended to work for large-vocabulary
continuous speech recognition [11], [12], eigenspace-based
MLLR [13], [14], and to approximate the model prior in MAP
adaptation [15]–[17].

At the heart of eigenvoice-based adaptation methods is the
principal component analysis (PCA) employed to find the eigen-
voices. Then a new speaker is represented as a linear combina-
tion of a few most important eigenvoices, and the eigenvoice
weights are usually estimated by maximizing the likelihood of
the adaptation data. Traditionally, these eigenvoices are found
by linear PCA. In this paper, we would like to exploit pos-
sible nonlinearity in the speaker supervector space, and investi-
gate the use of nonlinear PCA to find the eigenvoices by kernel

2In this paper, vector or matrix transpose is denoted by the superscript .
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methods [6]. In effect, the nonlinear PCA problem is converted
to a linear PCA problem in the high-dimensional kernel-induced
feature space using the kernel trick. The eigenvoices thus de-
rived will be called kernel eigenvoices (KEV), and we will call
our new method kernel eigenvoice speaker adaptation. In prin-
ciple, since the KEV adaptation method is a nonlinear gener-
alization of the EV adaptation method, the former should be
more powerful than the latter, and KEV adaptation is expected
to give better performance. In fact, KEV adaptation will be re-
duced to the traditional EV adaptation method if linear kernel is
employed.

One of the major challenges in KEV adaptation is to compute
the state observation likelihoods of the speaker-adapted (SA)
HMMs during the estimation of the kernel eigenvoice weights
and subsequent decoding of the test speech. The reason is that
unlike the conventional EV approach, the SA model found by
KEV adaptation does not reside in the input speaker supervector
space but in the kernel-induced feature space. Thus, in general,
one cannot break up the SA model found by KEV adaptation
into its constituent HMM Gaussians as in the EV approach.
Our solution is the use of composite kernels in such a way that
state observation likelihoods can be computed using only kernel
functions without the need of an SA model in the input super-
vector space. Two different composite kernels, namely, direct
sum kernel and tensor product kernel, are investigated. In addi-
tion, we also compare the performance of our novel KEV adap-
tation with that of EV, MAP, and MLLR adaptation methods.

Kernel eigenvoice will have to deal with several parameter
spaces. To avoid confusion, we denote the several spaces as
follows.

-dimensional observation space;
-dimensional input speaker supervector space;
-dimensional kernel-induced feature space.

In general, . We will further put a “ ” on any
quantity that has been centered in its respective space.

The rest of this paper is organized as follows. We first re-
view the eigenvoice speaker adaptation method in Section II,
and kernel principal component analysis in Section III. Then
we will describe our new KEV adaptation method in details in
Section IV, and its robust extension in Section V. In Section VI,
we present the results of experimental evaluation of the KEV
adaptation method using 2.1 s, 4.1 s, and 9.6 s of adaptation
speech, and compare it with EV, MAP, and MLLR adaptation
methods. Finally, Section VII gives concluding remarks and
some suggestions for future work.

II. EIGENVOICE

In the standard eigenvoice speaker adaptation approach [9],
speech training data are collected from many speakers with di-
verse characteristics. A set of speaker-dependent (SD) acoustic
hidden Markov models (HMMs) are trained from each speaker
where each HMM state is modeled as a mixture of Gaussian dis-
tributions. A speaker’s voice is then represented by a speaker
supervector that is composed by concatenating the mean vec-
tors of all his/her HMM Gaussian distributions. For simplicity,
we assume that each HMM state consists of one Gaussian only;
the extension to mixtures of Gaussians is straightforward. Thus,

the th speaker supervector consists of constituents, one from
each Gaussian, and will be denoted by

, where . The similarity between any two speaker
supervectors and is measured by their inner product

(1)

PCA is then performed on a set of training speaker super-
vectors and the resulting eigenvectors are called eigenvoices.
To adapt to a new speaker, his/her supervector is treated as
a linear combination of the first eigenvoices
having the largest eigenvalues. That is, the centered supervector
of the new speaker is given by

(2)

where is the eigenvoice weight vector. Usu-
ally, only a few eigenvoices (e.g., ) are employed so
that a little amount of adaptation speech (e.g., a few seconds)
is required. Given the adaptation data ,
the eigenvoice weights are usually estimated by maximizing the
likelihood of . Mathematically, one finds by maximizing the
following function:

