
Accelerated and Inexact Soft-Impute for
Large-Scale Matrix and Tensor Completion

Quanming Yao ,Member, IEEE and James T. Kwok, Fellow, IEEE

Abstract—Matrix and tensor completion aim to recover a low-rank matrix / tensor from limited observations and have been commonly

used in applications such as recommender systems and multi-relational data mining. A state-of-the-art matrix completion algorithm is

Soft-Impute, which exploits the special “sparse plus low-rank” structure of the matrix iterates to allow efficient SVD in each iteration.

Though Soft-Impute is a proximal algorithm, it is generally believed that acceleration destroys the special structure and is thus not

useful. In this paper, we show that Soft-Impute can indeed be accelerated without comprising this structure. To further reduce the

iteration time complexity, we propose an approximate singular value thresholding scheme based on the power method. Theoretical

analysis shows that the proposed algorithm still enjoys the fast Oð1=T 2Þ convergence rate of accelerated proximal algorithms. We also

extend the proposed algorithm to tensor completion with the scaled latent nuclear norm regularizer. We show that a similar “sparse plus

low-rank” structure also exists, leading to low iteration complexity and fast Oð1=T 2Þ convergence rate. Besides, the proposed algorithm

can be further extended to nonconvex low-rank regularizers, which have better empirical performance than the convex nuclear norm

regularizer. Extensive experiments demonstrate that the proposed algorithm is much faster than Soft-Impute and other state-of-the-art

matrix and tensor completion algorithms.

Index Terms—Matrix completion, tensor completion, collaborative filtering, link prediction, proximal algorithms

Ç

1 INTRODUCTION

MATRICES are common place in data mining appli-
cations. For example, in recommender systems, the

ratings data can be represented as a sparsely observed user-
item matrix [1]. In social networks, user interactions can be
modeled by an adjacency matrix [2], [3]. Matrices also
appear in applications such as image processing [4], [5], [6],
question answering [7] and large scale classification [8].

Due to limited feedback from users, these matrices are
usually not fully observed. For example, users may only
give opinions on very few items in a recommender system.
As the rows/columns are usually related to each other,
the low-rank matrix assumption is particularly useful to
capture such relatedness, and low-rank matrix completion
has become a powerful tool to predict missing values in
these matrices. Sound recovery guarantee [9] and good
empirical performance [1] have been obtained.

However, directly minimizing the matrix rank is NP-hard
[9]. To alleviate this problem, the nuclear norm (which is the
sum of singular values) is often used instead. It is known that
the nuclear norm is the tightest convex lower bound of the
rank [9]. Specifically, consider an m� n matrix O (without
loss of generality, we assume that m � n), with positions

of the observed entries indicated by V 2 f0; 1gm�n, where
Vij ¼ 1 if Oij is observed, and 0 otherwise. The matrix com-
pletion tries to find a low-rank matrixX by solving following
optimization problem:

min
X

1

2
kPVðX �OÞk2F þ �kXk�; (1)

where ½PVðAÞ�ij ¼ Aij if Vij ¼ 1, and 0 otherwise; and k � k�
is the nuclear norm. Though the nuclear norm is only a sur-
rogate of the matrix rank, there are theoretical guarantees
that the underlying matrix can be exactly recovered [9].

Computationally, though the nuclear norm is nonsmooth,
problem (1) can be solved by various optimization tools. An
early attempt is based on reformulating (1) as a semidefinite
program (SDP) [9]. However, SDP solvers have large time
and space complexities, and are only suitable for small data
sets. For large-scale matrix completion, singular value thresh-
olding (SVT) algorithm [10] pioneered the use of first-order
methods. However, a singular value decomposition (SVD) is
required in each SVT iteration. This takes Oðmn2Þ time and
can be computationally expensive. In [11], this is reduced to a
partial SVD by computing only the leading singular values/
vectors using PROPACK (a variant of the Lanczos algorithm)
[12]. Another major breakthrough is made by the Soft-Impute
algorithm [13],which utilizes a special “sparse plus low-rank”
structure associated with the SVT to efficiently compute the
SVD. Empirically, this allows Soft-Impute to perform matrix
completion on the entire Netflix data set. The SVT algorithm
can also be viewed as a proximal algorithm [14]. Hence, it con-
vergeswith aOð1=T Þ rate, where T is the number of iterations
[15]. Later, this is further “accelerated”, and the convergence
rate is improved to Oð1=T 2Þ [11], [16]. However, Tibshirani
[14] suggested that this is not useful, as the special “sparse
plus low-rank” structure crucial to the efficiency of

� Q. Yao is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Clear Water Bay, Hong
Kong, and 4Paradigm Inc, Beijing, China. E-mail: qyaoaa@cse.ust.hk.

� J.T. Kwok is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Clear Water Bay,
HongKong. E-mail: jamesk@cse.ust.hk.

Manuscript received 16 Mar. 2017; revised 20 Aug. 2018; accepted 24 Aug.
2018. Date of publication 28 Aug. 2018; date of current version 2 Aug. 2019.
(Corresponding author: Quanming Yao.)
Recommended for acceptance by S. Yan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2018.2867533

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 9, SEPTEMBER 2019 1665

1041-4347� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8944-8618
https://orcid.org/0000-0001-8944-8618
https://orcid.org/0000-0001-8944-8618
https://orcid.org/0000-0001-8944-8618
https://orcid.org/0000-0001-8944-8618
mailto:
mailto:

Soft-Impute no longer exist. In other words, the gain in con-
vergence rate is more than compensated by the increase in
iteration time complexity.

In this paper, we show that accelerating Soft-Impute
is indeed possible while still preserving the “sparse plus low-
rank” structure. To further reduce the iteration time complex-
ity, instead of computing SVT exactly using PROPACK [11],
[13], we propose an approximate SVT scheme based on the
powermethod [17]. Though the SVT obtained in each iteration
is only approximate, we show that convergence can still be as
fast as performing exact SVT. Hence, the resultant algorithm
has low iteration complexity and fast Oð1=T 2Þ convergence
rate. To further boost performance, we extend the post-
processing procedure in [13] to any smooth convex loss func-
tion. The proposed algorithm is also extended for nonconvex
low-rank regularizers, such as the truncated nuclear norm
[18] and log-sum-penalty [9]. which can give better Empiri-
cally, these nonconvex low-rank regularizers have better per-
formance than the convex nuclear norm regularizer.

Besidesmatrices, tensors have also been commonly used to
describe the linear and multilinear relationships in the data
[4], [19], [20], [21]. Analogous to matrix completion, tensor
completion can also be solved by convex optimization algo-
rithms. However, multiple expensive SVDs on large dense
matrices are required [4], [20]. To alleviate this problem, we
demonstrate that a similar “sparse plus low-rank” structure
also exists when the scaled latent nuclear norm [20], [22] is
used as the regularizer.We extend the proposedmatrix-based
algorithm to this tensor scenario. The resulting algorithm has
low iteration cost and fast Oð1=T 2Þ convergence rate. Experi-
ments on matrix/tensor completion problems with both syn-
thetic and real-world data sets show that the proposed
algorithmoutperforms state-of-the-art algorithms.

Preliminary results of this paper have been reported in a
shorter conference version [23]. While only the square loss is
used in [23], here we consider more general smooth convex
loss functions. Moreover, we extend the proposed algorithm
to tensor completion and nonconvex low-rank regularization.
Besides, post-processing is proposed to boost the recovery
performance for matrix/tensor completion with nuclear
norm regularization. All proofs can be found in Appendix A,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TKDE.2018.
2867533.

Notation. In the sequel, the transpose of vector/ matrix is
denoted by the superscript �>, and tensors are denoted by bold-
face Euler. For a vector x, kxk1 ¼

P
i jxij is its ‘1-norm, and

kxk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiP
i x

2
i

p
its ‘2-norm. For a matrix X, s1ðXÞ �

s2ðXÞ � � � � smðXÞ are its singular values, trðXÞ ¼Pi Xii is
its trace, kXk1 ¼

P
i;j jXijj, kXk1 is its maximum singular

value, and kXkF ¼ trðX>XÞ the Frobenius norm, kXk� ¼P
i siðXÞ the nuclear norm, and spanðXÞ is the column span

ofX. Moreover, I denotes the identity matrix.

For tensors, we follow the notations in [19]. For aD-order
tensor XX 2 RI1�I2�����ID , its ði1; i2; . . .; iDÞth entry is xi1i2...iD .
Let IDnd ¼

QD
j¼1;j6¼d Ij, the mode-d matricizations XX dh i of XX is

a Id � IDnd matrix with ðXX dh iÞidj ¼ xi1i2���iD , and j ¼ 1þPD
l¼1;l 6¼dðil � 1ÞQl�1

m¼1;m 6¼d Im. Given a matrix A, its mode-d

tensorization A dh i is a tensor XX with elements xi1i2���iD ¼ aidj,
and j is as defined above. The inner product of two tensors
XX and YY is XX ;YYh i ¼PI1

i1¼1 . . .
PID

iD¼1 xi1i2...iDyi1i2...iD , and the

Frobenius norm of XX is kXXkF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffihXX ;XXip
.

For a convex but nonsmooth function f , the subgradient
is g 2 @fðxÞ where @fðxÞ ¼ fu : fðyÞ � fðxÞ þ u> y� xð Þ; 8yg
is its subdifferential. When f is differentiable, we userf for
its gradient.

