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The Evidence Framework Applied to Support Vector Machines
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Abstract—In this paper, we show that training of the support
vector machine (SVM) can be interpreted as performing the level
1 inference of MacKay’s evidence framework. We further on show
that levels 2 and 3 of the evidence framework can also be applied
to SVMs. This integration allows automatic adjustment of the reg-
ularization parameter and the kernel parameter to their near-op-
timal values. Moreover, it opens up a wealth of Bayesian tools for
use with SVMs. Performance of this method is evaluated on both
synthetic and real-world data sets.

Index Terms—Bayesian inference, evidence framework, support
vector machine (SVM).

I. INTRODUCTION

In recent years, there has been a lot of interest in studying the
support vector machine (SVM) [5], [6], [17], [19], [20]. SVM
is based on the idea ofstructural risk minimization(SRM)
[19], which shows that the generalization error is bounded by
the sum of the training set error and a term depending on the
Vapnik–Chervonenkis dimension of the learning machine. By
minimizing this upper bound, high generalization performance
can be achieved. Moreover, unlike other machine learning
methods, SVMs generalization error is related not to the input
dimensionality of the problem, but to the margin with which
it separates the data. This explains why SVMs can have good
performance even in problems with a large number of inputs
[7], [15]. To date, SVM has been successfully applied to a wide
range of problems, including pattern recognition, regression,
time series prediction and density estimation.

However, to obtain a high level of performance, some param-
eters in the SVM still have to be tuned. These include

• a regularization parameter, which determines the tradeoff
between minimizing training errors and minimizing model
complexity;

• a kernel parameter, which implicitly defines the high di-
mensional feature space to be used.

These parameters are sometimes just hand-picked by the user. A
more disciplined approach is to use a validation set [13], or by
data-resampling techniques such as cross-validation and boot-
strapping. However, these methods can be very expensive in
terms of computation time and/or training data. Alternatively,
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one can utilize an upper bound on the generalization error pre-
dicted by the theory of SRM [19]. Experiments in [5], [15], and
[19] indicated that the bounds are very loose, though the min-
imum of the bound seems to approximately coincide with the
minimum of the generalization error.

On the other hand, this problem of finding good parame-
ters also exists in the realm of feedforward neural networks.
For example, one has to set a regularization parameter when
using weight decay. Also, one needs to determine some model
parameters (such as the number of hidden layers in the net-
work and the number of hidden units in each layer) in order
to obtain an optimal network architecture for a particular appli-
cation. Recently, various researchers [4], [9], [10], [14], [18],
[21] have applied Bayesian methods to tackle these problems.
In general, the Bayesian approach is attractive in being logi-
cally consistent, simple, and flexible. Compared with the tra-
ditional approach, the Bayesian methods mentioned above pro-
vide a rigorous framework for the automatic adjustment of the
regularization parameters to their near-optimal values, without
the need to set data aside in a validation set. Moreover, the
Bayesian framework allows objective comparison among solu-
tions using different network architectures. Bayesian techniques
also offer some other important features. For example, in re-
gression problems, error bars can be assigned to network pre-
dictions [10]. In classification problems, by using the moder-
ated outputs [11], the tendency by conventional approaches of
making over-confident predictions in regions of sparse data can
be avoided. Among others, Bayesian techniques have also been
used for active learning [12] and in forming a committee of net-
works [18]. It is thus promising to integrate SVMs with these
Bayesian ideas.

A Bayesian interpretation of the SVM has been proposed by
Smolaet al. [16]. In particular, they showed that the use of
different kernels in SVM can be regarded as defining different
prior probability distributions on the function space, as

. Here, is a constant and is the reg-
ularization operator corresponding to the selected kernel. This
prior, however, is based on a function-space view and cannot be
readily incorporated into popular Bayesian techniques like [10],
[18], whose priors are based on a weight-space view.

In this paper, we develop an alternate Bayesian interpretation
of SVM from a weight-space view and then apply a well-known
Bayesian approach, MacKay’s evidence framework [10], to
SVM. We will focus our attention on classification problems.
The rest of this paper is organized as follows. Brief introduc-
tions to the SVM and the evidence framework are given in
Sections II and III, respectively. Section IV discusses how these
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Fig. 1. True and approximated probabilities.

two methods can be combined, and then be used to determine
near-optimal values for the regularization parameter and the
kernel parameter. Simulation results are presented in Section V,
and the last section gives some concluding remarks.

II. SVMs FOR CLASSIFICATION

In this section, we briefly review the use of SVMs in classifi-
cation problems. For more details and also on the use of SVMs
in other kinds of problems, interested readers may consult [5],
[19], [20].

