
5386 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Generalized Convolutional Sparse Coding
With Unknown Noise

Yaqing Wang , Member, IEEE, James T. Kwok , Fellow, IEEE, and Lionel M. Ni , Life Fellow, IEEE

Abstract— Convolutional sparse coding (CSC) can learn rep-
resentative shift-invariant patterns from data. However, existing
CSC methods assume the Gaussian noise, which can be restrictive
in some challenging applications. In this paper, we propose
a generalized CSC model capable of handling complicated
unknown noise. The noise is modeled by the Gaussian mixture
model, which can approximate any continuous probability density
function. The Expectation-Maximization algorithm is used to
solve the resultant learning problem. For efficient optimization,
the crux is to speed up the convolution in the frequency domain
while keeping the other computations involving the weight matrix
in the spatial domain. We design an efficient solver for the
weighted CSC problem in the M-step. The dictionary and codes
are updated simultaneously by an efficient nonconvex accel-
erated proximal gradient algorithm. The resultant procedure,
called generalized convolutional sparse coding (GCSC), obtains
the same space complexity and a smaller running time than
existing CSC methods (which are limited to the Gaussian noise).
Extensive experiments on synthetic and real-world noisy data sets
validate that GCSC can model the noise effectively and obtain
high-quality filters and representations.

Index Terms— Convolutional sparse coding, noise modeling,
Gaussian mixture model.

I. INTRODUCTION

SPARSE coding learns an over-complete dictionary from a
set of samples, and then represents each sample as a sparse

combination (code) of the dictionary atoms. Though being
popularly used in signal processing [1], [2] and computer
vision [3], [4], sparse coding cannot capture shifted local
patterns in the data. Hence, pre-processing (such as manual
extracting patches from samples) and post-processing (such
as aggregating patch representations back to a sample repre-
sentation) are needed, otherwise redundant representations will
be learned.

To alleviate this problem, convolutional sparse cod-
ing (CSC) [5] is a recent method which directly learns

Manuscript received February 3, 2019; revised November 11, 2019;
accepted March 4, 2020. Date of publication March 27, 2020; date of current
version April 6, 2020. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Christophoros Nikou.
(Corresponding author: Yaqing Wang.)

Yaqing Wang is with the Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Hong Kong, also with
the Business Intelligence Lab, Baidu Research, Beijing 100085, China, and
also with the National Engineering Laboratory of Deep Learning Technology
and Application, Beijing 100085, China (e-mail: ywangcy@connect.ust.hk).

James T. Kwok and Lionel M. Ni are with the Department of Computer Sci-
ence and Engineering, The Hong Kong University of Science and Technology,
Hong Kong.

This article has supplementary downloadable material available at ieeex-
plore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TIP.2020.2980980

a shift-invariant dictionary. It replaces the multiplication
between codes and dictionary by convolution, which can
capture local patterns from different locations of the data. Each
sample is represented as the sum of filters convolved with
the corresponding codes. CSC has been successfully used in
applications such as non-rigid structure motion recovery [6],
image denoising and inpainting [7], music transcription [8],
video deblurring [7], involving data types such as trajecto-
ries [6], images [9], audios [8], videos [7], hyperspectral and
light field images [7], and biomedical data [10]–[12].

Learning in CSC is often performed by alternating the
updates of the codes and dictionary using block coordinate
descent (BCD) [13]. The various solvers mainly differ in
how the code/dictionary update subproblems are solved. The
pioneering deconvolutional network [5] uses gradient descent
for both subproblems. ConvCoD [14] uses stochastic gradient
descent for dictionary update and learns an encoder to output
the codes. Recently, the alternating direction method of multi-
pliers (ADMM) [15] has been commonly used [9], [16]–[19].
ADMM decomposes the code/dictionary update subproblems
into even smaller ADMM subproblems that can be solved
with closed-form solutions. It also allows performing faster
convolutions in the frequency domain, while enforcing shift
invariance and regularization in the spatial domain.

Most CSC methods use the square loss (also known as the
�2-loss), and thus implicitly assume that the noise is Gaussian.
This can be inappropriate in some real-world applications. For
example, biomedical data often contain artifacts due to large
variations in luminance/contrast and disturbance due to small
living animals [20]. Though CSC has been popularly used
on these data sets [11], [12], it cannot properly handle these
noise patterns. Empirically, as the target biomedical structures
are often tiny and delicate, the presence of noise can heavily
affect the quality of the learned filters and representations [12].

Instead of using the Gaussian noise, Jas et al. [12]
recently proposed the alpha-stable CSC (αCSC) algorithm,
which models the noise by the alpha-stable distribution [21].
This distribution includes the normal distribution and many
heavy-tailed distributions, and is more robust to noise and
outliers. However, the alpha-stable distribution does not have
an analytical form for its probability density function, and
its inference needs to be approximated by the computation-
ally expensive Markov chain Monte Carlo (MCMC) [22]
procedure. Moreover, the algorithm in [12] can only use
the symmetric alpha-stable distribution, which cannot model
distributions such as the Laplace distribution, Levy distri-
bution (which is an asymmetric alpha-stable distribution),

1057-7149 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 21,2020 at 06:49:45 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1457-1114
https://orcid.org/0000-0002-4828-8248
https://orcid.org/0000-0002-2325-6215

WANG et al.: GCSC WITH UNKNOWN NOISE 5387

Fig. 1. Probability density functions of some popular used distributions for
noise modeling.

bimodal and multimodal distributions. A visual comparison of
these distributions is shown in Figure 1.

In this paper, we propose the generalized CSC (GCSC)
model, which allows CSC to handle an unknown noise dis-
tribution. Specifically, the noise is modeled by the Gaussian
mixture model (GMM) [23], which can approximate any
continuous probability density function. The proposed model
is then optimized by the Expectation-Maximization (EM) algo-
rithm [24]. However, as will be seen in the sequel, the maxi-
mization step involves a weighted variant of the CSC problem,
which cannot be efficiently solved by existing algorithms such
as BCD and ADMM. Besides, the resultant weight matrix
cannot utilize efficient convolution in the frequency domain.