2 RELATED WORK

2.1 Proximal Algorithms
Consider minimizing composite functions of the form

F ðxÞ 	 fðxÞ þ gðxÞ; (2)

where f; g are convex, and f is smooth but g is possibly non-
smooth. The proximal algorithm [24] generates a sequence
of estimates fxtg as

xtþ1 ¼ proxmgðztÞ 	 argmin
x

1

2
kx� ztk22 þ mgðxÞ;

where
zt ¼ xt � mrfðxtÞ; (3)

and proxmgð�Þ is the proximal operator. When f is r-Lipschitz
smooth (i.e., krfðx1Þ � rfðx2Þk
 rkx1 � x2k) and a fixed
stepsize

m
 1=r; (4)

is used, the proximal algorithm converges to the optimal
solution with a rate of Oð1=T Þ, where T is the number of
iterations [24]. By replacing the update in (3) with

yt ¼ ð1þ utÞxt � utxt�1; (5)

zt ¼ yt � mrfðytÞ; (6)

where utþ1 ¼ t�1
tþ2, it can be accelerated to a convergence rate

of Oð1=T 2Þ [15].
Often, g is “simple” in the sense that proxmgð�Þ can be eas-

ily obtained. However, in more complicated problems such
as overlapping group lasso [25], proxmgð�Þ may be expensive
to compute. To alleviate this problem, inexact proximal
algorithm is proposed which allows two types of errors in
standard/accelerated proximal algorithms [26]: (i) an error
et in computing rfð�Þ, and (ii) an error "t in the proximal
step, i.e.,

hmgðxtþ1; ztÞ
 "t þ hmgðproxmgðztÞ; ztÞ; (7)

where

hmgðx; ztÞ 	 1

2
kx� ztk2 þ mgðxÞ; (8)

is the proximal step’s objective. Let the dual problem of
minxhmgðx; ztÞ be maxwDmgðwÞ where w is the dual variable.
The the duality gap is defined as #t 	 hmgðxtþ1; ztÞ � Dðwtþ1Þ
where wtþ1 is the corresponding dual variable of xtþ1.
Then "t is upper-bounded by the duality gap #t. Thus, (7) can
be ensured by monitoring #t. The following Proposition
shows that by decreasing et and "t sufficiently fast, the con-
vergence rate remains atOð1=T 2Þ.
Proposition 2.1 ([26]). If ketk and

ffiffiffiffi
"t

p
decrease as Oð1=t2þdÞ

for some d > 0, the inexact accelerated proximal gradient algo-
rithm converges with a rate of Oð1=T 2Þ.
In the sequel, as our focus is on matrix completion, the

variable x in (2) will be a matrixX.

1666 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 9, SEPTEMBER 2019

http://doi.ieeecomputersociety.org/10.1109/TKDE.2018.2867533
http://doi.ieeecomputersociety.org/10.1109/TKDE.2018.2867533

2.2 Soft-Impute
Soft-Impute [13] is a state-of-the-art algorithm for matrix
completion. At iteration t, let the current iterate be Xt. The
missing values in O are filled in as

Zt ¼ PVðOÞ þ PV?ðXtÞ ¼ PVðO�XtÞ þXt; (9)

where V?
ij ¼ 1�Vij is the complement of V. The next esti-

mateXtþ1 is then generated by the singular value threshold-
ing operator [10]

Xtþ1 ¼ SVT�ðZtÞ 	 argmin
X

1

2
kX � Ztk2F þ �kXk�; (10)

which can be computed as follows.

Lemma 2.2 ([10]). Let the SVD of a matrix Zt be USV >. Then,
SVT�ðZtÞ 	 UðS� �IÞþV > where ½ðAÞþ�ij ¼ maxðAij; 0Þ.
Let �kt be the number of singular values in Zt that are

larger than �. From Lemma 2.2, a rank-kt SVD, where
kt � �kt, is sufficient for computing Xtþ1 in (10). In [13], this
rank-kt SVD is obtained by the PROPACK algorithm [12].
The most expensive steps in computing the SVD are matrix-
vector multiplications of the form Zu and v>Z, where
u 2 Rn and v 2 Rm. In general, the above multiplications
take OðmnÞ time and rank-kt SVD on Zt takes OðmnktÞ time.

However, to make Soft-Impute efficient, an important
observation in [13] is that Zt in (9) has a special “sparse plus
low-rank” structure, namely that PVðO�XtÞ is sparse and
Xt is low-rank. Multiplications of the form Ztu and v>Zt can
then be efficiently performed as follows. Let the rank of Xt

be rt, and its SVD be UtStVt
>. Ztv can be computed as

Ztv ¼ PVðO�XtÞvþ UtStðVt
>vÞ: (11)

Constructing PVðO�XtÞ takes OðrtkVk1Þ time, while com-
puting the products PVðO�XtÞu and UtStðVt

>uÞ take
OðkVk1Þ and OðmrtÞ time, respectively. Similarly, u>Zt can
be computed as u>PVðO�XtÞ þ ðu>UtÞStVt

>. Thus, to
obtain the rank-k SVD of Zt, Soft-Impute needs only

OðktkVk1 þ rtktmÞ; (12)

time, and one iteration costs

Oððrt þ ktÞkVk1 þ rtktmÞ; (13)

time. Since the solution is low-rank, kt; rt � m, and (13) is
much faster than the OðmnktÞ time for direct rank-kt SVD.

3 ACCELERATED INEXACT SOFT-IMPUTE

In this section, we describe the proposed matrix completion
algorithm. Tibshirani [14] suggested that acceleration is not
useful for Soft-Impute, as it destroys the essential “sparse
plus low-rank” structure. However, we will show that it can
indeed be preserved with acceleration. We also show that
further speedup can be achieved by using approximate SVT.

3.1 Soft-Impute as a Proximal Algorithm
In (1), let

fðXÞ ¼ 1

2
kPVðX �OÞk2F ¼

X
ði;jÞ2V

‘ðXij; OijÞ; (14)

where ‘ is the loss function, and gðXÞ ¼ �kXk�. The proxi-
mal step in the (unaccelerated) proximal algorithm is

Xtþ1 ¼ proxmgðZtÞ 	 argmin
x

1

2
kX � Ztk2F þ m�kXk�;

where Zt ¼ Xt � mPVðXt �OÞ. Note that the square loss
‘ðXij; OijÞ 	 1

2 ðXij �OijÞ2 in (1) is 1-Lipschitz smooth.
The following shows that f in (14) is also 1-Lipschitz smooth.

Proposition 3.1. If ‘ is r-Lipschitz smooth, f in (14) is also
r-Lipschitz smooth.

From (4), one can thus simply set m ¼ 1 for (1). We then
haveXtþ1 ¼ proxgðZtÞ ¼ SVT�ðZtÞwhich is the same as (10).
Hence, interestingly, Soft-Impute is a proximal algorithm
[14], and thus converges at a rate ofOð1=T Þ [13].

3.2 Accelerating Soft-Impute
Since Soft-Impute is a proximal algorithm, it is natural to
use acceleration (Section 2.1). Recall that the efficiency of
Soft-Impute hinges on the “sparse plus low-rank” structure
of Zt, which allows matrix-vector multiplications of the
form Ztu and v>Zt to be computed inexpensively. To accel-
erate Soft-Impute, from (5) and (6), we have to compute

proxgð �ZtÞ ¼ SVT�ð �ZtÞ ¼ argmin
X

1

2
kX � �Ztk2F þ �kXk�; (15)

where Yt ¼ ð1þ utÞXt � utXt�1, and

�Zt ¼ PVðO� YtÞ þ ð1þ utÞXt � utXt�1: (16)

In the following, we show that �Zt also has a similar “sparse
plus low-rank” structure.

Assume that Xt and Xt�1 have ranks rt and rt�1, and
their SVDs are UtStV

>
t and Ut�1St�1V

>
t�1, respectively. Note

that PVðO� YtÞ is sparse, and ð1þ utÞXt � utXt�1 has rank
at most rt þ rt�1. Similar to (11), for any v 2 Rn, we have

�Ztv ¼ PVðO� YtÞvþ ð1þ utÞUtStðV >
t vÞ � utUt�1St�1ðV >

t�1vÞ:
The first term takes OðkVk1Þ time while the last two terms
take Oððrt�1 þ rtÞmÞ time, thus a total of OðkVk1 þ ðrt�1þ
rtÞmÞ time. Similarly, for any u 2 Rm, we have

u>�Zt ¼ u>PVðO� YtÞ þ ð1þ utÞðu>UtÞStV
>
t � utðu>Ut�1ÞSt�1V

>
t�1:

This takes OðkVk1 þ ðrt�1 þ rtÞmÞ time. The rank-kt SVD of
�Zt can be obtained using PROPACK in

OðktkVk1 þ ðrt�1 þ rtÞktmÞ; (17)

time. As the target matrix is low-rank, rt�1 and rt are much
smaller than n. Hence, (17) is much faster than the OðmnktÞ
time required for a direct rank-kt SVD.

The accelerated algorithm has a slightly higher iteration
complexity than the unaccelerated one in (12). However,
this is more than compensated by improvement in the con-
vergence rate (from Oð1=T Þ to Oð1=T 2Þ), as will be empiri-
cally demonstrated in Section 5.1.

3.3 Approximating the SVT
Though acceleration preserves the “sparse plus low-rank”
structure, the proposed algorithm (and Soft-Impute) can
still be computationally expensive as the SVT in each

YAO AND KWOK: ACCELERATED AND INEXACT SOFT-IMPUTE FOR LARGE-SCALE MATRIX AND TENSOR COMPLETION 1667

iteration uses exact SVD. In this section, we show that fur-
ther speedup is possible by using inexact SVD.

As SVT in (10) can be seen as a proximal step, one might
want to perform inexact SVT by monitoring the duality gap
as in Section 2.1. It can be shown that the dual of (15) is

max
kWk1
1

trðW> �ZtÞ � �

2
kWk2F ; (18)

whereW 2 Rm�n is the dual variable.

Proposition 3.2 ([24]). Let the SVD of matrix �Zt be USV >.
The optimal solution of (18) is W� ¼ UminðS; �IÞV >, where
½minðA;BÞ�ij ¼ minðAij; BijÞ.
Proposition 3.2 shows that a full SVD is required. This

takes Oðm2nÞ time and is even more expensive than directly
using SVT (OðmnktÞ time). Instead, the proposed approxi-
mation is motivated by the following Proposition.

Proposition 3.3. Let �kt be the number of singular values
in �Zt 2 Rm�n larger than �, and Q 2 Rm�kt , where kt � �kt, be
orthogonal and contains the subspace spanned by the top �kt left
singular vectors of �Zt. Then, SVT�ð �ZtÞ ¼ QSVT�ðQ> �ZtÞ.
Since a low-rank solution is desired, kt can be much

smaller than m [13]. Thus, once we identify the span of �Zt’s
top left singular vectors, we only need to perform SVT on
the much smaller Q> �Zt 2 Rkt�n (instead of �Z 2 Rm�n). The
question is how to find Q. We adopt the power method
(Algorithm 1) [17], which is more efficient than PROPACK
[27]. Matrix Rt in Algorithm 1 is for warm-start.

Algorithm 1. PowerMethodð �Zt; Rt; JÞ [17]
Require: �Zt 2 Rm�n, Rt 2 Rn�kt , and the number of
iterations J ;

1: initialize Q0 ¼ QRð �ZtRtÞ; == QRð�Þ is QR factorization
2: for j ¼ 1; 2; . . .; J do
3: Qj ¼ QRð �Ztð �Z>

t Qj�1ÞÞ;
4: end for
5: return QJ .