Let the training set be , with each input
and the output label . The SVM first maps

from the input space to in a feature space .
Consider the case when the data is linearly separable in, i.e.,
there exists a vector and a scalar such that

for all patterns in the training set. The SVM
constructs a hyperplane for which the separation
between the positive and negative examples is maximized. It
can be shown [6] that the for this “optimal” hyperplane can
be found by minimizing , and the resultant solution can be
written as for some . This vector of

’s, , can be found by solving the following
quadratic programming (QP) problem: maximize

(1)

with respect to , under the constraints and ,
where and is a symmetric matrix
with elements . To obtain , one does not
need to use the mappingto explicitly get and . Instead,
under certain conditions, one can find akernel such that

. Moreover, notice that is always positive

semidefinite and so there is no local optima while maximizing
(1). For those ’s greater than zero, the corresponding training
examples must lie along the margins of the decision boundary
(by the Kuhn–Tucker theorem), and these are called thesupport
vectors.

During testing, for a test vector , we first compute
the activation

(2)

The class label for is then assigned by the following rule:

otherwise.

When the training set is not separable in, the SVM al-
gorithm introduces nonnegative slack variables

[6]. The resultant problem becomes

minimize (3)

subject to . Here, is a
regularization parameter controlling the tradeoff between model
complexity [the first term in (3)] and training error (the second
term) in order to ensure good generalization performance. The
variable , whenever it is nonzero, measures the (absolute) dif-
ference between and , and may be written con-
cisely as

(4)
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Fig. 2. r(u).

where . Again, minimization of (3) can be trans-
formed to a QP problem: maximize (1) subject to the constraints

and .

III. T HE EVIDENCE FRAMEWORK

The evidence framework is a Bayesian framework proposed
by MacKay [10], [11]. Computationally, it is equivalent to the
type II maximum likelihoodmethod in Bayesian statistics [1].
The evidence framework has been applied successfully to the
learning of feedforward neural networks in both classification
and regression problems. In this section, we review the evidence
framework as applied to classification problems [11].

First, we introduce some notations used in the evidence
framework. A model , with a -dimensional parameter
vector , consists of its functional form , the distribution

that the model makes about the data, and a prior
parameter distribution , which is usually written in
the form

(5)

Here, is a regularization parameter and
is for normalization.

A. Level 1 Inference

The evidence framework is divided into three levels of infer-
ence. For a given value of, the first level of inference infers
the posterior distribution of by the Bayes rule

(6)

Substituting in (5), the posterior distribution ofthen becomes

(7)

where , and
. Minimizing is thus the same as finding

the maximum a posteriori(MAP) estimate of . In the
sequel, we will denote simply as .

B. Level 2 Inference

The second level of inference determines the value of, by
maximizing . When
is a flat prior, the evidence for , can be used to
assign a preference to alternative values of. By approximating1

the posterior distribution of in (7) by a single Gaussian at
, as
, where , the evidence for can be obtained

by integrating out as [10]

(8)

where and are the values of and evaluated at
.

One can also obtain an near-optimal value ofin an iterative
manner. First, by setting the derivative of (8) to zero, the fol-

1Notice that while we need to take the Gaussian approximation to the poste-
rior distribution ofw, no such approximation is needed forp(D jw;H).
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Fig. 3. The data set used in the toy problem.

lowing condition for the most probable value of , can be
obtained

(9)

where

(10)

is called theeffective number of parameters. An near-optimal
value of is then obtained by iterating the process of finding

and reestimating by (9).

C. Level 3 Inference

The third level of inference in the evidence framework ranks
different models by examining their posterior probabilities

. Assuming a flat prior for all
models, different models can then be rated by their evidence

. Again, this is obtained by integrating out, as
. Using a Gaussian

approximation for , it can be shown that [10]

(11)

IV. A PPLYING THEEVIDENCE FRAMEWORK TO SVM

In Section IV-A, we develop a Bayesian interpretation for the
SVM from a weight-space view and show that minimizing (3)
during SVM training can be interpreted as performing the level
1 inference of the evidence framework. Then in Sections IV-B

and –C, we proceed further and use levels 2 and 3 of the evidence
framework to determine the regularization parameter and the
kernel parameter.

A. A Bayesian Interpretation for SVM

Assuming that the patterns are independently identically
distributed (i.i.d.), then

, and (6) becomes

(12)

Consider the following probability model.

• The prior over is the Gaussian prior
.