To address these problems, we develop a new solver that
updates the dictionary and codes together by a nonconvex
accelerated proximal algorithm [25]. Moreover, we reformu-
late the problem so that convolutions can still be performed
efficiently in the frequency domain, while computations
involving the weight matrix are performed in the spatial
domain. The resultant algorithm has comparable time and
space complexities as the state-of-the-art CSC methods (which
use the square loss). Extensive experiments on synthetic and
real-world noisy data sets show that the proposed algorithm
can model complex underlying noise, and obtains high-quality
filters and representations.

In summary, the contributions of this paper are as follows:
1) A generalized CSC model, which allows modeling of an

unknown and possibly complicated noise;
2) An efficient solver for the resultant optimization prob-

lem, with time and space complexities comparable with
the state-of-the-art CSC methods using square loss;

3) Experiments on a number of synthetic and real-world
noisy data sets including hyperspectral image data, local
field potential data, and retinal image data show that
the proposed method obtains high-quality filters and
representations, and is empirically more efficient than
state-of-the-art CSC methods.

The rest of the paper is organized as follows. Section II
provide brief reviews on CSC and the proximal algorithm.
Section III describes the proposed method, Section IV presents
the experimental results, and the last section gives some
concluding remarks and future directions.

Notations: For vector a ∈ R
m , its i th element is

denoted a(i), its �2-norm is ‖a‖2 =
√∑m

i=1(a(i))2, and its

�1-norm is ‖a‖1 = ∑m
i=1 |a(i)|. Diag(a) reshapes a to a

diagonal matrix with the elements of a on the diagonal. Given
another vector b ∈ R

n , the convolution a ∗b produces a vector
c ∈ R

m+n−1, with c(k) =∑min(k,m)
j=max(1,k+1−n) a(j)b(k − j + 1).

For matrix A, A� denotes its transpose, A� denotes its com-
plex conjugate, and A† is its conjugate transpose (i.e., A† =
(A�)�). � denotes the pointwise product. The identity matrix
is denoted by I . F(x) is the fast Fourier transform (FFT)
that maps x from the spatial domain to the frequency domain,
while F−1(x) is the inverse operator which maps F(x) back
to x .

II. RELATED WORK

A. Convolutional Sparse Coding

Given N samples xi ’s, where each xi ∈ R
P , CSC learns a

dictionary of K filters dk’s, each of length M , such that xi is
represented as

x̃i =
K∑

k=1

dk ∗ zik . (1)

Here, ∗ is the (spatial) convolution operation, and zik ’s are
the codes for xi , each of length P . The filters and codes are
obtained by solving the following optimization problem

min
{dk}∈D,{zik }

N∑
i=1

⎛
⎝1

2

∥∥∥∥∥xi−
K∑

k=1

dk ∗zik

∥∥∥∥∥
2

2

+
K∑

k=1

β‖zik‖1
⎞
⎠ , (2)

where D = {D : ‖dk‖2 ≤ 1, k = 1, . . . , K } ensures that the
filters are normalized, and the �1-regularizer encourages the
codes to be sparse.

To solve (2), block coordinate descent (BCD) [13] is typi-
cally used [5], [9], [14], [16]–[18]. The dictionary and codes
are updated in an alternating manner as follows.

1) Dictionary Update: Given zik ’s, dk’s are obtained as

min
{dk}∈D

1

2

N∑
i=1

∥∥∥∥∥xi −
K∑

k=1

dk ∗ zik

∥∥∥∥∥
2

2

. (3)

Convolution can be performed much faster in the frequency
domain via the convolution theorem1 [26]. Combining this
with the use of Parseval’s theorem2 [26] and linearity of FFT,
problem (3) is reformulated in [9], [16], [17] as:

min{dk}
1

2P

N∑
i=1

∥∥∥∥∥F(xi)−
K∑

k=1

F(C�dk)� F(zik)

∥∥∥∥∥
2

2

(4)

s.t. ‖CF−1(F(C�dk))‖22 ≤ 1,∀k,

where C ∈ R
M×P with C(i, i) = 1 and C(i, j) = 0 for

i 	= j , crops the extra dimension to recover the original spatial
support, and C� pads dk to be P-dimensional. The constraint
normalizes all filters to unit norm.

1F(dk ∗ zik) = F(C�dk)� F(zik), where C� zero-pads dk to be of the
same size as zik .

2For a ∈ R
P , ‖a‖22 = 1

P ‖F(a)‖22.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 21,2020 at 06:49:45 UTC from IEEE Xplore. Restrictions apply.

5388 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Algorithm 1 Nonconvex Inexact Accelerated Proximal Gra-
dient (niAPG) Algorithm [25]

2) Code Update: Given dk’s, the corresponding zik ’s are
obtained as

min{zik }
1

2

∥∥∥∥∥xi −
K∑

k=1

dk ∗ zik

∥∥∥∥∥
2

2

+ β

K∑
k=1

‖zik‖1.

Similar to dictionary update, it is more efficient to perform
convolutions in the frequency domain, as:

min{zik }
1

2P

∥∥∥∥∥F(xi)−
K∑

k=1

F(C�dk)�F(zik)

∥∥∥∥∥
2

2

+β

K∑
k=1

‖zik‖1.

The alternating direction method of multipliers (ADMM)
[15] has been commonly used for solving the code update and
dictionary update subproblems [9], [16]–[18]. Each ADMM
subproblem has a simple closed-form solution. Besides, by
introducing auxiliary variables, ADMM separates the compu-
tations in the frequency domain (involving convolutions) and
the spatial domain (involving the �1 regularizer and unit norm
constraint).