Algorithm 2 shows the approximate SVT procedure.
Step 1 approximates the top kt left singular vectors of �Zt

with Q. In steps 2 to 5, a much smaller and less expensive
(exact) SVT is performed on Q> �Zt. Finally, SVT�ð �ZtÞ is
recovered as ~X ¼ ðQUÞSV > using Proposition 3.3.

3.4 The Proposed Algorithm
We extend problem (1) by allowing the loss ‘ to be r-
Lipschitz smooth (e.g., logistic loss and squared hinge loss)

min
X

F ðXÞ 	
X

ði;jÞ2V
‘ðXij; OijÞ þ �kXk�: (19)

Using (6), �Zt ¼ Yt � mrfðYtÞ ¼ Yt � mSt, where St is a sparse
matrix with

½St�ij ¼
d‘ððYtÞij;OijÞ

dðYtÞij if ði; jÞ 2 V

0 otherwise :

(
(20)

Using Proposition 3.1 and (4), the stepsize m can be set as
1=r. The whole procedure is shown in Algorithm 3. The
core steps are 6-8, which performs approximate SVT. As in
[28], Rt is warm-started asQRð½Vt; Vt�1�Þ at step 7. Moroever,
as in [29], we restart the algorithm if F ðXÞ starts to increase

(step 10). For further speedup, � is dynamically reduced
(step 3) by a continuation strategy [11], [13].

Algorithm 2. Approximating the SVT of �Zt:
Approx-SVTð �Zt; Rt; �; JÞ

Require: �Zt 2 Rm�n, Rt 2 Rn�kt and � � 0;
1: Q ¼ PowerMethodð �Zt; Rt; JÞ;
2: ½U;S; V � ¼ SVDðQ> �ZtÞ;
3: U ¼ fui j si > �g;
4: V ¼ fvi j si > �g;
5: S ¼ ðS� �IÞþ;
6: return QU;S and V . == ~X ¼ ðQUÞSV

Algorithm 3. Accelerated Inexact Soft-Impute (AIS-
Impute)

Require: partially observed matrix O, parameter �.
1: initialize c ¼ 1, X0 ¼ X1 ¼ 0, stepsize m ¼ 1=r, �̂ > � and

n 2 ð0; 1Þ;
2: for t ¼ 1; 2; . . .; T do
3: �t ¼ ð�̂� �Þnt�1 þ �;
4: Yt ¼ Xt þ utðXt �Xt�1Þ, where ut ¼ c�1

cþ2;
5: �Zt ¼ Yt � mSt, with St in (20);
6: Vt�1 ¼ Vt�1 � VtðVt

>Vt�1Þ, remove zero columns;
7: Rt ¼ QRð½Vt; Vt�1�Þ;
8: ½Utþ1;Stþ1; Vtþ1� ¼ approx-SVTð �Zt;Rt;m�t; JÞ;

== Xtþ1 ¼ Utþ1Stþ1V
>
tþ1

9: if F ðXtþ1Þ > F ðXtÞ then c ¼ 1;
10: else c ¼ cþ 1; end if
11: end for
12: return UTþ1, STþ1 and VTþ1.

3.5 Convergence and Time Complexity
In the following, we will show that the proposed algorithm
has a convergence rate of Oð1=T 2Þ. Let Xtþ1 ¼ Utþ1Stþ1V

>
tþ1

be the output of approx-SVT at step 8. Since it only approxi-
mates SVTm�ð �ZtÞ, there is a difference ("t in (7)) between the
proximal objectives hm�k�k� ðXtþ1; �ZtÞ and hm�k�k� ðSVTm�ð �ZtÞ;
�ZtÞ after performing step 8, where hm�k�k� ð�; �Þ is as defined in
(8). The following shows that "t decreases at a linear rate.

Proposition 3.4. Assume that (i) kt � �kt for all t and J ¼ t;1 (ii)
fF ðXtÞg is upper-bounded. Then "t decreases to zero linearly.
Using Propositions 2.1 and 3.4, convergence of the pro-

posed algorithm is provided by the following Theorem.

Theorem 3.5. The sequence fXtg generated from Algorithm 3
converges to the optimal solution with a Oð1=T 2Þ rate.
The basic operations in the power method are multiplica-

tions of the form �Ztu and v> �Zt. The tricks in Section 3.2
can again be used for acceleration, and computing the
approximate SVT using Algorithm 2 takes only

OðktkVk1 þ ðrt�1 þ rtÞktmÞ; (21)

time. This is slightly more expensive than (12), the time
for performing exact SVD in Soft-Impute. However, Soft-
Impute is not accelerated and has slower convergence than
Algorithm 3 (Theorem 3.5). The complexity in (21) is also the
same as (17). However, as will be demonstrated in Section
5.1, approximate SVT is empirically much faster. The cost of

1. In practice, we simply set J ¼ 3 as in [28].

1668 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 9, SEPTEMBER 2019

one AIS-Impute iteration is summarized in Table 1. This is
only slightlymore expensive than (13) for Soft-Impute.

Table 2 compares Algorithm 3 with some existing
algorithms that will be empirically compared in Section 5.2.
Overall, Algorithm 3 enjoys fast convergence and low itera-
tion complexity.

3.6 Post-Processing
The nuclear norm penalizes all singular values equally.
This may over-penalize the more important leading singu-
lar values. To alleviate this problem, we post-process the
solution as in [13]. Note that only the square loss is consid-
ered in [13]. Here, any smooth convex loss can be used.

Let the rank-k matrix obtained from Algorithm 3 be X ¼
USV >, where U ¼ ½ui� and V ¼ ½vi�. Let AðuÞ ¼ UDiagðuÞV >.
We undo part of the shrinkage on the singular values by
replacingXwithAðu�Þ, where

u� ¼ argmin
u

fðuÞ 	
X

ði;jÞ2V
‘ðAðuÞij; OijÞ: (22)

When ‘ is the square loss, (22) has a closed-form solution [13].
However, for smooth convex ‘ in general, this is not possible
and we optimize (22) using L-BFGS. The most expensive
step in each L-BFGS iteration is the computation of the gra-

dientrfðuÞ 2 Rk, where ½rfðuÞ�i ¼ u>
i Bvi, Bij ¼ d‘ðAðuÞij;OijÞ

dAðuÞij if

ði; jÞ 2 V, and 0 otherwise. As S is sparse, computing rfðuÞ
only takesOðkkVk1Þ time where k � n. Thus, one iteration of

L-BFGS takes OðkkVk1Þ time, which is not significant

compared to the Oððrt þ ktÞkVk1 þ ðrt�1 þ rt þ ktÞktmÞ time

in each AIS-Impute iteration (Table 1). Moreover, L-BFGS has

superlinear convergence [38]. Empirically, it converges in

fewer than 10 iterations. These make post-processing very

efficient.

3.7 Nonconvex Regularization
While post-processing alleviates the problem of over-penal-
izing singular values, recently nonconvex regularizers have
been proposed to address this problem in a more direct
manner. In this section, we first show that the proposed
algorithm can be extended for truncated nuclear norm regu-
larization (TNNR) [18], which is a popular nonconvex vari-
ant of the nuclear norm. Then we show that it can be further
extended for more general nonconvex regularizers.

Truncated Nuclear Norm. The optimization problem for
TNNR [18] can be written as

min
X

1

2
kPVðX �OÞk2F þ �

Xm
i¼r

siðXÞ; (23)

where r 2 f1; . . .;mg. Using DC programming [39], this is
rewritten as

min
X

max
A2Rm�r;B2Rn�r

1

2
kPVðX �OÞk2F þ �kXk� � � trðA>XBÞ

s.t. A>A ¼ I; B>B ¼ I:

(24)

A;B and X are then obtained using alternative minimi-
zation as

ðAtþ1; Btþ1Þ ¼ min
A>A¼I;B>B¼I

trðA>XtBÞ; (25)

Xtþ1 ¼min
X

1

2
kPVðX �OÞk2F þ �kXk�
� � trðA>

tþ1XBtþ1Þ:
(26)

Subproblem (25) has the closed-form solution Atþ1 ¼ Ut

and Btþ1 ¼ Vt [18], where UtStV
>
t is the rank-r SVD of Xt.

Subproblem (26) involves convex optimization with the
nuclear norm regularizer, and is solved by the accelerated
proximal gradient (APG) algorithm [15] in [18].

The proposed AIS-Impute can be used to solve (26) more
efficiently. Let Xt�1 and Xt be two consecutive iterates from
AIS-Impute. As in Section 3.2, in order to generate Xtþ1,
we compute

Yt ¼ ð1þ utÞXt � utXt�1;

�Zt ¼ Yt þ m�Atþ1B
>
tþ1 � mPVðYt �OÞ: (27)

Note that Yt þ m�Atþ1B
>
tþ1 is low-rank and mPVðYt �OÞ is

sparse. Thus, �Zt again has the special “sparse plus low-rank”

structure which is key to AIS-Impute. Each AIS-Impute

TABLE 1
Iteration Time Complexity of Algorithm 3

steps complexity

5 (construct St) OðrtkVk1Þ
6,7 (warm-start) Oðnk2t Þ
8 (approximate SVT) OðktkVk1 þ rt�1 þ rtð ÞktmÞ
total Oððrt þ ktÞkVk1 þ ðrt�1 þ rt þ ktÞktmÞ

TABLE 2
Comparison of AIS-Impute (Algorithm 3) with Other Algorithms

algorithm iteration complexity rate

matrix factorization LMaFit [32] OðkVk1kt þmktÞ —
ASD [33] OðkVk1kt þmktÞ —
R1MP [34] OðkVk1 þmk2t Þ OðcT1 Þ

nuclear norm minimization active subspace selection [28] OðkVk1k2t TaÞ OðcT�Ts
2 Þ

boost [31] OðkVk1t2TaÞ Oð1=T Þ
Sketchy [35] OðkVk1 þmk2t Þ Oð1=T Þ

TR [30] OðkVk1t2TaÞ —
ALT-Impute [36] OðkVk1kt þmk2t Þ Oð1=T Þ

SSGD [37] Oðmk2t Þ Oð1= ffiffiffiffi
T

p Þ
AIS-Impute Oððrt þ ktÞkVk1 þ ðrt�1 þ rt þ ktÞmktÞ Oð1=T 2Þ

The algorithms in [28], [30], [31] involve solving some optimization subproblems iteratively, and Ta is the number of iterations used. Moreover, integer Ts and
c1; c2 2 ð0; 1Þ are some constants.

YAO AND KWOK: ACCELERATED AND INEXACT SOFT-IMPUTE FOR LARGE-SCALE MATRIX AND TENSOR COMPLETION 1669

iteration then takes Oððrt þ ktÞkVk1 þ ðrt�1 þ rt þ ktÞktmÞ
time, which is much cheaper than theOðmnkÞ time for APG.