• The probability density function for
is given by

Substituting these probabilities into (12), we obtain

constant
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(a)

(b)

Fig. 4. Results on using different values ofC (polynomial kernel). (a) Toy problem. (b) Image segmentation.

This cannot be cast readily under the SVM framework. How-
ever, if we take the approximation that

using (4). Then, on substituting this approximated probability
model back into (12), we get

constant

The last two terms on the right do not depend on. Hence, by
setting , optimizing (3) can be regarded2 as finding
the MAP estimate of . In other words, training of the
SVM can be regarded as approximately performing the first
level of inference in the evidence framework. A comparison of
the true and approximated probability distributions is shown
in Fig. 1.

2Notice that the constraintsy a � 1� � ; i = 1; . . . ; N in (3) have
been implicitly taken care of by the equation[1� y a ] = � .
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(c)

Fig. 4. (Continued.) Results on using different values ofC (polynomial kernel). (c) Breast cancer.

Note that this Bayesian interpretation can also be applied
to regression problems, with being replaced by a different
loss function (such as the-insensitive loss function). Again,
each loss function corresponds to a different noise model. For
an overview of some common loss functions and their corre-
sponding noise models, interested readers may consult [17].

Considering the case when the training set is separable in,
let be the largest Lagrangian multiplier in the set of sup-
port vectors. We can view the training process as minimizing (3)
with . With a larger , both and will
remain unchanged. Hence, effectively, we can take
in (3).

B. Computing the Hessian

To proceed under the evidence framework, we next have to
determine the Hessian

(13)

Recall that with . How-
ever, is not smooth and does not have second derivative.
Hence, we replace it by the sigmoid function

(14)

and becomes . Differentiating with re-
spect to , we obtain

, where the prime denotes the derivative with
respect to the argument of . From (2), and
. Differentiating once more, we obtain

, where . Fig. 2
shows a plot of , which has the shape of a Mexican hat and
is concentrated around .

Noting that , (13) thus becomes

(15)

where

(16)

Denote the eigenvalues and eigenvectors ofby and ,
respectively. As , all ’s with

must lie in the span of , i.e.,

(17)

Moreover, (17) implies that there are at mostindependent
’s (and at most nonzero eigenvalues). For a particular

, consider . Using (16) and (17),
we have
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(a)

(b)

Fig. 5. Results on using different values ofC (Gaussian kernel). (a) Toy problem. (b) Image segmentation.

Or, in matrix form, , where is the -vector
, is the matrix with entries

, and is another matrix with
entries . Assuming that is invertible,
we have

(18)

Solving this eigensystem and using (2), we can obtain the eigen-
values of as

(19)

The solving of the eigensystem in (18) has time com-
plexity, which can be computationally expensive for large.
However, as can be seen from Fig. 2, the value ofis very
small when is large, and so is dominated by pat-
terns whose is almost the same as. We can thus reduce the
complexity significantly by only including those patterns in the
computation.

C. Levels 2 and 3 Inference for SVM

Level 2 inference determines the value ofby maximizing
in (8). In the following, denote the number of
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(c)

Fig. 5. (Continued.) Results on using different values ofC (Gaussian kernel). (c) Breast cancer.

TABLE I
RESULTSOBTAINED BY ITERATING LEVELS 1 AND 2 (POLYNOMIAL KERNEL)

TABLE II
RESULTSOBTAINED BY ITERATING LEVELS 1 AND 2 (GAUSSIAN KERNEL)

nonzero eigenvalues of by . Then, using (19), we
obtain

(20)

To obtain the model evidence in level 3 inference or
to obtain iterates of in level 2 inference, the effective number
of parameters in (10) has to be computed. This involves
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(a)

(b)

Fig. 6. Results on using different values ofd (polynomial kernel). (a) Toy problem. (b) Image segmentation.

the calculation of , which, again, can be computed
readily from the eigenvalues of in (19), as

V. SIMULATION

In this section, we report results on applying the ev-
idence framework to SVMs, with polynomial kernel

and Gaussian kernel
. Three data sets are

used in the experiments and they are described in Section V-A.
Section V-B reports results on choosing the regularization
parameter (or, equivalently, ) using the level 2 inference
of the evidence framework. Section V-C presents results on
choosing the kernel parameters (or ) using the level 3
inference.



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 5, SEPTEMBER 2000 1171

(c)

Fig. 6. (Continued.) Results on using different values ofd (polynomial kernel). (c) Breast cancer.