B. Proximal Algorithm

The proximal algorithm [27] is used to solve composite
optimization problems of the form

min
x

F(x) ≡ f (x)+ r(x),

where f is smooth, r is nonsmooth, and both are convex.
To make the proximal algorithm efficient, its proximal step

proxηr (·) = arg min
x

1

2
‖x − ·‖22 + ηr(x),

where η is the stepsize, has to be inexpensive.
Recently, the proximal algorithm has been extended to

nonconvex problems where both f and r can be nonconvex.
A state-of-the-art proximal algorithm is the nonconvex inexact
accelerated proximal gradient (niAPG) algorithm [25] shown
in Algorithm 1. It can efficiently converge to a critical point
of the objective.

III. PROPOSED METHOD

The square loss in (2) implicitly assumes normally distrib-
uted noise. We relax this in Section III-A, and instead assume
that the noise is generated from the flexible Gaussian mixture

Fig. 2. Schematic diagram of the proposed GCSC algorithm.

model (GMM) [23]. As is common in GMMs, we use the
Expectation-Maximization (EM) algorithm for inference [24]
(Section III-B). However, the resultant M-step involves a
difficult weighted CSC problem which cannot be solved by
existing algorithms. To address this problem, in Section III-C,
we design an efficient solver based on the niAPG algo-
rithm [25] introduced in Section II-B. This allows the con-
volutions to be computed more efficiently in the frequency
domain, while leaving computations involving the weight
matrix to be performed in the spatial domain. The complete
algorithm is summarized in Section III-D. Complexity analysis
is performed in Section III-E, and Section III-F discusses
its relationship with existing CSC algorithms. A schematic
diagram of the proposed method is shown in Figure 2.

A. Noise Modeling by GMM

We assume that the noise �i associated with sample xi

follows the GMM distribution:

p(�i) =
G∑

g=1

p(�i |φi=g)p(φi=g). (5)

Here, G is the number of Gaussian components, φi is the latent
variable denoting which Gaussian component �i belongs to,
and πg’s are the mixing coefficients with

∑G
g=1 πg = 1. Obvi-

ously, (5) includes the commonly used normal distribution.
The variable φi follows the multinomial distribution

Multinomial({πg}), and the conditional distribution of �i

given φi = g follows the normal distribution N (μg,
g)
with mean μg and diagonal covariance matrix
g =
Diag(σ 2

g (1), . . . , σ 2
g (P)). The �1-regularizer in (2) corre-

sponds to the use of the Laplace prior (Laplace(0, 1
β)) on each

pth element of zik : p(zik(p)) = β
2 exp(−β|zik(p)|).

B. Optimization by Expectation-Maximization (EM)
Algorithm

Let � be the collection of the GMM parameters (πg’s, μg’s,

g’s, dk’s and zik ’s). From (5), the log posterior probability

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 21,2020 at 06:49:45 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: GCSC WITH UNKNOWN NOISE 5389

for � is:

logP =
N∑

i=1

⎛
⎝log

G∑
g=1

p(xi |φi=g)+ log
G∑

g=1

p(φi=g)

+
K∑

k=1

P∑
p=1

log p(zik(p))

⎞
⎠ . (6)

In the EM algorithm, the E-step computes p(φi = g|xi),
which is the posterior probability that φi belongs to the gth
Gaussian given xi . Using Bayes rule, we have

p(φi=g|xi) = πg p(xi |φi=g)∑G
g=1 πg p(xi |φi=g)

, (7)

where xi |(φi = g) ∼ N (x̃i + μg,
g) with x̃i defined in (1).
The M-step obtains � by maximizing the following upper

bound of logP :

arg max
�

N∑
i=1

⎛
⎝ G∑

g=1

γgi log
p(xi , φi)

γgi
+

K∑
k=1

P∑
p=1

log p(zik(p))

⎞
⎠

=arg max
�

N∑
i=1

⎛
⎝ G∑

g=1

γgi log p(xi |φi=g)+β

K∑
k=1

‖zik‖1
⎞
⎠

=arg max
�

N∑
i=1

⎛
⎝β

K∑
k=1

‖zik‖1+
G∑

g=1

γgi log πg− γgi

2
log(|
g |)

−γgi

2

(
xi−

K∑
k=1

dk∗zik−μg

)�

−1

g

(
xi−

K∑
k=1

dk∗zik−μg

)⎞
⎠,

(8)

where γgi = p(φi = g|xi).
1) Updating πg’s, μg’s,
g’s in �: Given dk’s, zik ’s

and γgi ’s, we obtain πg’s, μg’s and
g’s by optimizing (8)
as:

max{πg,μg,
g}

N∑
i=1

G∑
g=1

(
γgi log πg − γgi

2
log(|
g|)

−γgi

2
(xi − x̃i − μg)�
−1

g (xi − x̃i − μg)
)

.

Setting the derivative of the objective to zero, the following
closed-form solutions can be easily obtained:

πg = 1

N

N∑
i=1

γgi , μg =
∑N

i=1 γgi xi∑N
i=1 γgi

,

g =
∑N

i=1 γgi(xi − x̃i − μg)(xi − x̃i − μg)
�∑N

i=1 γgi
. (9)

2) Updating dk’s and zik ’s in �: Given πg’s, μg’s,
g’s
and γgi ’s, we obtain dk’s and zik ’s from (8) as:

min
{dk}∈D,{zik }

N∑
i=1

⎛
⎝β K∑

k=1

‖zik‖1−
G∑

g=1

γgi

2

(
xi−

K∑
k=1

dk∗zik−μg

)�

·
−1
g

(
xi−

K∑
k=1

dk∗zik−μg

))
.

This can be rewritten as

min
{dk}∈D,{zik }

F({dk}, {zik})≡ f ({dk}, {zik})+r({dk}, {zik}), (10)

where

f ({dk}, {zik})≡ 1

2

N∑
i=1

G∑
g=1

‖wgi�(xi−
K∑

k=1

dk∗zik−μg)‖2F , (11)

and r({dk}, {zik}) ≡ β
∑K

k=1 ‖zik‖1 + ID({dk}). Here,
wgi (p) =

√
γgi

σ 2
g (P)

, and ID(·) is the indicator function on D
(i.e., ID({dk}) = 0 if {dk} ∈ D, and ∞ otherwise).