Other Nonconvex Low-rank Regularizers. Assume that the

regularizer is of the form rðXÞ ¼Pm
i¼1 �r siðXÞð Þ, where �rðaÞ is

a concave and nondecreasing function on a � 0. This assump-

tion is satisfied by the log-sum-penalty [40], minimax concave

penalty [41], and capped-‘1 norm [42]. The corresponding

optimization problem isminX
1
2 kPVðX �OÞk2F þ �rðXÞ. As in

[18], usingDCprogramming, we obtain

Xtþ1 ¼ min
X

1

2
kPVðX �OÞk2F þ �

Xm
i¼1

ðwtþ1ÞisiðXÞ; (28)

wtþ1½ �i¼ @̂�r siðXtÞð Þ; i ¼ 1; . . .;m; (29)

where @̂�r is the super-gradient [43] of �r. Subproblem (29) can

be easily computed in OðmÞ time. As for (28), its regularizer

is a weighted nuclear norm. As �r is non-decreasing and con-

cave, wtþ1ð Þ1
 wtþ1ð Þ2
 � � �
 wtþ1ð Þm [6]. The following

Lemma shows that the proximal step in (28) has a closed-

form solution.

Lemma 3.6 ([5], [6]). Let the SVD of Z be USV > and 0
 w1

w2
 � � �
 wm. The solution of the proximal step minX

1
2 kX�

Zk2F þ �
Pm

i¼1 wisiðXÞ is given by U S� �Diagðw1; . . .;½
wmÞ�þV >.

Similar to the truncated nuclear norm, we have �Zt ¼
PVðO� YtÞ þ Yt, where PVðO� YtÞ is sparse and Yt (defined
in (27)) is low-rank. Hence, we again have the special
“sparse plus low-rank” structure. AIS-Impute algorithm
can still be used and one iteration takes Oððrt þ ktÞkVk1 þ
ðrt�1 þ rt þ ktÞktmÞ time.

4 TENSOR COMPLETION

Complicated data objects can often be arranged as tensors.
In this section, we extend the proposed Algorithm 3 in
Section 3 from matrices to tensors.

4.1 Tensor Model
The nuclear norm can be defined on tensors in various
ways. The following two are the most popular.

Definition 4.1 ([20]). For a D-order tensor XX , the over-
lapped nuclear norm is kXXkoverlap ¼PD

d¼1 �dkXX dh ik�, and the
scaled latent nuclear norm is kXXkscaled ¼ minXX1;...;XXD :PD

d¼1 XXd ¼ XXPD
d¼1 �dkXXd

dh ik�. Here, �d � 0’s are

hyperparameters.

The overlapped nuclear norm regularizer penalizes
nuclear norms on all modes. When only several modes are
low-rank, decomposition with the scaled latent nuclear
norm has better generalization [20], [22]. In this paper, we
focus on the scaled latent nuclear norm regularizer.

Given a partially observed tensor OO 2 RI1�...�ID , with the
observed entries indicated by V 2 f0; 1gI1�...�ID . The tensor
completion problem can be formulated as

min
XX1;...;XXD

F ð½XX 1
t ; . . .;XXD

t �Þ

	
X

ði1;...;iDÞ2V
‘
XD
d¼1

XXd
i1...iD

;OOi1...iD

 !
þ
XD
d¼1

�dkXXd
dh ik�:

(30)

The recovered tensor is XX ¼PD
d¼1 XXd. In [4], [20], prob-

lem (30) is solved using ADMM [44]. However, the ADMM
update involves SVD in each iteration, which takes
OðQD

d¼1 Id
PD

d¼1 IdÞ time and can be expensive.

4.2 Generalizing SVT
In (30), let

fð½XX 1; . . .;XXD�Þ ¼
X

ði1;...;iDÞ2V
‘
XD
d¼1

XXd
i1...iD

;OOi1...iD

 !
; (31)

gð½XX1; . . .;XXD�Þ ¼
XD
d¼1

�dkXXd
dh ik�: (32)

The iterates in Algorithm 3 are generated by SVT. As there
are multiple nuclear norms in (32), the following extends
SVT for this case.

As g in (32) is separable w.r.t. XX i’s, one can compute the
proximal step for each XX i separately [24]. Updates (5), (6) in
the APG become

YYd
t ¼ ð1þ utÞXXd

t � utXXd
t�1;

�ZZd
t ¼ YYd

t � mSSt ¼ ð1þ utÞXXd
t � utXXd

t�1 � mSSt;
(33)

for d ¼ 1; . . .; D, where SSt is a sparse tensor with

ðSStÞi1...iD ¼
d‘ððŶYtÞi1...iD ;OOi1...iD Þ

dðŶYtÞi1...iD
if ði1; . . .; iDÞ 2 V

0 otherwise;

(
(34)

and ŶYt ¼
PD

d¼1 YYd
t . Lemma 2.2 is also extended to ½XX1

tþ1; . . .;

XXD
tþ1� ¼ proxmgð½�ZZ1

t ; . . .;
�ZZD
t �Þ as follows.

Proposition 4.1. ðXXd
tþ1Þ dh i ¼ SVTm�dk�k� ðð�ZZd

t Þ dh iÞ.
The stepsize rule in (4) depends on the modulus of

Lipschitz smoothness of f , which is given by the following.

Proposition 4.2. If ‘ is r-Lipschitz smooth, f in (31) isffiffiffiffi
D

p
r-Lipschitz smooth.

Proposition 3.3 can be used to reduce the size of ð�ZZd
t Þ dh i in

Proposition 4.1, and Algorithm 1 can be used to appro-
ximate the underlying SVD. However, this is still not fast

enough. Assume that �kdt singular values in ð�ZZd
t Þ dh i are larger

than m�d, and rank-kdt SVD, where kdt � �kdt , is performed.

SVT on ðZZd
t Þ dh i takes Oðkdt

QD
d¼1 IdÞ time. As SVT has to be

performed on each mode, one iteration of APG takes

OðQD
d¼1 Id

PD
d¼1 k

d
t Þ time, which is expensive.

4.3 Fast Approximate SVT with Special Structure
In Section 3.2, the special “sparse plus low-rank” structure
can greatly reduce the time complexity of matrix multiplica-
tions. As XXd

t�1;XXd
t are low-rank tensors and SSt is sparse, �ZZd

t

in (33) also has the “sparse plus low-rank” structure.
However, to generate XXd

tþ1 using Proposition 4.1, we need
to perform matrix multiplications of the form ð �ZZd

t Þ dh iv,
where v 2 RIDnd , and u>ð �ZZtÞ dh i, where u 2 RId . Unfolding �ZZt

takes OðQD
d¼1 IdÞ time and can be expensive. In the follow-

ing, we show how this can be avoided.
To generate ðXXd

tþ1Þ dh i, it can be seen from Proposition 4.1

and (33) that XXd
t and XXd

t�1 only need to be unfolded along

their dth modes. Hence, instead of storing them as tensors,

1670 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 9, SEPTEMBER 2019

we store ðXXd
t Þ dh i as its rank-rdt SVD Ud

t S
d
t V

d
t
>
, and ðXXd

t�1Þ dh i
as its rank-rdt�1 SVD Ud

t�1S
d
t�1V

d
t�1

>
. For any v 2 R

IDnd ,

ð �ZZd
t Þ dh iv ¼ ð1þ utÞUd

t S
d
t ðV d

t

>
vÞ

� utU
d
t�1S

d
t�1ðV d

t�1

>
vÞ � mðSStÞ dh iv:

The first two terms can be computed in OððId þ IDndÞðrdt þ
rdt�1ÞÞ time. As SSt is sparse, computing the last term takes

OðkVk1Þ time. Thus, ð�ZZd
t Þ dh iv can be obtained in OðkVk1 þ

ðId þ IDndÞðrdt þ rdt�1ÞÞ time. Similarly, for any u 2 RId ,

u>ð�ZZtÞ dh i can be computed in OðkVk1þ ðId þ IDndÞðrdt þ
rdt�1ÞÞ time. Thus, performing approximate SVT on ð�ZZd

t Þ dh i,
with rank kdt � �kdt , using Algorithm 2 takes Oðkdt kVk1 þ
kdt ðId þ IDndÞðrdt þ rdt�1ÞÞ time. Using Proposition 4.1, solving

the proximal step proxmgð½�ZZ1
t ; . . .;

�ZZD
t �Þ takes a total of

O
XD
d¼1

kdt kVk1 þ kdt ðId þ IDndÞðrdt þ rdt�1Þ
 !

; (35)

time. As the target tensor is low-rank, rdt ; k
d
t � Id for

d ¼ 1; . . .; D. Hence, (35) is much faster than directly using

Proposition 4.1 (OðQD
d¼1 Id

PD
d¼1 k

d
t Þ time).

4.4 The Proposed Algorithm
The whole procedure is shown in Algorithm 4. Unlike,
Algorithm 3, D SVTs have to be computed (steps 5-11) in
each iteration.

Analogous to Theorem 3.5, we have the following.

Theorem 4.3. Assume that (i) kdt � �kdt for d ¼ 1; . . .; D, all t and
J ¼ t; (ii) F ð½XX1

t ; . . .;XXD
t �Þ is upper bounded. The sequence

f½XX1
t ; . . .;XXD

t �g generated from Algorithm 4 converges to the
optimal solution with a Oð1=T 2Þ rate.

4.5 Post-Processing
As in Section 3.6, the nuclear norm regularizer in (30) may
over-penalize top singular values. To undo such shrinkage
and boost recovery performance, we also adopt post-
processing here. Let the tensor output from Algorithm 4

be XX ¼PD
d¼1 XXd, where XXd

dh i ¼ UdSdðV dÞ> has rank kd.

Define AAðu1; . . .; uDÞ ¼PD
d¼1ðUdDiagðudÞðV dÞ>Þ dh i. As in (22),

we replaceXX withAA u1�; . . .; u
D
�

� �
, where

½ðu1�Þ>; . . .; ðuD� Þ>�> ¼ arg min
u1;...;uD

fðu1; . . .; uDÞ; (36)

and

fðu1; . . .; uDÞ ¼
X

ði1;...;iDÞ2V
‘ðAAðu1; . . .; uDÞi1...iD ;OOi1...iDÞ:

As (36) is a smooth convex problem, L-BFGS is used for opti-

mization. Let Ud ¼ ½ud� and V d ¼ ½vd�. Then,rfðu1; . . .; uDÞ ¼
½ðw1Þ>; . . .; ðwDÞ>�> where wd ¼ ½wd

i � 2 kd, wd
i ¼ ðud

i Þ>BB dh ivdi ,

and BBi1...iD ¼ d‘ AAð½u1;...;uD�Þi1...iD ;OOi1...iDð Þ
dAAð½u1;...;uD�Þi1...iD

if ði1; . . .; iDÞ 2 V

and 0 otherwise. Computation of rfðu1; . . .; uDÞ takes
OðPD

d¼1 k
dkVk1Þ time, which is comparable to the per-

iteration complexity of AIS-Impute in (35) and is very
efficient. Thus, each L-BFGS iteration is inexpensive. As for

thematrix case, empirically, L-BFGS converges in fewer than
10 iterations. Thesemake post-processing very efficient.