(3)

where

(4)

(5)

(6)

and is the initial probability of state ; is the posterior
probability of the observation sequence being at state at time ;

is the posterior probability of the observation sequence
being at state at time and at state at time ; is the
Gaussian pdf of the th state after re-estimation. Furthermore,

is related to the new speaker supervector by

(7)

where and
is the covariance matrix of the Gaussian at state . Since only

the last term of (7) depends on the eigenvoice weight vector ,
one may simply maximize the following reduced function
to find the optimal :

(8)
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By differentiating the reduced function with respect to
, the optimal can be found by solving a system of linear

equations. Details can be found in [9].

III. KERNEL PRINCIPAL COMPONENT ANALYSIS

In this paper, the computation of eigenvoices is generalized
by performing kernel PCA instead of linear PCA. Linear PCA,
on the other hand, can be considered as a special case of kernel
PCA with the use of linear kernels. Fig. 1 gives an illustration of
kernel PCA. Let be the kernel with an associated mapping

which maps a pattern (a speaker supervector in the
eigenvoice approach) in the input space to in
the high-dimensional kernel-induced feature space . Given a
set of patterns , their -mapped feature
vectors are . The mapped patterns
are first centered in the feature space by finding the mean of
the feature vectors . Let the “centered”
map be so that . In addition, let
be the kernel matrix with

(9)

and be the centered version of with .
Notice that is related to by , where

is the centering matrix, is the identity
matrix, and is an -dimensional vector.

To perform kernel PCA, instead of directly working on the
covariance matrix in the feature space, one may carry out eigen-
decomposition on the centered kernel matrix as

(10)

where with , and
. The th orthonormal eigenvector of the co-

variance matrix in the feature space is then given by ([6])

(11)

Notice that all eigenvectors with nonzero eigenvalues are in the
span of the -mapped data in the feature space.

IV. KERNEL EIGENVOICE (KEV)

As seen from (8), an estimation of the eigenvoice weights re-
quires the evaluation of the distances between adaptation data

and Gaussian means of the new speaker in the observation
space . In the standard eigenvoice method, this is done by
first breaking down the speaker-adapted supervector to
obtain its constituent Gaussian means . How-
ever, the use of kernel PCA does not allow us to access each
constituent Gaussian directly. The reason is that in the standard
EV approach, the state information is preserved during the con-
catenation of Gaussian mean vectors to form speaker supervec-
tors; however, that piece of state information generally is lost
during the -mapping of supervectors in the input space to the
high-dimensional feature space . Thus, in general, one cannot
break up the speaker-adapted model found by KEV adaptation
into its constituent HMM Gaussians as in the EV approach. To

Fig. 1. Illustration of kernel PCA.

get around the problem, we investigate the use of composite ker-
nels to preserve the necessary state information.

A. Definition of the Composite Kernel

For the th speaker supervector , we map
each constituent via a separate kernel to ,
and construct as . The
similarity between two speaker supervectors and in the
composite kernel-induced feature space is measured by

(12)

where is some function that combines the constituent ker-
nels , into a valid composite kernel .
Using this composite kernel, we can then proceed with the usual
kernel PCA on the set of training speaker supervectors and
obtain the set of eigenvoices in the feature space as given by
(11) in Section III.

1) Two Different Composite Kernels: In this paper, two dif-
ferent forms of composite kernel are investigated.

1) Direct sum kernel

(13)

This may be the most intuitive form of composite kernels
since

...
...

2) Tensor product kernel:

(14)
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Furthermore, if the constituent kernels are Gaussian
kernels

(15)

where is a tunable parameter that controls the width of
the Gaussian kernels, then

where

...
...

...
...

...
...

That is, the tensor product kernel is then equivalent to
a single Gaussian kernel with a block-diagonal covari-
ance composed of the covariances from all constituent
Gaussian kernels, , .

In both cases, if ’s are valid kernels,3 so is [2].

B. New Speaker in the Feature Space

Let the centered supervector of a new speaker found by kernel
eigenvoice method in the feature space be . Conceptu-
ally, it corresponds to a speaker in the input supervector space,
even though may not exist.4 However, our KEV adaptation
method does not require the existence of the preimage in the
input supervector space.