Compared with the standard CSC problem in (2), prob-
lem (10) can be viewed as a weighted CSC problem (with
weights wgi ’s). The CSC variant in [9] assigns weights on∑K

k=1 dk ∗ zik , while in (11) the weights are on xi −∑K
k=1 dk∗

zik−μg . Another CSC variant in [12] also leads to a weighted
CSC problem. However, the authors there mentioned that
it is not clear how to solve a weighted CSC problem in
the frequency domain. Instead, they resorted to solving it
in the spatial domain, which is less efficient as discussed
in Section II-A.

C. Solving Subproblem (10) in M-Step

The weights wgi ’s in (11) prevent us from transform-
ing the objective in (10) to the frequency domain. Recall
that (3) is transformed to (4) by first transforming terms
in the �2-norm to the frequency domain by Parseval’s the-
orem, separately computing F(xi) and F(

∑K
k=1 dk ∗ zik)

by linearity of FFT, and then replacing the convolution in
F(

∑K
k=1 dk ∗zik) by pointwise product using the convolution

theorem. However, with the wgi ’s, F(wgi � (
∑K

k=1 dk∗zik))
can no longer use the convolution theorem to speed up.
Thus, the key in designing an efficient solver is to transform
only terms involving convolutions to the frequency domain,
while leaving the weights wgi ’s in the spatial domain. Hence,
we will replace the xi −∑K

k=1 dk ∗zik − μg term in (11) by
F−1(F(xi − μg)−∑K

k=1 F(C�dk)� F(zik)).
To solve the weighted CSC problem (10), we design an effi-

cient solver based on the niAPG algorithm [25] in Section II-B.
The core steps in niAPG are computing (i) the gradient ∇ f (·)
w.r.t. dk’s and zik ’s, and (ii) the proximal step proxηr (·). We
first show that the gradient ∇ f (·) w.r.t. dk’s and zik ’s can be
obtained by the following Proposition. Proof is in Appendix A.

Proposition 1: For f in (11),

∂ f ({dk}, {zik})
∂dk

= −CF−1

(
N∑

i=1

(F(zik))
� �F(ui)

)
, (12)

∂ f ({dk}, {zik})
∂zik

= −F−1((F(dk))
� �F(ui)), (13)

where ui = ∑G
g=1 wgi � wgi � F−1(F(xi − μg) −∑K

k=1 F(C�dk)� F(zik)).
As for the second issue (computing the proximal step

proxηr (·)), the following Lemma shows that it can be sim-
plified as r({dk}, {zik}) is separable.

Lemma 2 [27]: For separable r(x, y) (i.e., r(x, y) =
r1(x)+ r2(y)), proxr (v,w) = proxr1

(v)+ proxr2
(w).

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 21,2020 at 06:49:45 UTC from IEEE Xplore. Restrictions apply.

5390 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Algorithm 2 WeightedCSC({d0
k }, {z0

ik})

Using Lemma 2, the component proximal steps can be
easily computed in closed form as [27]:

proxηID (dk) = dk/ max(‖dk‖2, 1), (14)

proxβη‖·‖1(zik(p)) = sign(zik(p))�max(|zik(p)| − βη, 0).

(15)

The resultant procedure for solving the weighted CSC sub-
problem (10), which is based on Algorithm 1, is shown in
Algorithm 2.

D. Complete Algorithm

The complete EM algorithm, which will be called general-
ized CSC (GCSC), is shown in Algorithm 3. After initializa-
tion (step 1), we alternate the E-step (step 3), which estimates
the posterior probability using the current model parameters,
and the M-step (step 4), which updates the GMM parameters,
dictionary and codes until convergence. The learned dictionary
and codes can then be used to reconstruct the samples (step 6)
or be directly used for subsequent tasks.

E. Complexity Analysis

In each EM iteration, the E-step in (7) takes O(G N P) time.
The M-step is dominated by gradient computations in (15)
and (16). These take O(N K P log P) time for the underlying
FFT and inverse FFT operations, and O(G N P) time for the
pointwise product. Thus, each EM iteration takes a total of
O(I (G N P + N K P log P)) time, where I is the number
of inner iterations for solving the weighted CSC problem.
Empirically, I is around 50. As for space, this is dominated
by the K P-dimensional codes for each of the N samples,
leading to a space complexity of O(N K P).

F. Discussion With Existing CSC Algorithms

Table I compares GCSC with the existing batch CSC
algorithms. GCSC is the most flexible in modeling the noise.

Algorithm 3 Generalized CSC With GMM Loss (GCSC)

On the other hand, αCSC uses the symmetric alpha-stable
distribution, and all others use the simple normal distribution.

As for optimization, all algorithms except GCSC use BCD,
which alternates the updates of codes and dictionary. More-
over, most of them then update the codes and dictionary
separately by ADMM. In contrast, GCSC uses niAPG to
directly update the codes and dictionary together.

All methods in Table I take O(N K P) space. As for time,
the state-of-the-art batch CSC method is SBCSC [19] which
takes O(T alt I ·(N K 3 P+N K P M+K 2 M)), where T alt is the
number of alternating iterations between codes and dictionary
update subproblems in BCD. In contrast, the proposed GCSC
takes O(T EM I ·(G N P+N K P log P)) time, where T EM is the
number of EM iterations. Usually G < K 3 and log(P) < M .
Moreover, empirically, T EM < 10 is enough for GCSC to
obtain good results, while T alt needs to be at least 100. Thus,
GCSC can be empirically faster than SBCSC. This will be
further validated in Section IV-B.

IV. EXPERIMENTS

In this section, we perform experiments on both synthetic
and real-world data sets. Section IV-A introduces the experi-
mental setup. Section IV-B compares the proposed GCSC on
synthetic data with various kinds of noise. This is then fol-
lowed by experiments on real-world data sets, including hyper-
spectral image data (Section IV-C), local field potential data
(Section IV-D) and retinal image data (Section IV-E). Results
show that GCSC can model complicated noise, provide cleaner
reconstructions, and learn useful filters and representations.