Algorithm 4. AIS-Impute (Tensor Case)

Require: partially observed tensor OO, parameter �;
1: initialize c ¼ 1, XX1

0 ¼ � � � ¼ XXD
0 ¼ 0, XX1

1 ¼ � � � ¼ XXD
1 ¼ 0,

step-size m ¼ 1=ð ffiffiffiffi
D

p
rÞ, �̂ > maxd¼1;...;D�d and n 2 ð0; 1Þ;

2: for t ¼ 1; 2; . . .; T do
3: ut ¼ ðc� 1Þ=ðcþ 2Þ;
4: construct the sparse observed tensor SSt from (34);
5: for d ¼ 1; . . .; D do

6: ð�dÞt ¼ ð�̂� �dÞnt�1 þ �d;

7: �ZZd
t ¼ ð1þ utÞXXd

t � utXXd
t�1 þ mSSt

8: V d
t�1 ¼ V d

t�1 � V d
t ððV d

t Þ>V d
t�1Þ, remove zero columns;

9: Rd
t ¼ QRð V d

t ; V
d
t�1

� �Þ;
10: ½Ud

tþ1;S
d
tþ1; V

d
tþ1�

¼ approx-SVTðð �ZZd
t Þ dh i; R

d
t ;mð�dÞt; JÞ;

== XX d
dh i ¼ Ud

tþ1S
d
tþ1ðV d

tþ1Þ>
11: end for

12: if F ð½XX 1
tþ1; . . .;XXD

tþ1�Þ > F ð½XX 1
t ; . . .;XXD

t �Þ then c ¼ 1;

13: else c ¼ cþ 1; end if

14: end for
15: return Ud

tþ1, S
d
tþ1, V

d
tþ1 where d ¼ 1; . . .; D.

5 EXPERIMENTS

In this section, we perform experiments on matrix comple-
tion (Sections 5.1, 5.2, 5.3, 5.4, and 5.5) and tensor comple-
tion (Sections 5.6 and 5.7). Experiments are performed on a
PC with Intel Xeon E5-2695 CPU and 256 GB RAM.

5.1 Synthetic Data
In this section, we perform matrix completion experiments
with synthetic data. The ground-truth matrix has a rank of
5, and is generated as O ¼ UV 2 Rm�m, where the entries
of U 2 Rm�5 and V 2 R5�m are sampled i.i.d. from the stan-
dard normal distribution Nð0; 1Þ. Noise, sampled from
Nð0; 0:05Þ, is then added. We randomly choose 15m log ðmÞ
of the entries in O as observed. Half of them are used for
training, and the other half as validation set for parameter
tuning. Testing is performed on the unobserved (missing)
entries. We varym in the range f250; 1000; 4000g.

The following proximal algorithms are compared: (i)
accelerated proximal gradient algorithm (denoted “APG”)
[11]: It uses PROPACK to obtain singular values that are
larger than �; (ii) Soft-Impute [13]; (iii) AIS-Impute (the pro-
posed Algorithm 3); and (iv) AIS-Impute (exact): This is a
variant of the proposed algorithm with exact SVT step
(computed using PROPACK).

Let X be the recovered matrix. For performance evalua-
tion, we use the (i) normalized mean squared error NMSE ¼
kPV?ðX � UV ÞkF =kPV?ðUV ÞkF , and (ii) rank ofX. To reduce
statistical variability, experimental results are averaged over
5 repetitions.

Results2 are shown in Table 3. As can be seen, all algo-
rithms have similar NMSE performance, with Soft-Impute
being slightly worse. The plots of objective value versus time
and iterations are shown in Fig. 1. In terms of the number

2. The lowest and comparable results (according to the pairwise t-
test with 95 percent confidence) are highlighted.

YAO AND KWOK: ACCELERATED AND INEXACT SOFT-IMPUTE FOR LARGE-SCALE MATRIX AND TENSOR COMPLETION 1671

of iterations, the accelerated algorithms (APG, AIS-Impute
(exact) and AIS-Impute) are very similar and converge much
faster than Soft-Impute (which only has aOð1=T Þ convergence
rate). However, in terms of time, both APG and Soft-Impute
are slow, as APG does not utilize the “sparse plus low-rank”
structure and Soft-Impute has slow convergence. AIS-Impute
(exact) is consistently faster than APG and Soft-Impute, as
both acceleration and “sparse plus low-rank” structure are
utilized. However, AIS-Impute is the fastest as it further
allows inexact updates of the proximal step. This also verifies
ourmotivation of using the approximate SVT in Section 3.3.

Table 3 also shows the NMSE results with post-processing
(Section 3.6). Compared to the time used by the main algo-
rithm (Fig. 1), the post-processing time is small and can be
ignored. Thus, post-processing is always performed in the
sequel.

5.2 Recommender System
In this section, experiments are performed on two well-
known benchmark data sets,MovieLens and Netflix.

MovieLens. The MovieLens data set (Table 4) contains rat-
ings (f1; 2; 3; 4; 5g) of different users on movies. It has been
commonly used in matrix completion experiments [13], [28].
We randomly use 50 percent of the observed ratings for
training, 25 percent for validation and the rest for testing.

We compare AIS-Impute with the two most popular low-
rank matrix learning approaches [1], [9], namely, factoriza-
tion-based and nuclear-normminimization methods. The fac-
torization-based methods include (i) large scale matrix fit
(“LMaFit”) [32], which uses alternative minimization with
over-relaxation; (ii) alternative steepest descent (“ASD”) [33],
which uses alternating steepest descent; (iii) rank-one matrix
pursuit (“R1MP”) [34], which greedily pursues a rank-one
basis in each iteration. The nuclear-norm minimization meth-
ods include (i) active subspace selection (“active”) [28], which
uses the powermethod in each iteration to identify the active
row and column subspaces; (ii) a boosting approach
(“boost”) [31], which uses a variant of the Frank-Wolfe (FW)
algorithm [45], with local optimization in each iteration
using L-BFGS; (iii) sketchy decisions (“Sketchy”) [35], which
is also a FW variant, and uses randommatrix projection [17]
to reduce the space and per-iteration time complexities;
(iv) second-order trust-region algorithm (“TR”) [30],
which alternates fixed-rank optimization and rank-one
updates; (vi) stochastic gradient descent (“SSGD”) [37],
which is a stochastic gradient descent algorithm; and (v)
matrix completion based on fast alternating least squares

TABLE 3
Matrix Completion Results on the Synthetic Data

NMSE

without post-processsing with post-processing rank post-processing time

m ¼ 250 APG 0.0167 � 0.0007 0.0098 � 0.0001 5 0.01
(sparsity: 33.1%) Soft-Impute 0.0166 � 0.0007 0.0099 � 0.0001 5 0.01

AIS-Impute (exact) 0.0165 � 0.0007 0.0098 � 0.0001 5 0.01
AIS-Impute 0.0165 � 0.0007 0.0098 � 0.0001 5 0.01

m ¼ 1000 APG 0.0165 � 0.0001 0.0090 � 0.0001 5 0.01
(sparsity: 10.4%) Soft-Impute 0.0170 � 0.0005 0.0097 � 0.0001 5 0.03

AIS-Impute (exact) 0.0166 � 0.0001 0.0093 � 0.0001 5 0.02
AIS-Impute 0.0166 � 0.0001 0.0092 � 0.0001 5 0.02

m ¼ 4000 APG 0.0142 � 0.0002 0.0080 � 0.0001 5 0.05
(sparsity: 3.1%) Soft-Impute 0.0143 � 0.0003 0.0082 � 0.0002 5 0.18

AIS-Impute (exact) 0.0142 � 0.0002 0.0080 � 0.0001 5 0.11
AIS-Impute 0.0142 � 0.0002 0.0080 � 0.0001 5 0.13

Here, sparsity is the proportion of observed entries, and post-processing time is in seconds.

Fig. 1. Convergence of objective value on the synthetic data. Left: versus
CPU time (in seconds); Right: versus number of iterations (note that
AIS-Impute (exact) and AIS-Impute overlap with each other).

TABLE 4
MovieLens Data Sets Used in the Experiments

#users #movies # observed ratings

100K 943 1,682 100,000
1M 6,040 3,449 999,714
10M 69,878 10,677 10,000,054

1672 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 9, SEPTEMBER 2019

(“ALT-Impute”) [36], which is a fast variant of Soft-Impute
[13] that avoids SVD by alternating least squares. For all
algorithms, parameters are tuned using the validation set.
The algorithm is stopped when the relative change in objec-
tives between consecutive iterations is smaller than 10�4.

For performance evaluation, as in [13], [28], we use
(i) the root mean squared error on the test set: RMSE ¼
kPV̂ðX � ÔÞkF=ðkV̂k1Þ

1
2, where X is the recovered matrix,

and the testing ratings fÔijg is indexed by the set V̂; and
(ii) rank of X. The experiment is repeated 5 times and the
average performance is reported.

Results are shown in Table 5. As can be seen, AIS-Impute
is consistently the fastest and has the lowest RMSE.
On MovieLens-10M, TR and APG are not run as they are too
slow. Fig. 2 shows the testing RMSEwith CPU time. As can be
seen, Boost, TR, SSGD and APG are all very slow. Boost and
TR need to solve an expensive subproblem in each iteration;
SSGD has slow convergence; while APG requires SVD
and does not utilize the “sparse plus low-rank” structure for
fast matrix multiplication. ALT-Impute and LMaFit do not
need SVT, and are faster than Soft-Impute. However, their
nonconvex formulations have slow convergence, and are thus
slower than AIS-Impute. Overall, AIS-Impute is the fastest, as
it combines inexpensive iterationwith fast convergence.

Netflix. The Netflix data set contains ratings of 480,189
users on 17,770 movies. 1 percent of the ratings matrix are
observed. We randomly sample 50 percent of the observed
ratings for training, and the rest for testing.