Analogous to the formulation of a new speaker in the stan-
dard eigenvoice approach [see (2)], is assumed to be
a linear combination of the first eigenvectors with the largest
eigenvalues found by kernel PCA in . That is,

(16)

3Valid kernel functions are those that satisfy Mercer’s theorem [18]. It then
follows that there exist a feature spaceF and a mapping ' corresponding to the
kernel k such that scalar products of the form '(x ) '(x ) in the feature space
F can be computed as k(x ;x ).

4The notation for a new speaker in the feature space requires some expla-
nation. If s exists, then its centered image is ~' (s). However, since the
preimage of a speaker found in the feature space may not exist [2], the nota-
tion ~' (s) is not exactly correct. However, the notation is adopted for its
intuitiveness and the readers are advised to infer the existence of s based on the
context.

Its th constituent is then given by

Hence, the similarity between and is given
by

(17)

where is the th part of ,

(18)

and

(19)
Furthermore, the derivative of with respect to

each eigenvoice weight , , is given by

(20)

which will be needed for the maximum likelihood estimation of
the eigenvoice weights.

C. Maximum Likelihood Adaptation Using an Isotropic Kernel

On adaptation, we have to express of
(8) as a function of . Consider using isotropic kernels
for so that . Then

, and if is invertible,

will be a function of , which in
turn is a function of by (17). In the sequel, we will use the
Gaussian kernel of (15), and hence

(21)
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Substituting (21) to the reduced function of (8), and
differentiating with respect to each eigenvoice weight,

, , we get

(22)
By making use of the gradient in (20), we obtain

(23)

D. Generalized EM Algorithm

Because of the nonlinear nature of kernel PCA, (23) is non-
linear in and there is no closed form solution for the optimal

. In this paper, we apply the generalized EM algorithm (GEM)
[19] to find the optimal weights. GEM is similar to the con-
ventional EM except for the maximization step: EM looks for
a that maximizes the expected likelihood of the E-step but
GEM only requires a that improves the likelihood. Many nu-
merical methods [20] may be used to update based on the
derivatives of . In this paper, gradient ascent is used to get

from based only on the first-order derivative:
, where

and is the learning rate at the th iteration. Methods such
as the Newton’s method that uses the second-order derivatives
may also be used for faster convergence at the expense of com-
puting the more costly Hessian in each iteration.

The initial value of can be important for numerical
methods like gradient ascent. One reasonable approach is to
start with the eigenvoice weights of the supervector composed
from the speaker-independent model . That is, for

(24)

V. ROBUST KERNEL EIGENVOICE

The success of the eigenvoice approach for fast speaker
adaptation is due to two factors: 1) a good collection of “di-
verse” speakers so that the whole speaker space is captured by
the eigenvoices, and 2) the number of adaptation parameters

is reduced to a few eigenvoice weights. However, since the
amount of adaptation data is so small, the adaptation perfor-
mance may vary widely. To get a more robust performance,
we propose to interpolate the kernel eigenvoice with
the -mapped speaker-independent (SI) supervector
to obtain the final speaker-adapted model (in the feature space)

as follows:

(25)

where is found by (16). Following similar mathemat-
ical treatment as in Section IV-B, it can be shown that the sim-
ilarity between the and is given by

(26)

Hence, the gradients required to estimate jointly with other
eigenvoice weights are

(27)

and

(28)

The two gradients can be evaluated using the results in (17) and
(20) of Section IV-B, respectively.

Notice that also contains components in
from eigenvectors beyond the selected kernel eigenvoices for
adaptation. Thus, robust KEV adaptation may have the addi-
tional benefit of preserving the speaker-independent projections
on the remaining less important but possibly robust eigenvoices
in the final speaker-adapted model.

VI. EXPERIMENTAL EVALUATION

The proposed kernel eigenvoice adaptation method was eval-
uated on the TIDIGITS speech corpus [21]. We first studied the
number of kernel eigenvoices for best performance in this recog-
nition task, and the effectiveness of the two forms of composite
kernels. Then the performance of our new kernel eigenvoice
adaptation was compared with that of the speaker-independent
models, the conventional eigenvoice adaptation, MAP adapta-
tion, and MLLR adaptation.