A. Experimental Setup

Baselines: For the proposed GCSC, the number of mixture
components G is selected automatically by the pruning strat-
egy in [30]. We start with a relatively large G (G = 10).
At each EM iteration, the relative differences in diagonal
covariance matrices {
g = Diag(σ 2

g (1), . . . , σ 2
g (P))}g=1,...,G

between any two Gaussian components are computed:
P∑

p=1

|σ 2
a (p)− σ 2

b (p)|
σ 2

a (p)+ σ 2
b (p)

, ∀a, b ∈ {1, . . . , G}.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 21,2020 at 06:49:45 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: GCSC WITH UNKNOWN NOISE 5391

TABLE I

COMPARISON BETWEEN THE PROPOSED GCSC AND EXISTING BATCH CSC ALGORITHMS. HERE, N IS THE NUMBER OF TRAINING SAMPLES,
K IS THE NUMBER OF FILTERS, P IS THE SAMPLE DIMENSIONALITY, M IS THE FILTER LENGTH IN THE SPATIAL DOMAIN, G IS

THE NUMBER OF GAUSSIAN COMPONENTS USED IN OUR GMM MODEL. T EM IS THE NUMBER OF EM ITERATIONS, T alt IS THE

NUMBER OF ALTERNATING ITERATIONS BETWEEN CODES AND DICTIONARY UPDATE SUBPROBLEMS IN BCD, AND

I IS THE NUMBER OF INNER ITERATIONS FOR EACH SUBPROBLEM. αCSC NEEDS MARKOV CHAIN MONTE
CARLO (MCMC) IN ITS E-STEP, WHOSE TIME COMPLEXITY IS WRITTEN AS O(MCMC) DUE TO A

LACK OF ALGORITHMIC DETAILS IN [12]

For the Gaussian pair with the smallest relative difference,
if this value is small (less than 0.1), they are merged as

πa ← πa + πb,

μa ← πaμa + πbμb

πa + πb
,

a ← Diag(σ 2
a (1), . . . , σ 2

a (P)),

where σ 2
a (p) = πaσ 2

a (p)+πbσ
2
b (p)

πa(p)+πb(p) .

We compare GCSC with the following state-of-the-art CSC
methods that are designed for various noise distributions:

1) αCSC, which uses the symmetric alpha-stable distrib-
ution S(α, δ, σ, μ) with stability α, skewness δ, scale
σ , and position μ. In the implementation3 of [12],
δ = 0, σ = 1/

√
2 and μ = ∑N

i=1
∑P

p=1 x̃i (p) where
x̃i is as defined in (1).

2) CSC-�2, which uses the normal distribution. As shown
in Table I, existing CSC methods (except αCSC and
GCSC) all assume Gaussian noise. Though they use
different optimization solvers and thus have different
speeds, they have the same denoising performance as the
underlying noise models are the same (this is also empir-
ically validated in Appendix B). Thus, we only com-
pare with the state-of-the-art SBCSC [19].4 As shown
in [7], [19], SBCSC outperforms the other batch CSC
algorithm (with the �2-loss) in terms of both speed and
recovery error.

3) CSC-�1, which uses the Laplace distribution and cor-
responds to the �1-loss. We take this as an additional
baseline, even though we are not aware of any existing

3https://alphacsc.github.io/
4http://vardanp.cswp.cs.technion.ac.il/wp-content/uploads/sites/62/2015/12/

SliceBasedCSC.rar

CSC method using the Laplace noise. The Laplace dis-
tribution is more robust to outliers [31]. It is formulated
as:

min
{dk}∈D,{zik }

N∑
i=1

(
1

2

∥∥∥∥∥xi−
K∑

k=1

dk∗zik

∥∥∥∥∥
1

−
K∑

k=1

β‖zik‖1
)

.

(16)

The detailed derivations are in Appendix C.
Experiments are performed on a PC with Intel i7 4GHz CPU
with 32GB memory.

Hyperparameter Tuning: We create a validation set by
randomly sampling 20% of the samples. This is then used
to tune the hyperparameters α (used in αCSC) and β (which
controls sparsity of the CSC codes).

Stopping Criteria: αCSC and GCSC are solved by EM.
We stop the EM iterations when the relative change of log
posterior in consecutive iterations is smaller than 10−4. In the
M-step, we stop the updating of weighted CSC (Algorithm 2
for GCSC, and the algorithm for M-step in Appendix B
of [12]) if the relative change of the respective objective value
is smaller than 10−4. The optimization problems in CSC-�1
and CSC-�2 are solved by BCD. Alternating minimization is
stopped when the relative change of objective value ((2) for
CSC-�2 and (16) for CSC-�1) in consecutive iterations is
smaller than 10−4. As for the optimization subproblems of
dk’s (given zik ’s) and zik ’s (given dk’s), we stop when the
relative change of objective value is smaller than 10−4.

B. Synthetic Data

In this experiment, we first demonstrate the performance
on synthetic data. Following [12], we use K = 3 filters
dk’s (triangle, square, and sine), each of length M = 65
(Figure 3(a)). Each dk is normalized to have zero mean and

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 21,2020 at 06:49:45 UTC from IEEE Xplore. Restrictions apply.

5392 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 3. Example of synthesizing a sample.

TABLE II

TYPES OF NOISE ADDED TO SYNTHETIC DATA

Fig. 4. Example noisy xi ’s constructed by adding noises listed in Table II
on xclean

i ’s.

unit variance. Each zik has only one nonzero entry, whose
magnitude is uniformly drawn from [0, 1] (Figure 3(b)). N =
100 clean samples, each of length P = 512, are generated as:
xclean

i =∑K
k=1 dk∗zik (Figure 3(c)).

Following [30], different types of noise (Table II) are added
to xclean

i to generate noisy observations xi ’s. To compare with
αCSC, we additionally consider the symmetric alpha-stable
noise from the Cauchy distribution, which is a symmetric
alpha-stable distribution. Results are averaged over five runs
with different random seeds.