We only compare with active subspace selection, ALT-
Impute and Soft-Impute; while methods including boost,

TR, SSGD, APG are slow and not compared. LMaFit solves
a different optimization problem based on matrix factoriza-
tion, and has worse recovery performance than AIS-Impute.
Thus, it is also not compared. As in [13], several choices of
the regularization parameter � are experimented.

Results are shown in Table 6. As in previous experi-
ments, the RMSEs and ranks obtained by the various
algorithms are similar. Fig. 3 shows the plot of testing
RMSE versus CPU time. As can be seen, AIS-Impute is again
much faster.

5.3 Grayscale Images
In this section, we perform experiments on images from [18]
(Figs. 4a, 4b, and 4c). The pixels are normalized to zero mean
and unit variance. Gaussian noise from Nð0; 0:05Þ is then
added. In each image, 50 percent of the pixels are randomly
sampled as observations (half for training and another half
for validation). The task is to fill in the remaining 80 percent
of the pixels. The experiment is repeated five times.

Table 7 shows the testing RMSE and recovered rank.
As can be seen, nuclear norm minimization is better in
terms of RMSE (in particular, AIS-Impute, ALT-Impute,
APG and boost are the best), though they require the use of
higher ranks. Fig. 5 shows the running time. As can be seen,
AIS-Impute is consistently the fastest.

Fig. 6 compares the difference between recovered images
from all algorithms and the clean one on image tree. As can
be seen, the difference on SSGD is the largest. Besides, LMa-
Fit, ASD, and R1MP and SSGD also have larger errors than

TABLE 5
Results on theMovieLens Data Sets

100K 1M 10M

RMSE rank RMSE rank RMSE rank

factorization LMaFit 0.896 � 0.011 3 0.827 � 0.002 6 0.819 � 0.001 12
ASD 0.905 � 0.055 3 0.826 � 0.004 6 0.816 � 0.002 12
R1MP 0.938 � 0.016 10 0.857 � 0.001 19 0.853 � 0.002 27

nuclear norm minimization active 0.880 � 0.003 8 0.821 � 0.001 16 0.803 � 0.001 72
boost 0.881 � 0.003 8 0.821 � 0.001 16 0.814 � 0.001 15

Sketchy 0.889 � 0.003 8 0.821 � 0.001 48 0.826 � 0.001 60
TR 0.884 � 0.002 8 0.820 � 0.001 20 — —

SSGD 0.886 � 0.011 8 0.849 � 0.006 16 0.858 � 0.014 45
APG 0.880 � 0.003 8 0.820 � 0.001 16 — —

Soft-Impute 0.881 � 0.003 8 0.821 � 0.001 16 0.803 � 0.001 72
ALT-Impute 0.882 � 0.003 8 0.823 � 0.001 16 0.805 � 0.001 45
AIS-Impute 0.880 � 0.003 8 0.820 � 0.001 16 0.802 � 0.001 72

Note that TR and APG cannot converge in 104 seconds on the 10M data set.

Fig. 2. Testing RMSE versus CPU time (in seconds) onMovieLens data sets.

YAO AND KWOK: ACCELERATED AND INEXACT SOFT-IMPUTE FOR LARGE-SCALE MATRIX AND TENSOR COMPLETION 1673

the rest. The observations on rice and wall are similar, how-
ever, due to space limitation, we do not show them here.

5.4 Nonconvex Regularization
In the following, we first perform experiments on (i) synthetic
data, using the setup in Section 5.1 (with m ¼ 250 and 1000);
and (ii) the recommender data set MovieLens-100K, using the
setup in Section 5.2. Three nonconvex low-rank regularizers
are considered, namely, truncated nuclear norm (TNN) [18],
capped-‘1 norm [42] and log-sum-penalty (LSP) [40].

For TNN, we compare three solvers: (i) TNNR(APG): the
solver used in [18]; (ii) IRNN [6], which is amore recent prox-
imal algorithm for optimization with nonconvex low-rank

matrix regularizers (including the TNN); and (iii) the pro-
posed AIS-Impute extension (denoted DC(AIS-Impute)),
which replaces the original APG solver in [18] for the sub-
problem in TNNR with AIS-Impute. For capped-‘1 and LSP,
two solvers are considered: (i) IRNN and (ii) the proposed
AIS-Impute extension. As a further baseline, we also com-
pare with (convex) nuclear norm regularization with the
AIS-Impute solver. Experiments are repeated five times.

Results are shown in Table 8 and Fig. 7. As can be seen,
the errors obtained by nonconvex regularization (i.e., TNN,
capped-‘1 and LSP) are much lower than those from convex
nuclear norm regularization, illustrating the advantage of
using nonconvex regularization. The performance obtained
by the different nonconvex regularizers are comparable.

5.5 Link Prediction
Given a graph with m nodes and an incomplete adjacency
matrix O 2 f�1gm�m, link prediction aims to recover a low-
rank matrix X 2 Rm�m such that the signs of Xij’s and Oij’s
agree on most of the observed entries. This is a binary

TABLE 6
Results on the Netflix Data Set

RMSE rank

c ¼ 10 active 0.894 � 0.001 3
ALT-Impute 0.900 � 0.006 3
Soft-Impute 0.893 � 0.001 3
AIS-Impute 0.893 � 0.001 3

c ¼ 20 active 0.847 � 0.001 14
ALT-Impute 0.850 � 0.001 14
Soft-Impute 0.847 � 0.001 14
AIS-Impute 0.847 � 0.001 14

c ¼ 30 active 0.820 � 0.001 116
ALT-Impute 0.825 � 0.001 116
AIS-Impute 0.820 � 0.001 116

The regularization parameter � in (1) is set as �0=c, where �0 ¼ kPVðOÞkF .
Soft-Impute with c ¼ 30 is not run as it is very slow.

Fig. 3. Testing RMSE versus CPU time (in minutes) on the Netflix data set, with various values for the regularization parameter �.

Fig. 4. Grayscale images used for matrix completion. Their sizes are
shown in the bracket.

TABLE 7
Matrix Completion Results on Grayscale Images

rice tree wall

RMSE rank RMSE rank RMSE rank

factorization LMaFit 0.189 � 0.002 45 0.174 � 0.013 25 0.238 � 0.004 50
ASD 0.194 � 0.020 45 0.142 � 0.004 25 0.189 � 0.012 50
R1MP 0.207 � 0.001 54 0.159 � 0.002 53 0.175 � 0.001 58

nuclear norm active 0.176 � 0.002 100 0.130 � 0.002 71 0.150 � 0.002 101
minimization boost 0.176 � 0.004 94 0.130 � 0.002 60 0.149 � 0.002 93

Sketchy 0.186 � 0.007 89 0.134 � 0.002 41 0.157 � 0.008 88
TR 0.179 � 0.001 150 0.131 � 0.002 103 0.151 � 0.001 149

SSGD 0.447 � 0.058 96 0.424 � 0.037 60 0.463 � 0.023 96
APG 0.176 � 0.001 96 0.130 � 0.002 60 0.151 � 0.001 96

Soft-Impute 0.176 � 0.001 113 0.131 � 0.004 71 0.151 � 0.002 112
ALT-Impue 0.176 � 0.004 96 0.130 � 0.004 71 0.150 � 0.001 95
AIS-Impute 0.176 � 0.001 96 0.219 � 0.002 70 0.150 � 0.001 95

CPU time is in seconds.

1674 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 9, SEPTEMBER 2019

matrix completion problem [3], and we use the logistic loss
‘ðXij; OijÞ 	 log 1þ expð�XijOijÞ

� �
in (19).

Experiments are performed on the Epinions and Slashdot
data sets [3] (Table 9). Each row/column of the matrixO cor-
responds to a user (users with fewer than two observations
are removed). For Epinions,Oij ¼ 1 if user i trusts user j, and
�1 otherwise. Similarly for Slashdot, Oij ¼ 1 if user i tags
user j as friend, and�1 otherwise. As can be seen fromprevi-
ous sections, Boost, TR, SSGD, APG and Soft-Impute are all
slow, and thus they are not considered here. Besides, LMaFit
and ALT-Impute are designed for the square loss. Thus,
comparison is performed with (i) active subspace selection;
(ii) AIS-Impute; and (iii) AltMin: the alternative minimiza-
tion approach used in [3]. We use 80 percent of the ratings
for training, 10 percent for validation and the rest for testing.
Let X be the recovered matrix, and the test set fÔijg
be indexed by the set V̂. For performance evaluation, we use
the (i) testing accuracy 1

kV̂k1
P

ði;jÞ2V̂ IðsignðXijÞ ¼ ÔijÞ, where

Ið�Þ is the indicator function; and (ii) the rank ofX. To reduce
statistical variability, experimental results are averaged
over 5 repetitions.

Results are shown in Table 10 and Fig. 8 shows the test-
ing accuracy with CPU time. As can be seen, active and
AIS-Impute have slightly better accuracies than AltMin,
and AIS-Impute is the fastest.

5.6 Tensor Completion: Synthetic Data
In this section, we perform tensor completion experiments
with synthetic data. The ground-truth data tensor (of
size m�m� 3) is generated as OO ¼ CC �1 A1 �2 A2 �3 A3,
where the elements of A1 2 Rm�3, A2 2 Rm�3, A3 2 R3�3

and the core tensor CC 2 R3�3 are all sampled i.i.d. from the
standard normal distribution Nð0; 1Þ, and �k is the k-mode
product.3 Thus, OO is low-rank for the first two mode but not
for the third. Noise GG, with elements sampled i.i.d. from the
normal distribution Nð0; 0:05Þ, is then added. A total num-
ber of V ¼ 45m log ðmÞ random elements in OO are observed.
Half of them are used for training, and the other half for vali-
dation. On testing, we perform evaluation on the unobserved

Fig. 5. Testing RMSE versus CPU time (in seconds) on grayscale images.

Fig. 6. Comparison on the difference between reconstructed images and the clean one on image tree.

Fig. 7. Convergence of testing RMSE versus CPU time (in seconds) on theMovieLens-100K data set.

3. The k-mode product of a tensor XX and a matrix A is defined as
XX �k A ¼ XX kh iA

� �
kh i [19].

YAO AND KWOK: ACCELERATED AND INEXACT SOFT-IMPUTE FOR LARGE-SCALE MATRIX AND TENSOR COMPLETION 1675

entries and use the same criteria as in Section 5.1, i.e., NMSE
and recovered rank in eachmode.