In the experiments, in (14) is set to 100. Moreover, some-
times when the regularization parameter is set to an extreme
value, all the eigenvalues of are numerically very close
to zero. In this case, we suspect that the parameter is poorly
matched to the problem, and we set the corresponding evidence
value to negative infinity.

A. Data Sets

Simulation is performed on three data sets. The first one is
a toy problem, with the data generated from five Gaussians
(Fig. 3). It is not separable even with a degree 3 polynomial
decision surface. The training set has 500 patterns and the test
set has 10 000 patterns.

The second data set is the image segmentation data from the
UCI machine learning repository [3]. Each pattern has 19 con-
tinuous attributes and corresponds to a 33 region of an out-
door image. There are 210 patterns in the training set and 2100
patterns in the test set. The original problem is to classify the
pattern into one of the seven classes (brickface, sky, foliage,
cement, window, path andgrass). In our experiments, we will
only concentrate on determining if a particular pattern belongs
to the classbrickface or not.

The third data set is the Wisconsin breast cancer data,
also from the UCI machine learning repository. Each pattern
has nine attributes. First, we remove patterns with missing
attributes. Then inconsistent patterns that share the same set of
input attribute values but with different output labels are also
removed. The resultant data set is randomly partitioned into a
training set of 150 patterns and a test set of 299 patterns.

B. Choosing the Regularization Parameter

In this section, we use the evidence for, , com-
puted in (20) to rank the different values of[or, equivalently,

in (3)]. Fig. 4 plots and the percentage of correct
classifications on the test set at different values of
when a polynomial kernel is used. The corresponding graph for
the Gaussian kernel is shown in Fig. 5. In most cases, the evi-
dence for follows the testing accuracy closely.

As mentioned in Section III-B, an near-optimal value of
can be obtained by iterating the process of finding from
SVM training and re-estimating by (9). Experimental results
are shown in Tables I and II. The testing accuracy for the SVM
obtained in the iterative manner is very close to the testing ac-
curacy for the best SVM in the range of values tested. Results
are especially favorable for Gaussian kernels. Moreover, the
number of iterations required to find the near-optimal value is
quite small.

C. Choosing the Kernel Parameter

This section discusses results on using the model evidence
in (11) to estimate the kernel parameters, which in-

clude the polynomial degreefor polynomial kernels and the
width for Gaussian kernels. The regularization parameter
(for a fixed or ) is estimated iteratively as mentioned in Sec-
tion III-B.

Fig. 6 plots and the percentage of correct classifi-
cations on the test set, at different values ofwhen a polyno-
mial kernel is used. The corresponding graph for the Gaussian
kernel at different values of is shown in Fig. 7. Though not
perfect, the evidence still follows the testing accuracy closely.
There are several reasons for this imperfectness. For example,
the testing accuracy we measured is based on one SVM with
weights set to . The evidence, however, takes account of
the complete posterior distribution around this most probable
value. For a more complete discussion on this, interested readers
may consult [2].
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(a)

(b)

Fig. 7. Results on using different values of� (Gaussian kernel). (a) Toy problem. (b) Image segmentation.

VI. CONCLUSION

In this paper, we introduce an alternate Bayesian interpreta-
tion of SVM based on the weight-space view. By relating the
learning of SVM to the level 1 inference in MacKay’s evidence
framework, we further on show that levels 2 and 3 of the ev-
idence framework can also be applied to SVM. In particular,
we have investigated some of the benefits from such an inte-
gration, namely, the automatic adjustment of the regularization
parameter and the kernel parameter to their near-optimal values,
without the need to set data aside in a validation set.

A number of issues need to be addressed in the future. First,
an extensive study is needed to compare the use of evidence
advocated here and the more traditional method based on an
upper bound of the generalization error. Nevertheless, we want
to emphasize that the Bayesian framework is not confined to
this automatic adjustment of parameters. In fact, as mentioned
in Section I, a lot more benefits can possibly be reaped. For
example, we have obtained some encouraging results on the use
of moderated outputs in SVM [8]. Extending this integration
from classification problems to regression problems should also
be straight-forward.
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(c)

Fig. 7. (Continued.) Results on using different values of� (Gaussian kernel). (c) Breast cancer.

Moreover, as the focus of this paper is to investigate the fea-
sibility of applying the evidence framework to SVM, compar-
ison with other approaches (such as decision trees, feedforward
neural networks) has not been performed. Last, a central ques-
tion in the evidence framework is the validity of the Gaussian
approximation used for the posterior weight distribution. This
issue will be addressed in the future and the application of other
Bayesian techniques like [14] and [21] to SVM will also be con-
sidered.
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