Following [30], performance is evaluated on the denoised
reconstructions x̃i = ∑K

k=1 dk ∗ zik , using dk’s and zik ’s
learned from the noisy observation xi ’s. The performance
evaluation criteria are (i) mean absolute error (MAE):

1
N P

∑N
i=1 ‖xclean

i −x̃i‖1); (ii) root mean squared error (RMSE):√
1

N P

∑N
i=1 ‖xclean

i − x̃i‖22); and (iii) total training time.
Results are shown in Table III. As can be seen, when there

is no noise, all methods obtain comparable MAE and RMSE.
When there is noise, as expected, the model whose under-
lying noise assumption matches the actual noise distribution
performs the best. Hence, CSC-�2 performs well on Gaussian
noise, CSC-�1 performs well on Laplacian noise, and αCSC
performs well on alpha-stable noise. However, these CSC
methods do not perform well on mixture noise. On the other
hand, GCSC is the best or comparable with the best method
on all types of noise.

TABLE III

PERFORMANCE ON THE SYNTHETIC DATA. THE BEST AND COMPARABLE
RESULTS (ACCORDING TO THE PAIRWISE t-TEST WITH

95% CONFIDENCE) ARE HIGHLIGHTED IN BOLD

As for speed, GCSC is always the fastest. αCSC is the
slowest, as it performs convolution in the spatial domain,
requires expensive Markov chain Monte Carlo (MCMC) in
its E-step, and also needs an extra alternating loop for the
dictionary and code update subproblems. CSC-�2 and CSC-�1
can be as fast as GCSC, but only when the actual noise
distribution matches their underlying noise models.

Figure 5 compares the ground truth noise with those fitted
by the models. Results for other noise models are in Appen-
dix D-A. As can be seen, GCSC fits the noise well in all
cases, while the other methods cannot fit the noise well due
to a mismatch between their underlying noise distributions and
the actual noise. Figure 6 shows the learned filters. It can be
seen that GCSC recovers the underlying filters more reliably.
Figure 7 shows the reconstructions on synthetic data with
nonzero-mean noise. GCSC is the only one that denoises well
and recovers the underlying clean data.

C. Hyperspectral Image Data

In this section, we perform experiments on the hyperspectral
image data set5 Urban. It contains a 210-band hyperspectral
image of size 307 × 307. Pixel values are scaled to [0,1].
48 of the bands are known to be noisy, with obvious noisy
patterns such as stripes. To denoise a certain noisy band
(e.g., band 103), we randomly sample 4 clean bands, and then
denoise these five bands together. The clean bands can help
extract local spatial patterns that are useful for denoising the

5http://acwc.sdp.sirsi.net/client/en_US/search/asset/1045185

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 21,2020 at 06:49:45 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: GCSC WITH UNKNOWN NOISE 5393

Fig. 5. Noise histograms fitted by different CSC algorithms on synthetic data,
corrupted with zero-mean mixture noise (top), and nonzero-mean mixture noise
(bottom).

Fig. 6. Filters obtained by different CSC algorithms on synthetic data
corrupted with zero-mean mixture noise (top) and nonzero-mean mixture noise
(bottom).

Fig. 7. Reconstruction results on synthetic data with nonzero-mean mixture
noise.

TABLE IV

PERFORMANCE ON THE NOISY BANDS OF Urban

noisy band. The proposed GCSC is compared with CSC-�2,
CSC-�1 and αCSC (all with K = 50 and M = 11× 11).

As the ground truth is not available, we compare the
reconstructions with those obtained by NGmeet [32], the state-
of-the-art in hyperspectral image denoising. For band b, let
xNGmeet

b be NGmeet’s reconstruction, and x̃b = ∑K
k=1 dk ∗

zbk be the CSC reconstruction based on the obtained
dk’s and zbk’s. We define the reconstructed peak signal-
to-noise ratio (PSNR) on the noisy bands as: PSNR =

1
|�|

∑
b∈� 20 log10

(√
P

‖xNGmeet
b −x̃b‖2

)
, where � contains the

48 noisy bands. The performance is obtained by averaging
over five repetitions on the choice of the clean bands.

Table IV shows the PSNR and clock time. As can be seen,
GCSC is the best, which is then followed by CSC-�1, αCSC
and CSC-�2. Some example reconstruction results are shown
in Appendix D-B.

Fig. 8. Example segments from LFP data sets.

Fig. 9. Filters obtained by different CSC algorithms on Cortical (top) and
Striatal (bottom).

TABLE V

TIMING RESULTS (SECONDS) ON THE LFP DATA

D. Local Field Potential Data

In this section, experiments are performed on two local
field potential (LFP) data sets obtained from [12]. LFP is an
electrophysiological signal recording the collective activities
nearby neurons, which is closely related to cognitive mech-
anisms such as attention and motor control. The first sig-
nal (Cortical) is recorded in the rat cortex [20], while
the second one (Striatal) is recorded in the rat striatum [33].
Following [12], we extract from each data set N = 100
non-overlapping segments, each of length P = 2500. Figure 8
shows the sample segments. Note that Striatal contains heavier
artifact. The other preprocessing steps and parameter setting
(K = 3 and M = 350) are the same as in [12]. The experiment
is repeated five times with different initializations.

Figure 9 shows the learned filters. As there is no ground
truth, we only evaluate the results qualitatively. For Cortical,
the learned filters are similar to the local regions in segments.
As for Striatal, severe artifacts contaminate the filters learned
by CSC-�1 and CSC-�2, but the filters learned by GCSC and
αCSC are similar in shape to the clean part of the segments.
Table V compares the time. As can be seen, GCSC is the
fastest on both Cortical and Striatal.

E. Retinal Image Data

Finally, we perform vessel segmentation via pixelwise clas-
sification of retinal image data sets. A pixel from the retinal
vessel is labeled 1, while a pixel from the background is
labeled 0. We use the two popular data sets from the authors
of [34]: DRIVE6 [35] and STARE7 [36]. DRIVE contains

6http://www.isi.uu.nl/Research/Databases/DRIVE/
7http://cecas.clemson.edu/~ahoover/stare/

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 21,2020 at 06:49:45 UTC from IEEE Xplore. Restrictions apply.