Similar to Section 5.1, we compare the following algo-
rithms: (i) APG; (ii) extension of Soft-Impute to tensor com-
pletion, which is based on Section 4.2; (iii) the proposed
algorithm with exact SVD (AIS-Impute(exact)); and (iv) the
proposed algorithm which uses power method to approxi-
mate SVT (AIS-Impute).

As suggested in [22], we set ð�1; �2; �3Þ in the scaled

latent nuclear norm to ð1; 1;
ffiffiffi
m

p ffiffi
3

p Þ�. Thus, the only tunable

parameter is �, which is obtained by grid search using
the validation set. We also vary m in f125; 500; 2000g.
Experimental results are averaged over 5 repetitions.

Results on NMSE and rank are shown in Table 11.
As can be seen, APG, Soft-Impute, AIS-Impute(exact) and
AIS-Impute have comparable performance. The plots of
objective value versus time and iterations are shown in Fig. 9.
In terms of iterations, APG, AIS-Impute(exact) and AIS-
Impute have similar behavior as they all have Oð1=T 2Þ con-
vergence rate. These also agree with thematrix case in Section
5.1. In terms of time, as APG does not utilize the “sparse plus
low-rank” structure, it is slower than AIS-Impute(exact)
and AIS-Impute. AIS-Impute is the fastest, as it has both fast
Oð1=T 2Þ convergence rate and low per-iteration complexity.

Performance with post-processing in Section 4.5 is shown
in Table 11. As can be seen, it is very efficient and improves
NMSE. Thus, we always perform post-processing in the
sequel.

5.7 Multi-Relational Link Prediction
In this section, we perform experiments on the YouTube data
set [46]. It contains 15,088 users, and describes five types of
user interactions: contact, number of shared friends, num-
ber of shared subscriptions, number of shared subscribers,
and the number of shared favorite videos. Thus, it forms a
15;088� 15;088� 5 tensor, with a total of 27,257,790 non-
zero elements. Following [3], we formulate multi-relational
link prediction as a tensor completion problem. As the
observations are real-valued, we use the square loss in (30).
Besides AIS-Impute (Algorithm 4), we also compare with the
following state-of-the-art non-proximal-based tensor com-
pletion algorithms: (i) geometric nonlinear CG for tensor
completion (denoted “GeomCG”) [47]: a gradient descent
approach with gradients restricted on the Riemannian mani-
fold; (ii) An alternating direction method of multipliers
approach (denoted “ADMM(overlap)”) [20], which solves
the overlapping nuclear norm regularized tensor completion
problem; (iii) fast low rank tensor completion (denoted
“FaLRTC”) [4]: It smooths the overlapping nuclear norm
and then solves the relaxed problem with accelerated gradi-
ent descent; and (iv) tensor completion by parallel matrix
factorization (denoted “TMac”) [48]: An extension of LMaFit
[32] to tensor completion, which performs simultaneous
low-rankmatrix factorizations to all modematricizations.

YouTube Subset. First, we perform experiments on a small
YouTube subset, obtained by random selecting 1,000 users
(leading to 12,101 observations). We use 50 percent of the
observations for training, another 25 percent for validation
and the remaining for testing. Let XX be the recovered
tensor, and the testing ratings Ôij be indexed by the set V̂.
For performance evaluation, we use (i) the testing root

mean squared error RMSE ¼
ffi
kPV̂ðXX � ÔOÞk2F=kV̂k1

q
; and

TABLE 9
Data Sets for Link Prediction

#rows #columns #signs

Epinions 84,601 48,091 505,074
Slashdot 70,284 32,188 324,745

TABLE 10
Performance on Link Prediction

accuracy rank

Epinions active 0.939 � 0.002 12
AltMin 0.936 � 0.002 41
AIS-Impute 0.940 � 0.001 12

Slashdot active 0.844 � 0.001 16
AltMin 0.839 � 0.002 39
AIS-Impute 0.843 � 0.001 16 Fig. 8. Testing accuracy versus CPU time (in seconds) on the Epinions

and Slashdot data sets.

TABLE 8
Comparison of Nuclear Norm Regularization with Various Nonconvex Regularizations

NMSE RMSE

synthetic (m ¼ 250) synthetic (m ¼ 1000) MovieLens-100K

nuclear norm AIS-Impute 0.0098 � 0.0004 0.0092 � 0.0002 0.883 � 0.005
TNN TNNR(APG) 0.0081 � 0.0004 0.0073 � 0.0001 0.851 � 0.002

IRNN 0.0081 � 0.0004 0.0073 � 0.0001 0.853 � 0.004
DC(AIS-Impute) 0.0081 � 0.0004 0.0073 � 0.0002 0.851 � 0.002

capped-‘1 IRNN 0.0089 � 0.0005 0.0074 � 0.0001 0.853 � 0.002
DC(AIS-Impute) 0.0081 � 0.0004 0.0073 � 0.0002 0.852 � 0.005

LSP IRNN 0.0083 � 0.0004 0.0076 � 0.0001 0.852 � 0.006
DC(AIS-Impute) 0.0081 � 0.0004 0.0073 � 0.0002 0.850 � 0.002

1676 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 9, SEPTEMBER 2019

(ii) rank of the unfolded matrix in each mode. The experi-

ments are repeated five times.
Performance is shown in Table 12 and Fig. 10a shows the

time comparison. ADMM(overlap) and FaLRTC have simi-
lar recovery performance, but are all very slow due to usage
of the SVD. As the overlapping nuclear norm is smoothed
in FaLRTC, its cannot exactly recover a low-rank tensor.
TMac is fast, but has the worst recovery performance. AIS-
Impute enjoys fast speed and good recovery performance.

Full YouTube Data. Next, we perform experiments on the
full YouTube data set with the same setup. As ADMM
(overlap) and FaLRTC are too slow, we only compare with
GeomCG, TMac and AIS-Impute. Experiments are repeated
five times.

Results are shown in Table 13, and Fig. 10b shows the
time. TMac has much worse performance than GeomCG
and AIS-Impute. GeomCG is based on the (nonconvex)
Turker decomposition, and its convergence rate is
unknown. Moreover, its iteration time complexity has a

TABLE 11
Tensor Completion Results on the Synthetic Data

NMSE

no post-processing with post-processing rank post-processing time

m ¼ 125 APG 0.0162 � 0.0015 0.0100 � 0.0006 3,3,0 0.1
(sparsity: 62.4%) Soft-Impute 0.0162 � 0.0014 0.0100 � 0.0005 3,3,0 0.1

AIS-Impute(exact) 0.0161 � 0.0015 0.0100 � 0.0005 3,3,0 0.1
AIS-Impute 0.0159 � 0.0011 0.0099 � 0.0004 3,3,0 0.1

m ¼ 500 APG 0.0166 � 0.0007 0.0105 � 0.0004 3,3,0 0.1
(sparsity: 16.0%) Soft-Impute 0.0168 � 0.0007 0.0106 � 0.0004 3,3,0 0.1

AIS-Impute(exact) 0.0167 � 0.0006 0.0104 � 0.0003 3,3,0 0.1
AIS-Impute 0.0167 � 0.0007 0.0105 � 0.0003 3,3,0 0.1

m ¼ 2000 APG 0.0162 � 0.0013 0.0105 � 0.0006 3,3,0 0.5
(sparsity: 3.9%) Soft-Impute 0.0168 � 0.0016 0.0109 � 0.0011 3,3,0 0.4

AIS-Impute(exact) 0.0161 � 0.0012 0.0104 � 0.0007 3,3,0 0.4
AIS-Impute 0.0161 � 0.0012 0.0104 � 0.0007 3,3,0 0.1

Here, sparsity is the proportion of observed entries, and post-processing time is in seconds.

Fig. 9. Convergence of objective value on the synthetic tensor data. Left:
versus number of iterations. Right: versus CPU time (in seconds).

TABLE 12
Results on the YouTube Subset

RMSE rank

GeomCG 0.672 � 0.050 7, 7, 5
ADMM(overlap) 0.690 � 0.030 142, 142, 5
FaLRTC 0.672 � 0.032 1000, 1000, 5
TMac 0.786 � 0.027 4, 4, 0
AIS-Impute 0.616 � 0.029 33, 33, 0

The rank is for each mode.

Fig. 10. Testing RMSE versus CPU time on the Youtube data set.

TABLE 13
Results on the Full YouTube Dataset

RMSE rank

GeomCG 0.388 � 0.001 51, 51, 5
TMac 0.611 � 0.007 10, 10, 0
AIS-Impute 0.369 � 0.006 70, 70, 0

The rank is for each mode.

YAO AND KWOK: ACCELERATED AND INEXACT SOFT-IMPUTE FOR LARGE-SCALE MATRIX AND TENSOR COMPLETION 1677

worse dependency on the tensor rank than AIS-Impute
(
QD

i¼1 r
d
t versus

PD
i¼1 r

d
t), and thus GeomCG becomes very

slow when the tensor rank is large. Overall, AIS-Impute has
fast speed and good recovery performance.

6 CONCLUSION

In this paper, we show that Soft-Impute, as a proximal algo-
rithm, can be accelerated without losing the “sparse plus
low-rank” structure crucial to its efficiency. To further
reduce the per-iteration time complexity, we proposed an
approximate-SVT scheme based on the power method. The-
oretical analysis shows that the proposed algorithm still
enjoys the fast Oð1=T 2Þ convergence rate. We also extend
the proposed algorithm for low-rank tensor completion
with the scaled latent nuclear norm regularizer. Again, the
“sparse plus low-rank” structure can be preserved and a
convergence rate of Oð1=T 2Þ can be obtained. The proposed
algorithm can be further extended to nonconvex low-rank
regularizers, which have better empirical performance than
the convex nuclear norm regularizer. Extensive experiments
on both synthetic and real-world data sets show that the
proposed algorithm is much faster than the state-of-the-art.

ACKNOWLEDGMENTS

This research was supported in part by the Research Grants
Council of the Hong Kong Special Administrative Region
(Grant 614513). The first author is especially thankful for
support from 4Paradigm Inc.

REFERENCES

[1] Y. Koren, “Factorization meets the neighborhood: A multifaceted
collaborative filtering model,” in Proc. 14th Int. Conf. Knowl. Dis-
covery Data Mining, 2008, pp. 426–434.

[2] M. Kim and J. Leskovec, “The network completion problem:
Inferring missing nodes and edges in networks,” in Proc. 11st Int.
Conf. Data Mining, 2011, pp. 47–58.

[3] K.-Y. Chiang, C.-J. Hsieh, N. Natarajan, I. Dhillon, and A. Tewari,
“Prediction and clustering in signed networks: A local to global
perspective,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1177–1213,
2014.