A. TIDIGITS Corpus

The TIDIGITS corpus contains clean connected-digit utter-
ances sampled at 20 kHz. It is divided into a standard training
set and a test set. There are 163 speakers (of both genders) in
each set, each pronouncing 77 utterances of one to seven digits
(out of the eleven digits: “0”, “1”, , “9”, and “oh”). There is
no overlap between the training speakers and test speakers. The
speaker characteristics are quite diverse, with speakers coming
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from 22 dialect regions of the U.S., and their ages ranging from
6 to 70 years old.

B. Acoustic Models

All training data were processed to extract 12 mel-frequency
cepstral coefficients and the normalized frame energy from
each speech frame of 25 ms at every 10 ms. Each of the
eleven digit models was a strictly left-to-right HMM com-
prising 16 states and one Gaussian with diagonal covariance
per state. In addition, there were a three-state “sil” model to
capture silence speech and a one-state “sp” model to cap-
ture short pauses between digits. All HMMs were trained by
the EM algorithm. Thus, the dimension of the observation
space is 13 and that of the speaker supervector space is

models states/model state .
Firstly, a set of SI digit models were trained. Then a set of SD

digit models were trained for each individual training speaker by
borrowing the variances and transition matrices from the cor-
responding SI models, and only the Gaussian means were es-
timated. Furthermore, the “sil” and “sp” models were simply
copied to the SD model. In pilot experiments, it was found that
SD models trained in this way performed better than SD models
that did not share any model parameters with the SI models.

C. Experiments

In all experiments, only the training set was used to train the
SI HMMs and SD HMMs from which the SI and SD speaker su-
pervectors were derived. Adaptation was performed on the test
speakers. Five, ten, and twenty digits were used for adaptation,
which correspond to an average of 2.1, 4.1, and 9.6 s of adap-
tation speech (or 3.0, 5.5, and 13.0 s of speech if the leading
and ending silences are counted). To improve the statistical reli-
ability of the results, all results were the averages of five-fold
cross-validation over all 163 test speakers. Moreover, except
for one experiment, all other adaptation experiments were per-
formed in supervised mode.

The following models/systems are compared.

SI: the baseline speaker-independent model.
KEV: the speaker-adapted model found by our new kernel
eigenvoice adaptation method as described in Section IV.
Robust-KEV: the speaker-adapted model found by our
robust KEV adaptation method as described in Section V.
EV: the speaker-adapted model found by the standard
eigenvoice adaptation method as described in [9].
Robust-EV: the speaker-adapted model computed as the
interpolation between the SI supervector and the super-
vector found by EV adaptation. That is

(29)

where is the final speaker supervector found by ro-
bust EV adaptation, and is estimated jointly with the
other eigenvoice weights by maximizing the likelihood
of adaptation data. This is analogous to the robust KEV
adaptation.
MAP: the speaker-adapted model found by MAP
adaptation.

MLLR: the speaker-adapted model found by MLLR
adaptation.

Before we describe our experiments on KEV adaptation, re-
marks on some experimentation issues are worth mentioning.

• There is one tunable parameter in the composite
Gaussian kernels. A suitable value of was searched
as follows: ten speakers were randomly chosen from
the training set for KEV adaptation; 4.1s of adaptation
data were used, and the best value of was empirically
determined to be around 0.0005. This value of was
used in all reported experiments.

• The learning rate was initially set to 0.0001.
• The word accuracy of the baseline SI model on the test

data is 96.25%.5

• To check the quality of our SD models, a 7-fold cross-val-
idation was performed: for each training speaker, his data
was divided into seven roughly equal subsets, and six sub-
sets were used for training his acoustic model which was
then tested on the remaining subset. The average word ac-
curacy over all training speakers is found to be 98.76%. It
shows that our way of training SD models produces suf-
ficiently good acoustic models for subsequent eigenvoice
determination.

1) Experiment 1: Number of Kernel Eigenvoices: Fig. 2
shows the detailed results of (robust) KEV adaptation using var-
ious numbers of kernel eigenvoices. The direct sum composite
kernel was employed, and only the results from using 2.1 s and
9.6 s of adaptation speech are shown in the figure. The results
show that KEV adaptation can outperform the SI model even
with only two eigenvoices using only 2.1 s of speech. Its perfor-
mance then improves slightly with more eigenvoices or more
adaptation data. If we allow interpolation with the SI model
as in robust KEV adaptation, the performance improvement as
well as the saturation effect are even more pronounced: even
with one eigenvoice, the adaptation performance is already
better than that of the SI model, and then the performance does
not change much with more eigenvoices or adaptation data. The
results seem to suggest that the requirement that the adapted
speaker supervector is a weighted sum of few eigenvoices is
both the strength and weakness of the method: on the one
hand, fast adaptation becomes possible since the number of
estimation parameters is small, but adaptation saturates quickly
because the constraint is so restrictive that all mean vectors
of different acoustic models have to undergo the same linear
combination of the eigenvoices.