5394 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 10. ROC (top) and PR (bottom) curves on the retinal image data sets.

TABLE VI

PERFORMANCE ON THE RETINAL IMAGE DATA SETS

20 training images and 20 test images, each of size 584×565.
STARE contains 20 images of size 605 × 700. As in [34].
we use the first 10 images for training, and the rest for testing.
Both data sets are provided with manual segmentation results
from two experts. Following [10], [34], we use the first expert’s
segmentation as ground truth.

The proposed GCSC is compared with CSC-�2, CSC-�1 and
αCSC (all with K = 50 and M = 11×11). The experiment is
repeated five times, with different random initializations of
the dictionary and GMM parameters. Following [34], each
pixel, represented by the K learned codes, is classified using
gradient boosting [37] with 500 weak learners. From each
image, 15,000 vessel pixels are sampled as positive, and
15,000 background pixels are sampled as negative. We also
compare with the provided second expert’s manual seg-
mentation (denoted “Expert”) and the state-of-the-art hand-
crafted multi-scale Hessian filter8 (denoted “Hessian”) [38] as
baselines.

Figure 10 shows the Receiver Operating Characteristic
(ROC) and Precision-Recall (PR) curves. Table VI shows the

8https://www.mathworks.com/matlabcentral/fileexchange/63171-jerman-
enhancement-filter

Fig. 11. Vessel segmentation results on a test retinal image from STARE.

corresponding Area Under ROC Curve (AUC) and the best
F-score. As shown, GCSC outperforms all the other methods.
αCSC performs slightly better than CSC-�1 and CSC-�2. The
multi-scale Hessian filter is much worse. The classification
performance of Expert is low, which is also noted in [10].

Figures 11 shows the segmentation results for a test image
from STARE. Results on DRIVE are in Appendix D-C. As can
be seen, the segmentation results produced by αCSC, CSC-�2
and CSC-�1 are still noisy. The Hessian filter shows clearer
vessels, but enlarges the pupil and shrinks some tiny vessels.
In contrast, GCSC obtains cleaner segmented vessels.

V. CONCLUSION

In this paper, we proposed the generalized CSC (GCSC)
algorithm to handle various kinds of noise. The noise is
modeled with the Gaussian mixture model, and learned by
using the EM algorithm. To solve the resultant difficult opti-
mization problem in the M-step, we designed a new solver
based on a recent accelerated proximal algorithm. Extensive
experiments on both synthetic and real-world data sets val-
idate the efficacy and efficiency of the proposed method on
obtaining high-quality filters and representations from data
with complicated unknown noises.

The proposed GCSC algorithm is learned in the batch mode.
Though it is more efficient than state-of-the-art batch CSC
algorithms, it may not be efficient on large data sets. To handle
large-scale data, one future direction is to optimize GCSC
by online or stochastic learning. Recently, some online CSC
methods have been proposed along this direction [7], [39].
However, they are all designed for the �2-loss. In the future,
we will extend these to the GMM noise proposed in this paper.
Moreover, it will also be interesting to use multiscale filters
to capture local patterns of different sizes.

REFERENCES

[1] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[2] H. Lee, A. Battle, R. Raina, and A. Ng, “Efficient sparse coding
algorithms,” in Proc. Adv. Neural Inf. Process. Syst., 2007, pp. 801–808.

[3] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local
sparse models for image restoration,” in Proc. IEEE 12th Int. Conf.
Comput. Vis., Sep. 2009, pp. 2272–2279.

[4] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid
matching using sparse coding for image classification,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 1794–1801.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 21,2020 at 06:49:45 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: GCSC WITH UNKNOWN NOISE 5395

[5] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolu-
tional networks,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., Jun. 2010, pp. 2528–2535.

[6] Y. Zhu and S. Lucey, “Convolutional sparse coding for trajectory
reconstruction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 3,
pp. 529–540, Mar. 2015.

[7] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Online convolutional
sparse coding with sample-dependent dictionary,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 5209–5218.

[8] A. Cogliati, Z. Duan, and B. Wohlberg, “Context-dependent piano
music transcription with convolutional sparse coding,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 24, no. 12, pp. 2218–2230,
Dec. 2016.

[9] F. Heide, W. Heidrich, and G. Wetzstein, “Fast and flexible convolutional
sparse coding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2015, pp. 5135–5143.

[10] A. Sironi, B. Tekin, R. Rigamonti, V. Lepetit, and P. Fua, “Learning
separable filters,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 1,
pp. 94–106, Jan. 2015.

[11] H. Chang, J. Han, C. Zhong, A. M. Snijders, and J.-H. Mao, “Unsu-
pervised transfer learning via multi-scale convolutional sparse coding
for biomedical applications,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 40, no. 5, pp. 1182–1194, May 2018.

[12] M. Jas, T. La Tour, U. Simsekli, and A. Gramfort, “Learning the
morphology of brain signals using alpha-stable convolutional sparse
coding,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 1099–1108.

[13] P. Tseng, “Convergence of a block coordinate descent method for
nondifferentiable minimization,” J. Optim. Theory Appl., vol. 109, no. 3,
pp. 475–494, Jun. 2001.

[14] K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gregor, M. Mathieu, and
Y. LeCun, “Learning convolutional feature hierarchies for visual recog-
nition,” in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1090–1098.

[15] S. Boyd, “Distributed optimization and statistical learning via the alter-
nating direction method of multipliers,” Found. Trends Mach. Learn.,
vol. 3, no. 1, pp. 1–122, 2010.

[16] H. Bristow, A. Eriksson, and S. Lucey, “Fast convolutional sparse
coding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013,
pp. 391–398.

[17] B. Wohlberg, “Efficient algorithms for convolutional sparse represen-
tations,” IEEE Trans. Image Process., vol. 25, no. 1, pp. 301–315,
Jan. 2016.