[4] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 1, pp. 208–220, Jan. 2013.

[5] S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, and L. Zhang, “Weighted
nuclear norm minimization and its applications to low level
vision,” Int. J. Comput. Vis., vol. 121, no. 2, pp. 183–208, 2017.

[6] C. Lu, J. Tang, S. Yan, and Z. Lin, “Nonconvex nonsmooth low
rank minimization via iteratively reweighted nuclear norm,” IEEE
Trans. Image Process., vol. 25, no. 2, pp. 829–839, Feb. 2016.

[7] Z. Zhao, L. Zhang, X. He, and W. Ng, “Expert finding for question
answering via graph regularized matrix completion,” IEEE Trans.
Knowl. Data Eng., vol. 27, no. 4, pp. 993–1004, Apr. 2015.

[8] J. Fan, Z. Tian, M. Zhao, and T. Chow, “Accelerated low-rank
representation for subspace clustering and semi-supervised classi-
fication on large-scale data,” Neural Netw., vol. 100, pp. 39–48,
2018.

[9] E. Cand�es and B. Recht, “Exact matrix completion via convex
optimization,” Found. Comput. Math., vol. 9, no. 6, pp. 717–772,
2009.

[10] J.-F. Cai, E. Cand�es, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM J. Optimization, vol. 20,
no. 4, pp. 1956–1982, 2010.

[11] K.-C. Toh and S. Yun, “An accelerated proximal gradient algo-
rithm for nuclear norm regularized linear least squares prob-
lems,” Pacific J. Optimization, vol. 6, no. 615–640, 2010, Art. no. 15.

[12] R. Larsen, “Lanczos bidiagonalization with partial reortho-
gonalization,”Department of Computer Science, AarhusUniversity,
DAIMI PB-357, 1998.

[13] R. Mazumder, T. Hastie, and R. Tibshirani, “Spectral regulariza-
tion algorithms for learning large incomplete matrices,” J. Mach.
Learn. Res., vol. 11, pp. 2287–2322, 2010.

[14] R. Tibshirani, “Proximal gradient descent and acceleration,”
Lecture Notes, 2010, [Online]. Available: http://www.stat.cmu.
edu/ ryantibs/convexopt-S15/lectures/08-prox-grad.pdf

[15] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2,
no. 1, pp. 183–202, 2009.

[16] S. Ji and J. Ye, “An accelerated gradient method for trace norm
minimization,” in Proc. 26th Int. Conf. Mach. Learn., 2009, pp. 457–
464.

[17] N. Halko, P.-G. Martinsson, and J. Tropp, “Finding structure with
randomness: Probabilistic algorithms for constructing approxi-
mate matrix decompositions,” SIAM Rev., vol. 53, no. 2, pp. 217–
288, 2011.

[18] Y. Hu, D. Zhang, J. Ye, X. Li, and X. He, “Fast and accurate matrix
completion via truncated nuclear norm regularization,” IEEE Trans.
PatternAnal.Mach. Intell., vol. 35, no. 9, pp. 2117–2130, Sep. 2013.

[19] T. Kolda and B. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[20] R. Tomioka, K. Hayashi, and H. Kashima, “Estimation of low-rank
tensors via convex optimization,” arXiv:1010.0789, University of
Tokyo, Tokyo, Japan, 2010.

[21] E. Acar, D. Dunlavy, T. Kolda, and M. Mørup, “Scalable tensor
factorizations for incomplete data,” Chemometrics Intell. Laboratory
Syst., vol. 106, no. 1, pp. 41–56, 2011.

[22] K. Wimalawarne, M. Sugiyama, and R. Tomioka, “Multitask
learning meets tensor factorization: Task imputation via convex
optimization,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2014,
pp. 2825–2833.

[23] Q. Yao and J. T. Kwok, “Accelerated inexact soft-impute for fast
large-scale matrix completion,” in Proc. 24th Int. Joint Conf. Artif.
Intell., 2015, pp. 4002–4008.

[24] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Opti-
mization, vol. 1, no. 3, pp. 127–239, 2014.

[25] L. Jacob, G. Obozinski, and J.-P. Vert, “Group lasso with overlap
and graph lasso,” in Proc. 26th Int. Conf. Mach. Learn., 2009,
pp. 433–440.

[26] M. Schmidt, N. Roux, and F. Bach, “Convergence rates of inexact
proximal-gradient methods for convex optimization,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2011, pp. 1458–1466.

[27] K. Wu and H. Simon, “Thick-restart Lanczos method for large
symmetric eigenvalue problems,” SIAM J. Matrix Anal. Appl.,
vol. 22, no. 2, pp. 602–616, 2000.

[28] C.-J. Hsieh and P. Olsen, “Nuclear norm minimization via active
subspace selection,” in Proc. 31st Int. Conf. Mach. Learn., 2014,
pp. 575–583.

[29] B. O’Donoghue and E. Cand�es, “Adaptive restart for accelerated
gradient schemes,” Found. Comput. Math., vol. 15, pp. 1–18, 2012.

[30] B. Mishra, G. Meyer, F. Bach, and R. Sepulchre, “Low-rank
optimization with trace norm penalty,” SIAM J. Optimization,
vol. 23, no. 4, pp. 2124–2149, 2013.

[31] X. Zhang, D. Schuurmans, and Y.-L. Yu, “Accelerated training for
matrix-norm regularization: A boosting approach,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2012, pp. 2906–2914.

[32] Z. Wen, W. Yin, and Y. Zhang, “Solving a low-rank factorization
model for matrix completion by a nonlinear successive over-relax-
ation algorithm,” Math. Program. Comput., vol. 4, no. 4, pp. 333–
361, 2012.

[33] J. Tanner and K. Wei, “Low rank matrix completion by alternating
steepest descent methods,” Appl. Comput. Harmonic Anal., vol. 40,
no. 2, pp. 417–429, 2016.

[34] Z. Wang, M. Lai, Z. Lu, W. Fan, H. Davulcu, and J. Ye,
“Orthogonal rank-one matrix pursuit for low rank matrix com-
pletion,” SIAM J. Sci. Comput., vol. 37, no. 1, pp. A488–A514, 2015.

[35] A. Yurtsever, M. Udell, J. Tropp, and V. Cevher, “Sketchy deci-
sions: Convex low-rank matrix optimization with optimal
storage,” in Proc. 20th Int. Conf. Artif. Intell. Statist., 2017, pp. 1188–
1196.

[36] T. Hastie, R. Mazumder, J. Lee, and R. Zadeh, “Matrix completion
and low-rank SVD via fast alternating least squares,” J. Mach.
Learn. Res., vol. 16, pp. 3367–3402, 2015.

[37] H. Avron, S. Kale, V. Sindhwani, and S. Kasiviswanathan,
“Efficient and practical stochastic subgradient descent for nuclear
norm regularization,” in Proc. 29th Int. Conf. Mach. Learn., 2012,
pp. 1231–1238.

1678 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 31, NO. 9, SEPTEMBER 2019

http://www.stat.cmu.edu/ ryantibs/convexopt-S15/lectures/08-prox-grad.pdf
http://www.stat.cmu.edu/ ryantibs/convexopt-S15/lectures/08-prox-grad.pdf

[38] J. Nocedal and S. Wright, Numerical Optimization. Berlin,
Germany: Springer, 1999.

[39] L. An and P. Tao, “The DC (difference of convex functions)
programming and DCA revisited with DC models of real world
nonconvex optimization problems,” Ann. Operations Res., vol. 133,
no. 1/4, pp. 23–46, 2005.

[40] E. Cand�es, M. Wakin, and S. Boyd, “Enhancing sparsity
by reweighted ‘1 minimization,” J. Fourier Anal. Appl., vol. 14,
no. 5/6, pp. 877–905, 2008.

[41] C. Zhang, “Nearly unbiased variable selection under minimax
concave penalty,” sAnnals Statist., vol. 38, no. 2, pp. 894–942, 2010.

[42] T. Zhang, “Analysis of multi-stage convex relaxation for sparse
regularization,” J. Mach. Learn. Res., vol. 11, pp. 1081–1107, 2010.

[43] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge University Press, 2009.

[44] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the alternat-
ing direction method of multipliers,” Found. Trends Mach. Learn.,
vol. 3, pp. 1–122, 2011.

[45] M. Frank and P. Wolfe, “An algorithm for quadratic pro-
gramming,”Naval Res. Logistics, vol. 3, no. 1/2, pp. 95–110, 1956.

[46] T. Lei, X. Wang, and H. Liu, “Uncoverning groups via heteroge-
neous interaction analysis,” in Proc. IEEE Int. Conf. Data Mining,
2009, pp. 503–512.

[47] D. Kressner, M. Steinlechner, and B. Vandereycken, “Low-rank
tensor completion by Riemannian optimization,” BIT Numerical
Math., vol. 54, no. 2, pp. 447–468, 2014.

[48] Y. Xu, R. Hao, W. Yin, and Z. Su, “Parallel matrix factorization for
low-rank tensor completion,” Inverse Problems Imag., vol. 9, no. 2,
2013, pp. 601–624.

Quanming Yao received the bachelor’s degree in
electronic and information engineering from the
Huazhong University of Science and Technology
(HUST), in 2013, and the PhD degree from
Computer Science and Engineer Department,
Hong Kong University of Science and Technology
(HKUST), in 2018. His research interests focus
on machine learning. Currently, he is a research
scientist in 4Paradigm Inc., Beijing, China. He was
awarded as Qiming Star of HUST in 2012, the Tse
Cheuk Ng Tai Research Excellence Prize from

HKUST in 2015, and a Google PhD fellowship (machine learning) in
2016. He is a member of the IEEE.

James T. Kwok received the PhD degree in com-
puter science from theHongKongUniversity of Sci-
ence and Technology, in 1996. He was with the
Department of Computer Science, Hong Kong
Baptist University, Hong Kong, as an assistant pro-
fessor. He is currently a professor with the Depart-
ment of Computer Science and Engineering, Hong
Kong University of Science and Technology.
His research interests include kernel methods,
machine learning, example recognition, and artifi-
cial neural networks. He received the 2004 IEEE

Outstanding Paper Award, and the Second Class Award in Natural Scien-
ces by the Ministry of Education, Peoples Republic of China, in 2008. He
has been a program cochair for a number of international conferences, and
served as an associate editor for the IEEE Transactions on Neural
Networks and Learning Systems and the Neurocomputing Journal. He is a
fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YAO AND KWOK: ACCELERATED AND INEXACT SOFT-IMPUTE FOR LARGE-SCALE MATRIX AND TENSOR COMPLETION 1679

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