Moreover, the interpolation with the SI model in robust KEV
adaptation significantly improves the performance of KEV
adaptation. The improvement is more pronounced with fewer
adaptation data.

5The word accuracy of our SI model is not as good as the best reported result
on TIDIGITS which is about 99.7%. The main reasons are that we used only
13-dimensional static cepstra and energy, and each state was modeled by a single
Gaussian with diagonal covariance. The use of this simple model allowed us to
run experiments with 5-fold cross-validation using very short adaptation speech.
Right now our approach requires online computation of many kernel function
values and is computationally very expensive. As a first attempt on the approach,
we feel that the use of this simple model is justified. We are now working on its
speed-up (as is discussed in the future works in Section VII) and its extension
to HMM states of Gaussian mixtures.
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Fig. 2. Performance of KEV and robust KEV adaptation using direct sum
composite kernel and different numbers of kernel eigenvoices.

From Fig. 2, the optimal number of kernel eigenvoices for
this task is 8, and this is the number of kernel eigenvoices used
in the (robust) KEV adaptation experiments for the rest of this
paper.

2) Experiment 2: Direct Sum Kernel Versus Tensor Product
Kernel: The two types of composite kernels, namely, direct
sum kernel and tensor product kernel, were compared using the
robust KEV adaptation. The results are shown in Table I. It can
be seen that there is no significant difference between their per-
formance. Therefore, we simply pick one of them—the direct
sum composite kernel—for the remaining (robust) KEV adap-
tation experiments.

3) Experiment 3: KEV Versus EV, MAP, MLLR: In this
experiment, KEV adaptation was compared with several other
adaptation methods, EV, MAP, and MLLR adaptation. For each
adaptation method, efforts were made to find the best setup
for the method so as to obtain its best results for comparison
purpose. That means, for EV or KEV adaptation (using direct
sum composite kernel), the best results were obtained with
the optimal number of eigenvoices; for MAP adaptation, the
best results were achieved with the optimal scaling factors; for
MLLR adaptation, only global MLLR was tried, and the better
results from using either block-diagonal or full transformation
matrices were used for comparison. The results are plotted in
Fig. 3.

If we only look at the (robust) EV and (robust) KEV perfor-
mance, it is clear that our (robust) KEV adaptation always per-
forms better than (robust) EV adaptation. The results show that
nonlinear kernel PCA using composite kernels can be more ef-
fective in finding the eigenvoices. Moreover, the incorporation
of the SI prior information in EV or KEV adaptation always im-
proves the adaptation performance.

When all adaptation methods are compared, we observe that
when only 2.1 or 4.1s of adaptation data are available, EV adap-
tation and MAP adaptation have similar performance; MLLR
adaptation, SI models, and robust EV adaptation are better with
similar performance. However, only our new KEV and robust
KEV adaptation work significantly better than the SI model;
EV, MAP, and MLLR adaptation all perform worse than the SI

TABLE I
PERFORMANCE OF DIRECT SUM KERNEL AND TENSOR PRODUCT KERNEL IN

ROBUST KEV ADAPTATION. RESULTS ARE WORD RECOGNITION ACCURACIES

Fig. 3. Performance comparison among EV, KEV (with direct sum composite
kernel), MAP, and MLLR adaptation methods. (Recall that the accuracy of the
baseline SI model is 96.25%.).

model, and robust EV adaptation can only match the SI perfor-
mance in this task. Only for the case with 9.6 s of adaptation
data, then MLLR works marginally better than the robust KEV
method by an absolute 0.06%.

Specifically, KEV adaptation obtains a word error rate (WER)
reduction of 16.0%, 21.3%, and 21.3% with 2.1, 4.1, and 9.6 s
of adaptation speech over the SI model. When the SI model is
interpolated with the KEV model in our robust KEV method, the
WER reduction further increases to 27.5%, 31.7%, and 33.3%,
respectively.