[18] M. Šorel and F. Šroubek, “Fast convolutional sparse coding using matrix
inversion lemma,” Digit. Signal Process., vol. 55, pp. 44–51, Aug. 2016.

[19] V. Papyan, Y. Romano, M. Elad, and J. Sulam, “Convolutional dictionary
learning via local processing,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 5296–5304.

[20] S. Hitziger, M. Clerc, S. Saillet, C. Benar, and T. Papadopoulo, “Adaptive
waveform learning: A framework for modeling variability in neuro-
physiological signals,” IEEE Trans. Signal Process., vol. 65, no. 16,
pp. 4324–4338, Aug. 2017.

[21] B. Mandelbrot, “The Pareto–Lévy law and the distribution of income,”
Int. Econ. Rev., vol. 1, no. 2, pp. 79–106, May 1960.

[22] W. R. Gilks, S. Richardson, and D. Spiegelhalter, Markov Chain Monte
Carlo in Practice. Boca Raton, FL, USA: CRC Press, 1995.

[23] G. J. McLachlan and K. E. Basford, Mixture Models: Inference and
Applications to Clustering. New York, NY, USA: Marcel Dekker, 1988.

[24] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum like-
lihood from incomplete data via the EM algorithm,” J. Roy. Stat.
Soc. B, Methodol., vol. 39, pp. 1–22, Sep. 1977.

[25] Q. Yao, J. T. Kwok, F. Gao, W. Chen, and T.-Y. Liu, “Efficient inexact
proximal gradient algorithm for nonconvex problems,” in Proc. 26th Int.
Joint Conf. Artif. Intell., Aug. 2017, pp. 3308–3314.

[26] S. Mallat, A Wavelet Tour of Signal Processing. New York, NY, USA:
Academic, 1999.

[27] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 127–239, 2014.

[28] B. Efron et al., “Least angle regression,” Ann. Stat., vol. 32, no. 2,
pp. 407–499, 2004.

[29] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm
for bound constrained optimization,” SIAM J. Sci. Comput., vol. 16,
no. 5, pp. 1190–1208, Sep. 1995.

[30] D. Meng and F. De la Torre, “Robust matrix factorization with
unknown noise,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013,
pp. 1337–1344.

[31] Q. Ke and T. Kanade, “Robust �1 norm factorization in the presence of
outliers and missing databy alternative convex programming,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 1,
Jun. 2005, pp. 739–746.

[32] W. He, Q. Yao, C. Li, N. Yokoya, and Q. Zhao, “Non-local meets
global: An integrated paradigm for hyperspectral denoising,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 6868–6877.

[33] G. Dallérac et al., “Updating temporal expectancy of an aversive event
engages striatal plasticity under amygdala control,” Nature Commun.,
vol. 8, no. 1, Apr. 2017, Art. no. 13920.

[34] C. Becker, R. Rigamonti, P. Lepetit, and V. Fua, “Supervised feature
learning for curvilinear structure segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent, 2013, pp. 526–533.

[35] J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever, and
B. van Ginneken, “Ridge-based vessel segmentation in color images
of the retina,” IEEE Trans. Med. Imag., vol. 23, no. 4, pp. 501–509,
Apr. 2004.

[36] A. D. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood
vessels in retinal images by piecewise threshold probing of a matched
filter response,” IEEE Trans. Med. Imag., vol. 19, no. 3, pp. 203–210,
Mar. 2000.

[37] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Statist., vol. 29, no. 5, pp. 1189–1232, Oct. 2001.

[38] T. Jerman, F. Pernus, B. Likar, and Z. Spiclin, “Enhancement of vascular
structures in 3D and 2D angiographic images,” IEEE Trans. Med. Imag.,
vol. 35, no. 9, pp. 2107–2118, Sep. 2016.

[39] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Scalable online convo-
lutional sparse coding,” IEEE Trans. Image Process., vol. 27, no. 10,
pp. 4850–4859, Oct. 2018.

[40] J. W. Cooley, P. A. W. Lewis, and P. D. Welch, “The fast Fourier
transform and its applications,” IEEE Trans. Educ., vol. E-12, no. 1,
pp. 27–34, Mar. 1969.

Yaqing Wang (Member, IEEE) received the Ph.D.
degree from the Department of Computer Science
and Engineering, The Hong Kong University of
Science and Technology, in 2019. She is cur-
rently a Researcher with Baidu Research, China.
Her research interest is on machine learning
algorithms and its applications. She received the
Outstanding Undergraduate Award of the China
Computer Federation and the Google Excellence
Scholarship in 2013. She was also a recipient of the
Hong Kong Ph.D. Fellowship.

James T. Kwok (Fellow, IEEE) received the Ph.D.
degree in computer science from The Hong Kong
University of Science and Technology in 1996.
He was an Assistant Professor with the Department
of Computer Science, Hong Kong Baptist University,
Hong Kong. He is currently a Professor with the
Department of Computer Science and Engineering,
The Hong Kong University of Science and Technol-
ogy. His research interests include machine learning,
artificial neural networks, and artificial intelligence.
He received the IEEE Outstanding 2004 Paper

Award and the Second Class Award in Natural Sciences by the Ministry of
Education, China, in 2008. He has been the program chair and the area chair
of a number of international conferences. He has served as an Associate Editor
for the IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING

SYSTEMS from 2006 to 2012. He is currently an Associate Editor of the
Neurocomputing journal and the International Journal of Data Science and
Analytics.

Lionel M. Ni (Life Fellow, IEEE) received the Ph.D.
degree in electrical and computer engineering from
Purdue University in 1980. He is currently a Vice
Rector (Academic Affairs) with The Hong Kong
University of Science and Technology. He is a fellow
of the Hong Kong Academy of Engineering Science.
He has chaired over 30 professional conferences and
has received eight awards for authoring outstanding
articles. He has been serving on the Editorial Board
of the Communications of the ACM and the IEEE
TRANSACTIONS ON BIG DATA.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on August 21,2020 at 06:49:45 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