Analysis of eigenvoices: The conventional eigenvoice
adaptation method does not seem to be effective in this task.
A detailed examination reveals that the performance of EV
adaptation does not change much with increasing number of
eigenvoices. For instance, with 10s of adaptation data, the
adaptation performance using 1 to 5 eigenvoices differs only
by 0.2%. In fact, the optimal number of eigenvoices in EV
adaptation is one. Kim et al. also had similar findings in their
adaptation experiments using continuous Korean digits [15].

We further analyze the eigenvoices found by the EV and KEV
adaptation methods. Fig. 4 shows the distribution of all 163 test
speakers in the subspace spanned by the first two leading eigen-
voices found by EV. It can be seen that although Women and
Girls can be fairly separated by the first eigenvoice, in general,
there are significant overlaps among the four groups of speakers:
Men, Women, Boys, and Girls. This may explain why one eigen-
voice is adequate for this task. A similar plot is prepared for
KEV adaptation, and the result is shown in Fig. 5. It is now no-
ticed that there are clear separations among the three groups:
Men, Women, and Girls, and the latter two groups overlap with
the Boys. From the data representation point of view, the KEV
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Fig. 4. Distribution of the 163 test speakers on the subspace spanned by the
top two eigenvoices found by EV adaptation.

Fig. 5. Distribution of the 163 test speakers on the subspace spanned by the
top two kernel eigenvoices found by KEV adaptation.

TABLE II
SUPERVISED VERSUS UNSUPERVISED ROBUST KEV ADAPTATION USING

DIRECT SUM KERNEL. RESULTS ARE WORD RECOGNITION ACCURACIES

adaptation method clearly produces better eigenvoices than the
EV adaptation method to represent the four different groups of
speakers.

4) Experiment 4: Supervised Versus Unsupervised Adapta-
tion: In all the above experiments, adaptation was performed
in supervised manner. In this last experiment, we would like to
see the effect of unsupervised adaptation. Robust KEV adap-
tation using the direct sum composite kernel was run in both
supervised and unsupervised modes on the same data, and the
results are shown in Table II. We can see that the performance
of unsupervised robust KEV adaptation is only slightly worse
than that of its supervised counterpart. The results are expected
since the SI model is already quite accurate.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we study the use of kernel PCA with a com-
posite kernel to derive better eigenvoices to improve the stan-
dard eigenvoice speaker adaptation. Two forms of composite
kernels, namely, direct sum kernel and tensor product kernel,
are investigated. In the TIDIGITS task, it is found that while the
standard eigenvoice approach does not help, our kernel eigen-
voice method may outperform the speaker-independent model
by about 16%–21% (in terms of word error rate reduction).
Moreover, we also propose to interpolate the speaker-indepen-
dent model with the speaker model found by our kernel eigen-
voice approach in the robust kernel eigenvoice adaptation. The
robust extension leads to 28%–33% word error rate reduction
over the performance of the SI model.

Although kernel PCA elegantly introduces nonlinearity in the
linear PCA procedure, and renders kernel eigenvoice adaptation
more powerful than the standard eigenvoice adaptation, there is
a price to pay: online computation of many kernel functions is
required during subsequent speech recognition. To understand
this, one should notice that the computation of state observation
likelihoods requires the evaluation of the distance
of (21). The distance now has to be computed via the kernel
value of given by (17). As a result, our new kernel
eigenvoice adaptation method is slower than the standard eigen-
voice adaptation method during both adaptation and recogni-
tion. We are pursuing two possible solutions:

• Reducing the number of kernel functions to compute. One
possible solution is to apply sparse kernel PCA [22] so
that the computation of the first principal components
involves only (instead of with ) kernel
functions. Another solution is to use compactly supported
kernels [23], in which the value of vanishes
when is greater than a certain threshold. The
kernel matrix then becomes sparse. Moreover, no more
computation is required when is large.

• Eliminating the need to compute any kernel functions
during recognition. This can be achieved if we can map
the speaker-adapted model found by kernel eigenvoice
adaptation in the feature space back to its preimage
speaker supervector in the input space. Although an exact
preimage generally does not exist, recently, we have
developed a closed-form solution for finding an approx-
imate preimage [24] in an image denoising problem that
uses kernel PCA. We will adopt the algorithm in [24]
to find an approximate speaker supervector in the input
space for our KEV adaptation method, and study its
performance on test speech.
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